Comparing trends of crop and pasture in future land-use scenarios for climate change mitigation

Maxime Malbranque , Xiangping Hu , Francesco Cherubini

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 470 -481.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :470 -481. DOI: 10.1016/j.geosus.2024.05.003
Research Article
review-article

Comparing trends of crop and pasture in future land-use scenarios for climate change mitigation

Author information +
History +
PDF

Abstract

Revegetation of former agricultural land is a key option for climate change mitigation and nature conservation. Expansion and abandonment of agricultural land is typically influenced by trends in diets and agricultural intensification, which are two key parameters in the Shared Socioeconomic Pathways (SSPs). Datasets mapping future land dynamics under different SSPs and climate change mitigation targets stem from different scenario assumptions, land data and modelling frameworks. This study aims to determine the role that these three factors play in the estimates of the evolution of cropland and pastureland in future SSPs under different climate scenarios from four main datasets largely used in the climate and land surface studies. The datasets largely agree with the representation of cropland at present-day conditions, but the identification of pastureland is ambiguous and shows large discrepancies due to the lack of a unique land-use category. Differences occur with future projections, even for the same SSP and climate target. Accounting for CO2 sequestration from revegetation of abandoned agricultural land and CO2 emissions from forest clearance due to agricultural expansion shows a net reduction in vegetation carbon stock for most SSPs considered, except SSP1. However, different datasets give differences in estimates, even when representative of the same scenario. With SSP1, the cumulative increase in carbon stock until 2050 is 3.3 GtC for one dataset, and more than double for another. Our study calls for a common classification system with improved detection of pastureland to harmonize projections and reduce variability of outcomes in environmental studies.

Keywords

Natural forest regrowth / Scenarios / Agriculture / Climate change mitigation

Cite this article

Download citation ▾
Maxime Malbranque, Xiangping Hu, Francesco Cherubini. Comparing trends of crop and pasture in future land-use scenarios for climate change mitigation. Geography and Sustainability, 2024, 5(3): 470-481 DOI:10.1016/j.geosus.2024.05.003

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Maxime Malbranque: Data curation, Formal analysis, Software, Validation, Visualization, Writing – original draft. Xiangping Hu: Data curation, Methodology, Software, Writing – original draft, Writing – review & editing, Validation. Francesco Cherubini: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the Norwegian Research Council through the project MitiStress (Grant No. 286773).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.05.003.

References

[1]

Alexander, P, Prestele, R, Verburg, P. H., Arneth, A, Baranzelli, C, Batista e Silva, F, Brown, C, Butler, A, Calvin, K, Dendoncker, N., 2017. Assessing uncertainties in land cover projections. Glob. Change Biol., 23, 767-781.

[2]

Andrew, R, Peters, G., 2021. The Global Carbon Project's fossil CO2 Emissions Dataset: 2021 Release. CICERO Center for International Climate Research, Oslo, Norway

[3]

Arneth, A., Denton, F., Agus, F., Elbehri, A., Erb, K., Osman Elasha, B., Rahimi, M., Rounsevell, M., Spence, A., Valentini, R., 2019. Framing and context. In: Shukla, P., Skea, J., Buendia, E., Masson-Delmotte, V., Pörtner, H., Roberts, D., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J. (Eds.), Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. doi:10.1017/9781009157988.003.

[4]

Bajželj, B, Richards, K. S., Allwood, J. M., Smith, P, Dennis, J. S., Curmi, E, Gilligan, C. A., 2014. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924-929.

[5]

Bayer, A. D., Fuchs, R, Mey, R, Krause, A, Verburg, P. H., Anthoni, P, Arneth, A., 2021. Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services. Earth Syst. Dynam., 12, 327-351.

[6]

Boysen, L. R., Lucht, W, Gerten, D., 2017. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol., 23, 4303-4317.

[7]

Brown, C, Holman, I, Rounsevell, M., 2021. How modelling paradigms affect simulated future land use change. Earth Syst. Dynam., 12, 211-231.

[8]

Calvin, K, Bond-Lamberty, B, Clarke, L, Edmonds, J, Eom, J, Hartin, C, Kim, S, Kyle, P, Link, R, Moss, R, McJeon, H, Patel, P, Smith, S, Waldhoff, S, Wise, M., 2017. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284-296.

[9]

Calvin, K, Patel, P, Clarke, L, Asrar, G, Bond-Lamberty, B, Cui, R. Y., Di Vittorio, A, Dorheim, K, Edmonds, J, Hartin, C., 2019. GCAM v5. 1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev., 12, 677-698.

[10]

Chen, G, Li, X, Liu, X., 2022. Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Sci. Data 9, 125.

[11]

Chen, M, Vernon, C. R., Graham, N. T., Hejazi, M, Huang, M, Cheng, Y, Calvin, K., 2020. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320.

[12]

Cook-Patton, S. C., Leavitt, S. M., Gibbs, D, Harris, N. L., Lister, K, Anderson-Teixeira, K. J., Briggs, R. D., Chazdon, R. L., Crowther, T. W., Ellis, P. W., 2020. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545-550.

[13]

Crawford, C. L., Yin, H, Radeloff, V. C., Wilcove, D. S., 2022. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Sci. Adv., 8, eabm8999.

[14]

De Vries, B, Bollen, J, Bouwman, L, Den Elzen, M, Janssen, M, Kreileman, E., 2000. Greenhouse gas emissions in an equity-, environment-and service-oriented world: an IMAGE-based scenario for the 21st century. Technol. Forecast. Soc. Change 63, 137-174.

[15]

Di Vittorio, A, Mao, J, Shi, X, Chini, L, Hurtt, G, Collins, W., 2018. Quantifying the effects of historical land cover conversion uncertainty on global carbon and climate estimates. Geophys. Res. Lett., 45, 974-982.

[16]

Di Vittorio, A, Shi, X, Bond-Lamberty, B, Calvin, K, Jones, A., 2020. Initial land use/cover distribution substantially affects global carbon and local temperature projections in the integrated earth system model. Glob. Biogeochem. Cycle., 34, e2019GB006383.

[17]

Di Vittorio, A. V., Chini, L. P., Bond-Lamberty, B, Mao, J, Shi, X, Truesdale, J, Craig, A, Calvin, K, Jones, A, Collins, W. D., 2014. From land use to land cover: restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations. Biogeosciences 11, 6435-6450.

[18]

Di Vittorio, A. V., Narayan, K. B., Patel, P, Calvin, K, Vernon, C. R., 2023. Doubling protected land area may be inefficient at preserving the extent of undeveloped land and could cause substantial regional shifts in land use. GCB Bioenergy 15, 185-207.

[19]

Doelman, J. C., Stehfest, E, van Vuuren, D. P., Tabeau, A, Hof, A. F., Braakhekke, M. C., Gernaat, D. E., van den Berg, M, van Zeist, W. J., Daioglou, V., 2020. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol., 26, 1576-1591.

[20]

Erb, K-H, Lauk, C, Kastner, T, Mayer, A, Theurl, M. C., Haberl, H., 2016. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun., 7, 11382.

[21]

Folberth, C, Khabarov, N, Balkovič, J, Skalský, R, Visconti, P, Ciais, P, Janssens, I. A., Peñuelas, J, Obersteiner, M., 2020. The global cropland-sparing potential of high-yield farming. Nat. Sustain., 3, 281-289.

[22]

Fryer, J, Williams, I. D., 2021. Regional carbon stock assessment and the potential effects of land cover change. Sci. Total Environ., 775, 145815.

[23]

Gerber, P, Hristov, A, Henderson, B, Makkar, H, Oh, J, Lee, C, Meinen, R, Montes, F, Ott, T, Firkins, J., 2013. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal 7, 220-234.

[24]

Gidden, M. J., Riahi, K, Smith, S. J., Fujimori, S, Luderer, G, Kriegler, E, Van Vuuren, D. P., Van Den Berg, M, Feng, L, Klein, D., 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12, 1443-1475.

[25]

Gvein, M. H., Hu, X, Næss, J. S., Watanabe, M. D., Cavalett, O, Malbranque, M, Kindermann, G, Cherubini, F., 2023. Potential of land-based climate change mitigation strategies on abandoned cropland. Commun. Earth Environ., 4, 39.

[26]

Hayek, M. N., Harwatt, H, Ripple, W. J., Mueller, N. D., 2021. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain., 4, 21-24.

[27]

Hill, M. J., Vickery, P. J., Furnival, E. P., Donald, G. E., 1999. Pasture land cover in eastern Australia from NOAA-AVHRR NDVI and classified Landsat TM. Remote Sens. Environ., 67, 32-50.

[28]

Hong, S, Yin, G, Piao, S, Dybzinski, R, Cong, N, Li, X, Wang, K, Peñuelas, J, Zeng, H, Chen, A., 2020. Divergent responses of soil organic carbon to afforestation. Nat. Sustain., 3, 694-700.

[29]

Houghton, R., 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298-313.

[30]

Hu, X, Næss, J. S., Iordan, C. M., Huang, B, Zhao, W, Cherubini, F., 2021. Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene 34, 100291.

[31]

Hu, X. P., Cherubini, F, Vezhapparambu, S, Stromman, A. H., 2018. From remotely-sensed data of Norwegian boreal forests to fast and flexible models for estimating surface albedo. J. Adv. Model. Earth Syst., 10, 2495-2513.

[32]

Hua, T, Zhao, W. W., Liu, Y. X., Wang, S, Yang, S. Q., 2018. Spatial consistency assessments for global land-cover datasets: a comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens., 10, 1846.

[33]

Huang, B, Hu, X. P., Fuglstad, G. A., Zhou, X, Zhao, W. W., Cherubini, F., 2020. Predominant regional biophysical cooling from recent land cover changes in Europe. Nat. Commun., 11, 1066.

[34]

Humpenöder, F, Popp, A, C-Schleussner, F, Orlov, A, Windisch, M. G., Menke, I, Pongratz, J, Havermann, F, Thiery, W, Luo, F., 2022. Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. Nat. Commun., 13, 7453.

[35]

Hurtt, G. C., Chini, L, Sahajpal, R, Frolking, S, Bodirsky, B. L., Calvin, K, Doelman, J. C., Fisk, J, Fujimori, S, Klein Goldewijk, K., 2020. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev., 13, 5425-5464.

[36]

IPCC, 2019. Summary for policymakers. In: Shukla, P., Skea, J., Buendia, E., Masson- Delmotte, V., Pörtner, H., Roberts, D., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J. (Eds.), Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. doi:10.1017/9781009157988.001.

[37]

Klein Goldewijk, K, Beusen, A, Doelman, J, Stehfest, E., 2017. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927-953.

[38]

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G, Collier, N, Ghimire, B, van Kampenhout, L, Kennedy, D., 2019. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 4245-4287.

[39]

Lawrence, D. M., Hurtt, G. C., Arneth, A, Brovkin, V, Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N, Pongratz, J., 2016. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev., 9, 2973-2998.

[40]

Lesiv, M, Schepaschenko, D, Moltchanova, E, Bun, R, Dürauer, M, Prishchepov, A. V., Schierhorn, F, Estel, S, Kuemmerle, T, Alcántara, C., 2018. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci. data 5, 180056.

[41]

Liu, Z, Deng, Z, Davis, S. J., Giron, C, Ciais, P., 2022. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ., 3, 217-219.

[42]

Moritz, H., 2000. Geodetic reference system 1980. J. Geodesy 74, 128-133.

[43]

Næss, J. S., Cavalett, O, Cherubini, F., 2021. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain., 4, 525-536.

[44]

Næss, J. S., Hu, X, Gvein, M. H, Iordan, C-.M, Cavalett, O, Dorber, M, Giroux, B, Cherubini, F., 2023. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries. J. Environ. Manage., 325, 116474.

[45]

O'Neill, B. C., Kriegler, E, Ebi, K. L., Kemp-Benedict, E, Riahi, K, Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J, Kok, K, Levy, M, Solecki, W., 2017. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169-180.

[46]

O'Neill, B. C., Tebaldi, C, Van Vuuren, D. P., Eyring, V, Friedlingstein, P, Hurtt, G, Knutti, R, Kriegler, E, J-Lamarque, F, Lowe, J., 2016. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 3461-3482.

[47]

Oliveira, J, Campbell, E. E., Lamparelli, R. A., Figueiredo, G. K., Soares, J. R., Jaiswal, D, Monteiro, L. A., Vianna, M. S., Lynd, L. R., Sheehan, J. J., 2020. Choosing pasture maps: an assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Earth Obs. Geoinf., 93, 102205.

[48]

Page, Y. L., West, T. O., Link, R, Patel, P., 2016. Downscaling land use and land cover from the Global Change Assessment Model for coupling with Earth system models. Geosci. Model Dev., 9, 3055-3069.

[49]

Peng, S, Ciais, P, Maignan, F, Li, W, Chang, J, Wang, T, Yue, C., 2017. Sensitivity of land use change emission estimates to historical land use and land cover mapping. Glob. Biogeochem. Cycle., 31, 626-643.

[50]

Pérez-Hoyos, A, Rembold, F, Kerdiles, H, Gallego, J., 2017. Comparison of global land cover datasets for cropland monitoring. Remote Sens., 9, 1118.

[51]

Perugini, L, Caporaso, L, Marconi, S, Cescatti, A, Quesada, B, de Noblet-Ducoudre, N, House, J. I., Arneth, A., 2017. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett., 12, 053002.

[52]

Pongratz, J, Schwingshackl, C, Bultan, S, Obermeier, W, Havermann, F, Guo, S., 2021. Land use effects on climate: current state, recent progress, and emerging topics. Curr. Clim. Change Rep., 7, 99-120.

[53]

Poore, J, Nemecek, T., 2018. Reducing food's environmental impacts through producers and consumers. Science 360, 987-992.

[54]

Popp, A, Calvin, K, Fujimori, S, Havlik, P, Humpenoder, F, Stehfest, E, Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti, M, Hasegawa, T, Kyle, P, Obersteiner, M, Tabeau, A, Takahashi, K, Valin, H, Waldhoff, S, Weindl, I, Wise, M, Kriegler, E, Lotze-Campen, H, Fricko, O, Riahi, K, van Vuuren, D. P., 2017. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331-345.

[55]

Prestele, R, Arneth, A, Bondeau, A, de Noblet-Ducoudré, N, Pugh, T. A., Sitch, S, Stehfest, E, Verburg, P. H., 2017. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth Syst. Dynam., 8, 369-386.

[56]

Ramankutty, N, Evan, A. T., Monfreda, C, Foley, J. A., 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycle., 22, GB1003.

[57]

Riahi, K, van Vuuren, D. P., Kriegler, E, Edmonds, J, O’Neill, B. C., Fujimori, S, Bauer, N, Calvin, K, Dellink, R, Fricko, O, Lutz, W, Popp, A, Cuaresma, J. C., Samir, K. C., Leimbach, M, Jiang, L. W., Kram, T, Rao, S, Emmerling, J, Ebi, K, Hasegawa, T, Havlik, P, Humpenoder, F, da Silva, L. A., Smith, S, Stehfest, E, Bosetti, V, Eom, J, Gernaat, D, Masui, T, Rogelj, J, Strefler, J, Drouet, L, Krey, V, Luderer, G, Harmsen, M, Takahashi, K, Baumstark, L, Doelman, J. C., Kainuma, M, Klimont, Z, Marangoni, G, Lotze-Campen, H, Obersteiner, M, Tabeau, A, Tavoni, M., 2017. The Shared Socioeconomic Pathways and their energy land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153-168.

[58]

Samir, K, Lutz, W., 2017. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181-192.

[59]

Song, X-P, Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A, Vermote, E. F., Townshend, J. R., 2018. Global land change from 1982 to 2016. Nature 560, 639-643.

[60]

Spawn, S. A., Sullivan, C. C., Lark, T. J., Gibbs, H. K., 2020. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1-22.

[61]

Stehfest, E, W-van Zeist, J, Valin, H, Havlik, P, Popp, A, Kyle, P, Tabeau, A, Mason-D'Croz, D, Hasegawa, T, Bodirsky, B. L., 2019. Key determinants of global land-use projections. Nat. Commun., 10, 2166.

[62]

Thibault, M, Thiffault, E, Bergeron, Y, Ouimet, R, Tremblay, S., 2022. Afforestation of abandoned agricultural lands for carbon sequestration: how does it compare with natural succession?. Plant Soil 475, 605-621.

[63]

Tsendbazar, N-E, De Bruin, S, Fritz, S, Herold, M., 2015. Spatial accuracy assessment and integration of global land cover datasets. Remote Sens., 7, 15804-15821.

[64]

Ustaoglu, E, Collier, M. J., 2018. Farmland abandonment in Europe: an overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev., 26, 396-416.

[65]

Van Dijk, M, Morley, T, Rau, M. L., Saghai, Y., 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494-501.

[66]

Van Vuuren, D. P., Stehfest, E, Gernaat, D. E., Doelman, J. C., Van den Berg, M, Harmsen, M, de Boer, H. S., Bouwman, L. F., Daioglou, V, Edelenbosch, O. Y., 2017. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237-250.

[67]

Windisch, M. G., Davin, E. L., Seneviratne, S. I., 2021. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867-871.

[68]

Winkler, K, Fuchs, R, Rounsevell, M, Herold, M., 2021. Global land use changes are four times greater than previously estimated. Nat. Commun., 12, 2501.

[69]

Wolf, J, West, T. O., Le Page, Y, Kyle, G. P., Zhang, X, Collatz, G. J., Imhoff, M. L., 2015. Biogenic carbon fluxes from global agricultural production and consumption. Glob. Biogeochem. Cycle., 29, 1617-1639.

[70]

Xia, J, Liu, S, Liang, S, Chen, Y, Xu, W, Yuan, W., 2014. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens., 6, 1783-1802.

[71]

Yin, H, Brandão Jr, A, Buchner, J, Helmers, D, Iuliano, B. G., Kimambo, N. E., Lewińska, K. E., Razenkova, E, Rizayeva, A, Rogova, N., 2020. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ., 246, 111873.

PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

/