Declining suitability for conversion of drylands to paddy fields in Northeast China: Impact of future climate and socio-economic changes

Jiacheng Qian , Huafu Zhao , Xiaoxiao Wang , Tao Wang , Zhe Feng , Congjie Cao , Xiao Li , Aihui Zhang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100199

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100199 DOI: 10.1016/j.geosus.2024.05.004
Research Article
review-article

Declining suitability for conversion of drylands to paddy fields in Northeast China: Impact of future climate and socio-economic changes

Author information +
History +
PDF

Abstract

Conversion of dryland to paddy fields (CDPF) is an effective way to transition from rain-fed to irrigated agriculture, helping to mitigate the effects of climate change on agriculture and increase yields to meet growing food demand. However, the suitability of CDPF is spatio-temporally dynamic but has often been neglected in previous studies. To fill this knowledge gap, this research developed a novel method for quantifying the suitability of CDPF, based on the MaxEnt model for application in Northeast China. We explored the spatiotemporal characteristics of the suitability of CDPF under the baseline scenario (2010–2020), and future projections (2030–2090) coupled with climate change and socioeconomic development scenarios (SSP126, SSP245, and SSP585), and revealed the driving factors behind it. Based on this, we identified potential priority areas for future CDPF implementation. The results show that the suitability of CDPF projects implemented in the past ten years is relatively high. Compared with the baseline scenario, the suitability of CDPF under the future scenarios will decline overall, with the lightest decrease in the RCP585 and the most severe decrease in the RCP245. The key drivers affecting the suitability of CDPF are elevation, slope, population count, total nitrogen, soil organic carbon content, and precipitation seasonality. The potential priority areas for the future CDPF range from 6,284.61 km2 to 37,006.02 km2. These findings demonstrate the challenges of CDPF in adapting to climate change and food security, and provide insights for food-producing regions around the world facing climate crises.

Keywords

Cropland conversion / Food security / Suitability / Climate change / Machine learning model / Northeast China

Cite this article

Download citation ▾
Jiacheng Qian, Huafu Zhao, Xiaoxiao Wang, Tao Wang, Zhe Feng, Congjie Cao, Xiao Li, Aihui Zhang. Declining suitability for conversion of drylands to paddy fields in Northeast China: Impact of future climate and socio-economic changes. Geography and Sustainability, 2025, 6(1): 100199 DOI:10.1016/j.geosus.2024.05.004

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jiacheng Qian: Writing – review & editing, Writing – original draft, Software, Methodology, Data curation, Conceptualization. Huafu Zhao: Writing – review & editing, Supervision, Resources. Xiaoxiao Wang: Software, Data curation. Tao Wang: Software. Zhe Feng: Supervision, Conceptualization. Congjie Cao: Data curation. Xiao Li: Methodology. Aihui Zhang: Resources.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Ministry of Education of Humanities and Social Science project, China (Grant No. 21YJA630121) and the National Key Technology R&D Program of Ministry of Science and Technology of China (Grant No. 2023YFD1500103) and the Tsinghua Rural Studies PhD Scholarship (Grant No. 202323) and 2023 Graduate Innovation Fund Project of China University of Geosciences, Beijing (Grant No. ZD2023YC043) and National Social Science Fund of China (Grants No. 19ZDA096 and 20&ZD090). We sincerely thank the editor and two anonymous reviewers for their help in improving the quality of the manuscript. Thanks to Dr. Xiaoliang Li for providing advice on the use of the MaxEnt model.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.05.004.

References

[1]

Akpoti, K, Dossou-Yovo, E. R., Zwart, S. J., Kiepe, P., 2021. The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso. Agric. Water Manage., 247 , Article 106758. doi: 10.1016/j.agwat.2021.106758.

[2]

Boria, R. A., Olson, L. E., Goodman, S. M., Anderson, R. P., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model., 275 , pp. 73-77. doi: 10.1016/j.ecolmodel.2013.12.012.

[3]

Cao, S, Chen, L, Yu, X., 2009. 46 , pp. 536-543. doi: 10.1111/j.1365-2664.2008.01605.x.

[4]

Cao, X, Wang, Y, Wu, P, Zhao, X, Wang, J., 2015. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Sci. Total Environ., 529 , pp. 10-20. doi: 10.1016/j.scitotenv.2015.05.050.

[5]

Cao, Y, Li, G, Cao, Y, Wang, J, Fang, X, Zhou, L, Liu, Y., 2020. Distinct types of restructuring scenarios for rural settlements in a heterogeneous rural landscape: application of a clustering approach and ecological niche modeling. Habitat Int., 104 , Article 102248. doi: 10.1016/j.habitatint.2020.102248.

[6]

Chakraborty, D, Ladha, J. K., Rana, D. S., Jat, M. L., Gathala, M. K., Yadav, S, Rao, A. N., Ramesha, M. S., Raman, A., 2017. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep., 7 , p. 9342. doi: 10.1038/s41598-017-09742-9.

[7]

Chen, H, Zhang, W, Gao, H, Nie, N., 2018. Climate change and anthropogenic impacts on wetland and agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sens., 10 , p. 356. doi: 10.3390/rs10030356.

[8]

Chen, W, Pourghasemi, H. R., Kornejady, A, Zhang, N., 2017. Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305 , pp. 314-327. doi: 10.1016/j.geoderma.2017.06.020.

[9]

Chen, Y, Guo, F, Wang, J, Cai, W, Wang, C, Wang, K., 2020. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data, 7 , p. 83. doi: 10.1038/s41597-020-0421-y.

[10]

Chen, Y, Paydar, Z., 2012. Evaluation of potential irrigation expansion using a spatial fuzzy multi-criteria decision framework. Environ. Model. Softw., 38 , pp. 147-157. doi: 10.1016/j.envsoft.2012.05.010.

[11]

Chhogyel, N, Kumar, L, Bajgai, Y, Jayasinghe, L. S., 2020. Prediction of Bhutan's ecological distribution of rice (Oryza sativa L.) under the impact of climate change through maximum entropy modelling. J. Agric. Sci., 158 , pp. 25-37. doi: 10.1017/S0021859620000350.

[12]

Chuai, X, Gao, R, Li, J, Guo, X, Lu, Q, Zhang, M, Zhang, X, Liu, Y., 2021. A new meta-coupling framework to diagnose the inequity hidden in China's cultivated land use. Environ. Sci. Policy, 124 , pp. 635-644. doi: 10.1016/j.envsci.2021.08.001.

[13]

Cobos, M. E., Peterson, A. T., Barve, N, Osorio-Olvera, L., 2019. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7 , p. e6281. doi: 10.7717/peerj.6281.

[14]

De Silva, C. S., Weatherhead, E. K., Knox, J. W., Rodriguez-Diaz, J. A., 2007. Predicting the impacts of climate change—a case study of paddy irrigation water requirements in Sri Lanka. Agric. Water Manage., 93 , pp. 19-29. doi: 10.1016/j.agwat.2007.06.003.

[15]

Dong, J, Xiao, X, Zhang, G, Menarguez, M. A., Choi, C. Y., Qin, Y, Luo, P, Zhang, Y, Moore, B., 2016. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett., 43 , pp. 3754-3761. doi: 10.1002/2016GL068191.

[16]

Dong, T, Dong, W., 2021. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim. Dyn., 57 , pp. 1751-1769. doi: 10.1007/s00382-021-05773-1.

[17]

Duan, J, Zhou, G., 2013. Dynamics of decadal changes in the distribution of double-cropping rice cultivation in China. Chin. Sci. Bull., 58 , pp. 1955-1963. doi: 10.1007/s11434-012-5608-y.

[18]

Elith, J, Phillips, S. J., Hastie, T, Dudík, M, Chee, Y. E., Yates, C. J., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib., 17 , pp. 43-57. doi: 10.1111/j.1472-4642.2010.00725.x.

[19]

Fan, Y., Li, H., Miguez-Macho, G., 2013. Global patterns of groundwater table depth. Science (1979) 339, 940–943. doi: 10.1126/science.1229881.

[20]

FAOSTAT, 2021. FAO Statistical Databases . https://www.fao.org/faostat/zh/#home . (ac- cessed 27 December 2021)

[21]

Fernández, J. M., Selma, M. A. E., 2004. The dynamics of water scarcity on irrigated landscapes: Mazarrón and Aguilas in south-eastern Spain. Syst. Dyn. Rev., 20 , pp. 117-137. doi: 10.1002/sdr.290.

[22]

Foley, J. A., Ramankutty, N, Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M, Mueller, N. D., O'Connell, C, Ray, D. K., West, P. C., Balzer, C, Bennett, E. M., Carpenter, S. R., Hill, J, Monfreda, C, Polasky, S, Rockström, J, Sheehan, J, Siebert, S, Tilman, D, Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature, 478 , pp. 337-342. doi: 10.1038/nature10452.

[23]

Gidden, M. J., Riahi, K, Smith, S. J., Fujimori, S, Luderer, G, Kriegler, E, van Vuuren, D. P., van den Berg, M, Feng, L, Klein, D, Calvin, K, Doelman, J. C., Frank, S, Fricko, O, Harmsen, M, Hasegawa, T, Havlik, P, Hilaire, J, Hoesly, R, Horing, J, Popp, A, Stehfest, E, Takahashi, K., 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12 , pp. 1443-1475. doi: 10.5194/gmd-12-1443-2019.

[24]

Haefele, S. M., Nelson, A, Hijmans, R. J., 2014. Soil quality and constraints in global rice production. Geoderma, 235–236 , pp. 250-259. doi: 10.1016/j.geoderma.2014.07.019.

[25]

Halvorsen, R, Mazzoni, S, Dirksen, J. W., Næsset, E, Gobakken, T, Ohlson, M., 2016. How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?. Ecol. Model., 328 , pp. 108-118. doi: 10.1016/j.ecolmodel.2016.02.021.

[26]

Hengl, T, de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M, Blagotić, A, Shangguan, W, Wright, M. N., Geng, X, Bauer-Marschallinger, B, Guevara, M. A., Vargas, R, MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E, Wheeler, I, Mantel, S, Kempen, B., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One, 12 , Article e0169748. doi: 10.1371/journal.pone.0169748.

[27]

Heumann, B. W., Walsh, S. J., McDaniel, P. M., 2011. Assessing the application of a geographic presence-only model for land suitability mapping. Ecol. Inform., 6 , pp. 257-269. doi: 10.1016/j.ecoinf.2011.04.004.

[28]

Jiménez-Valverde, A, Lobo, J. M., Hortal, J., 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib., 14 , pp. 885-890. doi: 10.1111/j.1472-4642.2008.00496.x.

[29]

Kang, S, Eltahir, E. A. B., 2018. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun., 9 , p. 2894. doi: 10.1038/s41467-018-05252-y.

[30]

Kogo, B. K., Kumar, L, Koech, R, Kariyawasam, C. S., 2019. Modelling climate suitability for rainfed maize cultivation in Kenya using a maximum entropy (MaxENT) approach. Agronomy, 9 , p. 727. doi: 10.3390/agronomy9110727.

[31]

Koide, N, Robertson, A. W., Ines, A. V. M, Qian, J-.H, DeWitt, D. G., Lucero, A., 2013. Prediction of rice production in the Philippines using seasonal climate forecasts. J. Appl. Meteorol. Climatol., 52 , pp. 552-569. doi: 10.1175/JAMC-D-11-0254.1.

[32]

Kramer-Schadt, S, Niedballa, J, Pilgrim, J. D., Schröder, B, Lindenborn, J, Reinfelder, V, Stillfried, M, Heckmann, I, Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J, Macdonald, D. W., Mathai, J, Eaton, J, Marshall, A. J., Semiadi, G, Rustam, R, Bernard, H, Alfred, R, Samejima, H, Duckworth, J. W., Breitenmoser-Wuersten, C, Belant, J. L., Hofer, H, Wilting, A., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib., 19 , pp. 1366-1379. doi: 10.1111/ddi.12096.

[33]

Kudo, R, Yoshida, T, Masumoto, T., 2017. 548 , pp. 196-207. doi: 10.1016/j.jhydrol.2017.03.007.

[34]

Kudo, R., Yoshida, T., Masumoto, T., 2017. Uncertainty analysis of impacts of climate change on snow processes: case study of interactions of GCM uncertainty and an impact model. J. Hydrol. 548, 196–207. doi: 10.1016/j.jhydrol.2017.03.007.

[35]

Li, X, Hui, N, Yang, Y, Ma, J, Luo, Z, Chen, F., 2021. Short-term effects of land consolidation of dryland-to-paddy conversion on soil CO2 flux. J. Environ. Manage., 292 , Article 112691. doi: 10.1016/j.jenvman.2021.112691.

[36]

Li, Y, Liu, Y, Long, H, Cui, W., 2014. Community-based rural residential land consolidation and allocation can help to revitalize hollowed villages in traditional agricultural areas of China: evidence from Dancheng County, Henan Province. Land Use Policy, 39 , pp. 188-198. doi: 10.1016/j.landusepol.2014.02.016.

[37]

Lichtenberg, E, Ding, C., 2008. Assessing farmland protection policy in China. Land Use Policy, 25 , pp. 59-68. doi: 10.1016/j.landusepol.2006.01.005.

[38]

Liu, J, Kuang, W, Zhang, Z, Xu, X, Qin, Y, Ning, J, Zhou, W, Zhang, S, Li, R, Yan, C, Wu, S, Shi, X, Jiang, N, Yu, D, Pan, X, Chi, W., 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci., 24 , pp. 195-210. doi: 10.1007/s11442-014-1082-6.

[39]

Liu, T., Yu, L., Zhang, S., 2019. Impacts of wetland reclamation and paddy field expansion on observed local temperature trends in the Sanjiang Plain of China. J. Geophys. Res- Earth. 124, 414–426. doi: 10.1029/2018JF004846.

[40]

Liu, Y., Liu, X., Liu, Z., 2022. Effects of climate change on paddy expansion and potential adaption strategies for sustainable agriculture development across Northeast China. Appl. Geogr. 141, 102667. doi: 10.1016/j.apgeog.2022.102667.

[41]

Lobo, J. M., Jiménez-Valverde, A, Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr., 17 , pp. 145-151. doi: 10.1111/j.1466-8238.2007.00358.x.

[42]

Lu, Y, Liu, G, Cheung, W. W. L., Xian, Y, Chen, W, Yu, D., 2023. Anthropogenic footprints are invading global habitats of Indo-Pacific humpback dolphins. Geogr. Sustain., 4 , pp. 58-69. doi: 10.1016/j.geosus.2022.12.001.

[43]

Merow, C, Smith, M. J., Silander Jr, J. A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36 (10) , pp. 1058-1069. doi: 10.1111/j.1600-0587.2013.07872.x.

[44]

Mod, H. K., Buri, A, Yashiro, E, Guex, N, Malard, L, Pinto-Figueroa, E, Pagni, M, Niculita-Hirzel, H, van der Meer, J. R., Guisan, A., 2021. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J., 15 , pp. 2547-2560. doi: 10.1038/s41396-021-00947-5.

[45]

Naeem, M, Liu, M, Huang, J, Ding, G, Potapov, G, Jung, C, An, J., 2019. Vulnerability of East Asian bumblebee species to future climate and land cover changes. Agric. Ecosyst. Environ., 277 , pp. 11-20. doi: 10.1016/j.agee.2019.03.002.

[46]

Organisation for Economic Co-operation and Development (OECD), 2021. OECD-FAO Agricultural Outlook 2021-2030. Organisation for Economic Co-operation and Development, Paris.

[47]

Ouyang, W, Bing, L, Huang, H, Hao, F, Hao, Z., 2015. Watershed water circle dynamics during long term farmland conversion in freeze-thawing area. J. Hydrol., 523 , pp. 555-562. doi: 10.1016/j.jhydrol.2015.01.050.

[48]

Pan, T, Zhang, C, Kuang, W, Luo, G, Du, G, DeMaeyer, P, Yin, Z., 2021. A large-scale shift of cropland structure profoundly affects grain production in the cold region of China. J. Clean. Prod., 307 , Article 127300. doi: 10.1016/j.jclepro.2021.127300.

[49]

Pan, T, Zhang, C, Kuang, W, Luo, G, Du, G, Yin, Z., 2020. Large-scale rain-fed to paddy farmland conversion modified land-surface thermal properties in Cold China. Sci. Total Environ., 722 , Article 137917. doi: 10.1016/j.scitotenv.2020.137917.

[50]

Pašakarnis, G, Maliene, V., 2010. Towards sustainable rural development in central and Eastern Europe: applying land consolidation. Land Use Policy, 27 , pp. 545-549. doi: 10.1016/j.landusepol.2009.07.008.

[51]

Peterson, A. T., Papeş, M, Soberón, J., 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model., 213 , pp. 63-72. doi: 10.1016/j.ecolmodel.2007.11.008.

[52]

Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model., 190 , pp. 231-259. doi: 10.1016/j.ecolmodel.2005.03.026.

[53]

Puy, A, Borgonovo, E, Lo Piano, S, Levin, S. A., Saltelli, A., 2021. Irrigated areas drive irrigation water withdrawals. Nat. Commun., 12 , p. 4525. doi: 10.1038/s41467-021-24508-8.

[54]

Rahmati, O, Pourghasemi, H. R., Melesse, A. M., 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137 , pp. 360-372. doi: 10.1016/j.catena.2015.10.010.

[55]

Rosa, L, Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J, D’Odorico, P., 2020. Global agricultural economic water scarcity. Sci. Adv., 6 , Article eaaz6031. doi: 10.1126/sciadv.aaz6031.

[56]

Seck, P. A., Diagne, A, Mohanty, S, Wopereis, M. C. S., 2012. Crops that feed the world 7: rice. Food Secur., 4 , pp. 7-24. doi: 10.1007/s12571-012-0168-1.

[57]

Shi, W, Tao, F, Liu, J, Xu, X, Kuang, W, Dong, J, Shi, X., 2014. Has climate change driven spatio-temporal changes of cropland in northern China since the 1970s?. Clim. Change, 124 , pp. 163-177. doi: 10.1007/s10584-014-1088-1.

[58]

Sillero, N., 2011. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model., 222 , pp. 1343-1346. doi: 10.1016/j.ecolmodel.2011.01.018.

[59]

Sklenicka, P., 2006. Applying evaluation criteria for the land consolidation effect to three contrasting study areas in the Czech Republic. Land Use Policy, 23 , pp. 502-510. doi: 10.1016/j.landusepol.2005.03.001.

[60]

Song, K, Wang, Z, Du, J, Liu, L, Zeng, L, Ren, C., 2014. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage., 54 , pp. 255-271. doi: 10.1007/s00267-014-0278-y.

[61]

Su, P, Zhang, A, Wang, R, Wang, J, Gao, Y, Liu, F., 2021. Prediction of future natural suitable areas for rice under representative concentration pathways (RCPs). Sustainability, 13 , p. 1580. doi: 10.3390/su13031580.

[62]

Sun, C, Pan, Y, Liu, Y, Hu, Y., 2018. Method and empirical research on reclaiming dryland field into paddy construction zoning and project site selection at county scale. Trans. Chin. Soc. Agric. Mach., 49 , pp. 203-210. doi: 10.6041/j.issn.1000-1298.2018.01.025.

[63]

Ten Caten, C, Dallas, T., 2023. Thinning occurrence points does not improve species distribution model performance. Ecosphere, 14 , p. e4703. doi: 10.1002/ecs2.4703.

[64]

Tian, Z, Fan, Y, Wang, K, Zhong, H, Sun, L, Fan, D, Tubiello, F. N., Liu, J., 2021. Searching for “Win-Win” solutions for food-water-GHG emissions tradeoffs across irrigation regimes of paddy rice in China. Resour. Conserv. Recycl., 166 , Article 105360. doi: 10.1016/j.resconrec.2020.105360.

[65]

van Aalst, M. A., Koomen, E, Tran, D. D., Hoang, H. M., Nguyen, H. Q., de Groot, H. L. F., 2023. The economic sustainability of rice farming and its influence on farmer decision-making in the upper Mekong delta, Vietnam. Agric. Water Manage., 276 , Article 108018. doi: 10.1016/j.agwat.2022.108018.

[66]

Wakeyo, M. B., Gardebroek, C., 2017. Share of irrigated land and farm size in rainwater harvesting irrigation in Ethiopia. J. Arid Environ., 139 , pp. 85-94. doi: 10.1016/j.jaridenv.2017.01.002.

[67]

Wang, W., Straffelini, E., Tarolli, P., 2023. 44% of steep slope cropland in Europe vulnerable to drought. Geogr. Sustain. 5 (1), 89–95. doi: 10.1016/j.geosus.2023.12.001.

[68]

Wang, S, Bai, X, Zhang, X, Reis, S, Chen, D, Xu, J, Gu, B., 2021. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food, 2 , p. 23. doi: 10.1038/s43016-021-00228-6.

[69]

Wu, W., Xia, T., Hu, Q., 2019. Study on mutual transformation spatial and temporal pattern and its water resources effect between paddy field and dry land in Heilongjiang province from 1980 to 2015. Chin. J. Agric. Resour. Reg. Plan. 40, 142–151. doi: 10.7621/cjarrp.1005-9121.20190120 , (in Chinese).

[70]

Xiang, C, Zhou, D, Song, G, Zhao, Y., 2012. Research on permissive conversion limit of dryland to paddy field in Tonghe county, Heilongjiang province. Trans. Chin. Soc. Agric. Eng., 28 , pp. 226-230. doi: 10.3969/j.issn.1002-6819.2012.13.036.

[71]

Xin, F, Xiao, X, Dong, J, Zhang, G, Zhang, Y, Wu, X, Li, X, Zou, Z, Ma, J, Du, G, Doughty, R. B., Zhao, B, Li, B., 2020. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ., 711 , Article 135183. doi: 10.1016/j.scitotenv.2019.135183.

[72]

Yang, J, Wang, J, Xu, C, Liu, Y, Yin, Q, Wang, X, Wang, L, Wu, Y, Xiao, G., 2021. Rice supply flows and their determinants in China. Resour. Conserv. Recycl., 174 , Article 105812. doi: 10.1016/j.resconrec.2021.105812.

[73]

Ye, C, Wang, S, Wu, S, Zhou, T., 2024. Impacts of future permafrost degradation and human modification on terrestrial vertebrates. Biol. Conserv., 291 , Article 110475. doi: 10.1016/j.biocon.2024.110475.

[74]

Yoshimura, N, Hiura, T., 2017. Demand and supply of cultural ecosystem services: use of geotagged photos to map the aesthetic value of landscapes in Hokkaido. Ecosyst. Serv., 24 , pp. 68-78. doi: 10.1016/j.ecoser.2017.02.009.

[75]

Yu, G, Feng, J, Che, Y, Lin, X, Hu, L, Yang, S., 2010. The identification and assessment of ecological risks for land consolidation based on the anticipation of ecosystem stabilization: a case study in Hubei Province, China. Land Use Policy, 27 , pp. 293-303. doi: 10.1016/j.landusepol.2009.03.004.

[76]

Yuan, S, Linquist, B. A., Wilson, L. T., Cassman, K. G., Stuart, A. M., Pede, V, Miro, B, Saito, K, Agustiani, N, Aristya, V. E., Krisnadi, L. Y., Zanon, A. J., Heinemann, A. B., Carracelas, G, Subash, N, Brahmanand, P. S., Li, T, Peng, S, Grassini, P., 2021. Sustainable intensification for a larger global rice bowl. Nat. Commun., 12 , p. 7163. doi: 10.1038/s41467-021-27424-z.

[77]

Zhang, Y., Wang, Y., Niu, H., 2017. Spatio-temporal variations in the areas suitable for the cultivation of rice and maize in China under future climate scenarios. Sci. Total Environ. 601–602, 518–531. doi: 10.1016/j.scitotenv.2017.05.232.

[78]

Zhang, Z., Zhao, W., Gu, X., 2014. Changes resulting from a land consolidation project (LCP) and its resource–environment effects: a case study in Tianmen City of Hubei Province, China. Land Use Policy 40, 74–82. doi: 10.1016/j.landusepol.2013.09.013.

[79]

Zhong, Y, Xue, Z, Jiang, M, Liu, B, Wang, G., 2021. The application of species distribution modeling in wetland restoration: a case study in the Songnen Plain, Northeast China. Ecol. Indic., 121 , Article 107137. doi: 10.1016/j.ecolind.2020.107137.

[80]

Zuo, L, Zhang, Z, Carlson, K. M., MacDonald, G. K., Brauman, K. A., Liu, Y, Zhang, W, Zhang, H, Wu, W, Zhao, X, Wang, X, Liu, B, Yi, L, Wen, Q, Liu, F, Xu, J, Hu, S, Sun, F, Gerber, J. S., West, P. C., 2018. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain., 1 , pp. 304-313. doi: 10.1038/s41893-018-0076-2.

PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

/