Diverse experiences by active travel for carbon neutrality: A longitudinal study of residential context, daily travel and experience types

Karl Samuelsson , S. Anders Brandt , Stephan Barthel , Noah Linder , Nancy Joy Lim , David Hallman , Matteo Giusti

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 459 -469.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :459 -469. DOI: 10.1016/j.geosus.2024.05.002
Research Article
review-article

Diverse experiences by active travel for carbon neutrality: A longitudinal study of residential context, daily travel and experience types

Author information +
History +
PDF

Abstract

Two key goals for sustainable spatial planning are to promote low-carbon travel in daily life and to enhance human wellbeing through diverse human-environment interactions. Yet, the integration of these goals has been underexplored. This study investigates the potential for experiential diversity via active travel in different residential contexts within the Gävle city-region, Sweden. Over 15 months, we collected spatiotemporal data from 165 participants, analyzing 4,362 reported experiences and 13,192 GPS-derived travel trajectories. Our analysis uncovered a significant spatial discrepancy: while the travelled distances to locations of positive experiences typically ranged from 1.5 km to 5 km, active travel predominated only within 1.5 km. This discrepancy persisted across urban, suburban, and peripheral contexts. Although residents in different contexts reported the same types of experiences, urban dwellers travelled about 50 % farther for nature experiences compared with other positive experiences, whereas peripheral dwellers travelled twice the distance for urbanicity experiences compared with other positive experiences. Consequently, urban residents mostly relied on active travel for urbanicity experiences and motorised travel for nature experiences, with the reverse trend observed among peripheral dwellers. These results illustrate the importance of spatial scale for promoting diverse positive experiences via active travel, regardless of residential context. Effective planning strategies may include enhancing environmental diversity near homes and developing infrastructure that favours active over motorised travel for short to moderate distances.

Keywords

Walking / Biking / Experiential diversity / GPS data / Smartphone app / Topodiversity

Cite this article

Download citation ▾
Karl Samuelsson, S. Anders Brandt, Stephan Barthel, Noah Linder, Nancy Joy Lim, David Hallman, Matteo Giusti. Diverse experiences by active travel for carbon neutrality: A longitudinal study of residential context, daily travel and experience types. Geography and Sustainability, 2024, 5(3): 459-469 DOI:10.1016/j.geosus.2024.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of generative AI and AI-assisted technologies in the writing process

While the manuscript was written without the use of AI-assisted technologies, the authors afterwards used ChatGPT 4 for editing purposes to improve its readability. We supplied prompts to only provide suggestions for improved readability without altering the topical content or meaning of the text. During and after the use of this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Ethical statement

All participants provided informed consent before registering in the app, in compliance with the study protocols approved by the Swedish Ethical Review Authority (application number 2021–02212).

CRediT authorship contribution statement

Karl Samuelsson: Conceptualization, Data curation, Formal analysis, Investigation, Visualization, Writing – original draft, Writing – review & editing. S. Anders Brandt: . Stephan Barthel: Funding acquisition, Supervision, Writing – original draft, Writing – review & editing, Conceptualization. Noah Linder: Writing – original draft, Writing – review & editing. Nancy Joy Lim: Resources, Writing – original draft, Writing – review & editing. David Hallman: . Matteo Giusti: Conceptualization, Investigation, Project administration, Writing – original draft, Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by funding provided by University of Gävle and Vinnova through the GeoLife Region project coordinated by Future Position X [2019–05068]. K.S. was supported by a grant from Forte [2022–00841]. S.B. was supported by a joint grant from Mistra [DIA 2019/28] and Formas via the national research programme on climate [2021–00416] called FAIRTRANS. We acknowledge support from the project Cycle4Climate (Grant No. CB0300173), funded by Interreg Europe's Central Baltic programme, that inspired and enriched this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.05.002.

References

[1]

Alessandretti, L, Aslak, U, Lehmann, S., 2020. 587 (2020), pp. 402-407. doi: 10.1038/s41586-020-2909-1.

[2]

Andersson, E, Barthel, S, Borgström, S, Colding, J, Elmqvist, T, Folke, C, Gren, Å., 2014. Reconnecting cities to the biosphere: stewardship of green infrastructure and urban ecosystem services. Ambio, 43 (4), pp. 445-453. doi: 10.1007/s13280-014-0506-y.

[3]

Annerstedt van den Bosch, M, Mudu, P, Uscila, V, Barrdahl, M, Kulinkina, A, Staatsen, B, Swart, W, Kruize, H, Zurlyte, I, Egorov, A. I., 2016. Development of an urban green space indicator and the public health rationale. Scand. J. Public Health., 44 (2), pp. 159-167. doi: 10.1177/1403494815615444.

[4]

Ao, Y, Yang, D, Chen, C, Wang, Y., 2019. Effects of rural built environment on travel-related CO2 emissions considering travel attitudes. Transport. Res. Part D- Transport Environ., 73, pp. 187-204. doi: 10.1016/j.trd.2019.07.004.

[5]

Behrendt, F, Cairns, S, Raffo, D, Philips, I., 2021. Impact of e-bikes on cycling in hilly areas: participants’ experience of electrically assisted cycling in a UK study. Sustainability, 13 (16), p. 8946. doi: 10.3390/su13168946.

[6]

Bell, D, Jayne, M., 2009. Small cities? Towards a research agenda. Int. J. Urban Reg. Res., 33 (3), pp. 683-699. doi: 10.1111/j.1468-2427.2009.00886.x.

[7]

Berghauser Pont, M., Stavroulaki, G., Marcus, L., 2019. Development of urban types based on network centrality, built density and their impact on pedestrian movement. Environ. Plan. B. Urban Anal. City Sci. 46 (8), 1549–1564. doi: 10.1177/2399808319852632.

[8]

Brand, C, Götschi, T, Dons, E, Gerike, R, Anaya-Boig, E, Avila-Palencia, I, de Nazelle, A, Gascon, M, Gaupp-Berghausen, M, Iacorossi, F, Kahlmeier, S, Int Panis, L, Racioppi, F, Rojas-Rueda, D, Standaert, A, Stigell, E, Sulikova, S, Wegener, S, Nieuwenhuijsen, M. J., 2021. The climate change mitigation impacts of active travel: evidence from a longitudinal panel study in seven European cities. Glob. Environ. Change, 67, Article 102224. doi: 10.1016/j.gloenvcha.2021.102224.

[9]

Browning, M. H. E. M., Rigolon, A, McAnirlin, O, Yoon, H., 2022. Where greenspace matters most: a systematic review of urbanicity, greenspace, and physical health. Landsc. Urban Plan., 217, Article 104233. doi: 10.1016/j.landurbplan.2021.104233.

[10]

Buehler, R, Pucher, J, Gerike, R, Götschi, T., 2017. Reducing car dependence in the heart of Europe: lessons from Germany, Austria, and Switzerland. Transp. Rev., 37 (1), pp. 4-28. doi: 10.1080/01441647.2016.1177799.

[11]

Chen, Y., 2019. Neighborhood form and residents’ walking and biking distance to food markets: evidence from Beijing, China. Transp. Policy, 81, pp. 340-349. doi: 10.1016/j.tranpol.2017.09.015.

[12]

Chiang, Y. C., Li, D., 2019. Metric or topological proximity? The associations among proximity to parks, the frequency of residents’ visits to parks, and perceived stress. Urban For. Urban Green., 38, pp. 205-214. doi: 10.1016/j.ufug.2018.12.011.

[13]

Chillón, P, Molina-García, J, Castillo, I, Queralt, A., 2016. What distance do university students walk and bike daily to class in Spain. J. Transp. Health, 3 (3), pp. 315-320. doi: 10.1016/j.jth.2016.06.001.

[14]

Christensen, A, Radley, D, Hobbs, M, Gorse, C, Griffiths, C., 2022. Investigating how researcher-defined buffers and self-drawn neighbourhoods capture adolescent availability to physical activity facilities and greenspaces: an exploratory study. Spat. Spatio-Temporal Epidemiol., 43, Article 100538. doi: 10.1016/j.sste.2022.100538.

[15]

Coldwell, D. F., Evans, K. L., 2018. Visits to urban green-space and the countryside associate with different components of mental well-being and are better predictors than perceived or actual local urbanisation intensity. Landsc. Urban Plan., 175, pp. 114-122. doi: 10.1016/j.landurbplan.2018.02.007.

[16]

Cong, C, Pan, H, Page, J, Barthel, S, Kalantari, Z., 2023. Modeling place-based nature-based solutions to promote urban carbon neutrality. Ambio, 52 (8), pp. 1297-1313. doi: 10.1007/s13280-023-01872-x.

[17]

Copernicus, n.d. Copernicus Browser. https://dataspace.copernicus.eu/browser/ (accessed 15 June 2023).

[18]

Copernicus, 2020. Imperviousness density 2018, v2. Copernicus Land Monitoring Service, European Environment Agency. [dataset] doi: 10.2909/3bf542bd-eebd-4d73-b53c-a0243f2ed862.

[19]

Crawford, T. W., Jilcott Pitts, S. B., McGuirt, J. T., Keyserling, T. C., Ammerman, A. S., 2014. Conceptualizing and comparing neighborhood and activity space measures for food environment research. Health Place, 30, pp. 215-225. doi: 10.1016/j.healthplace.2014.09.007.

[20]

Dill, J., 2009. Bicycling for transportation and health: the role of infrastructure. J. Public Health Policy, 30 (S1), pp. S95-S110. doi: 10.1057/jphp.2008.56.

[21]

Dong, L, Huang, Z, Zhang, J, Liu, Y., 2020. Understanding the mesoscopic scaling patterns within cities. Sci. Rep., 10 (1), p. 21201. doi: 10.1038/s41598-020-78135-2.

[22]

Ewing, R, Cervero, R., 2010. Travel and the built environment: a meta-analysis. J. Am. Plann. Assoc., 76 (3), pp. 265-294. doi: 10.1080/01944361003766766.

[23]

Fosgerau, M, Paulsen, M, Rasmussen, T. K., 2023. Bikeability and the induced demand for cycling. Proc. Natl. Acad. Sci. U.S.A., 120 (16), Article e2220515120. doi: 10.1073/pnas.2220515120.

[24]

Giusti, M, Samuelsson, K., 2023. Evaluation of a smartphone-based methodology that integrates long-term tracking of mobility, place experiences, heart rate variability, and subjective well-being. Heliyon, 9 (5), p. e15751. doi: 10.1016/j.heliyon.2023.e15751.

[25]

Hasanzadeh, K, Broberg, A, Kyttä, M., 2017. 84, pp. 1-10. doi: 10.1016/j.apgeog.2017.04.006.

[26]

Helbich, M., 2018. Toward dynamic urban environmental exposure assessments in mental health research. Environ. Res., 161, pp. 129-135. doi: 10.1016/j.envres.2017.11.006.

[27]

Heller, A. S., Shi, T. C., Ezie, C. E. C., Reneau, T. R., Baez, L. M., Gibbons, C. J., Hartley, C. A., 2020. Heller, T.C. Shi, C.E.C. Ezie, T.R. Reneau, L.M. Baez, C.J. Gibbons, C.A. Hartley. Association between real-world experiential diversity and positive affect relates to hippocampal–striatal functional connectivity. Nat. Neurosci., 23 (7), pp. 800-804. doi: 10.1038/s41593-020-0636-4.

[28]

Hillier, B, Hanson, J., 1984. The Social Logic of Space. Cambridge University Press, Cambridge, UK . doi: 10.1017/CBO9780511597237.

[29]

Hillier, B, Penn, A, Hanson, J, Grajewski, T, Xu, J., 1993. Natural movement: or, configuration and attraction in urban pedestrian movement. Environ. Plann. B. Plann. Des., 20 (1), pp. 29-66. doi: 10.1068/b200029.

[30]

Kaaronen, R. O., Strelkovskii, N., 2020. Cultural evolution of sustainable behaviors: pro-environmental tipping points in an agent-based model. One Earth, 2 (1), pp. 85-97. doi: 10.1016/j.oneear.2020.01.003.

[31]

Kaplan, S, Nielsen, T. A. S., Prato, C. G., 2016. Nielsen, C.G. Prato. Walking, cycling and the urban form: a Heckman selection model of active travel mode and distance by young adolescents. Transport. Res. Part D-Transport Environ., 44, pp. 55-65. doi: 10.1016/j.trd.2016.02.011.

[32]

Kendal, D, Egerer, M, Byrne, J. A., Jones, P. J., Marsh, P, Threlfall, C. G., Allegretto, G, Kaplan, H, Nguyen, H. K. D., Pearson, S, Wright, A, Flies, E. J., 2020. City-size bias in knowledge on the effects of urban nature on people and biodiversity. Environ. Res. Lett., 15 (12), Article 124035. doi: 10.1088/1748-9326/abc5e4.

[33]

Korpela, K. M., Hartig, T, Kaiser, F. G., Fuhrer, U., 2001. Restorative experience and self-regulation in favorite places. Environ. Behav., 33 (4), pp. 572-589. doi: 10.1177/00139160121973133.

[34]

Korpela, K. M., Pasanen, T, Repo, V, Hartig, T, Staats, H, Mason, M, Alves, S, Fornara, F, Marks, T, Saini, S, Scopelliti, M, Soares, A. L., Stigsdotter, U. K., Ward Thompson, C., 2018. Environmental strategies of affect regulation and their associations with subjective well-being. Front. Psychol., 9, p. 562. doi: 10.3389/fpsyg.2018.00562.

[35]

Krenn, P. J., Pekka, O, Titze, S., 2014. Route choices of transport bicyclists: a comparison of actually used and shortest routes. Int. J. Behav. Nutr. Phys. Act., 11 (1), p. 31. doi: 10.1186/1479-5868-11-31.

[36]

Kyttä, M, Broberg, A, Haybatollahi, M, Schmidt-Thomé, K., 2016. Urban happiness: context-sensitive study of the social sustainability of urban settings. Environ. Plann. B Plann. Des., 43 (1), pp. 34-57. doi: 10.1177/0265813515600121.

[37]

Lamb, W. F., Callaghan, M. W., Creutzig, F, Khosla, R, Minx, J. C., 2018. The literature landscape on 1.5 °C climate change and cities. Curr. Opin. Environ. Sustain., 30, pp. 26-34. doi: 10.1016/j.cosust.2018.02.008.

[38]

Markevych, I, Schoierer, J, Hartig, T, Chudnovsky, A, Hystad, P, Dzhambov, A. M., de Vries, S, Triguero-Mas, M, Brauer, M, Nieuwenhuijsen, M. J., Lupp, G, Richardson, E. A., Astell-Burt, T, Dimitrova, D, Feng, X, Sadeh, M, Standl, M, Heinrich, J, Fuertes, E., 2017. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Environ. Res., 158, pp. 301-317. doi: 10.1016/j.envres.2017.06.028.

[39]

Marquet, O, Miralles-Guasch, C., 2014. Walking short distances. The socioeconomic drivers for the use of proximity in everyday mobility in Barcelona. Transport. Res. Part A-Policy Pract., 70, pp. 210-222. doi: 10.1016/j.tra.2014.10.007.

[40]

Neuvonen, M, Sievänen, T, Tönnes, S, Koskela, T., 2007. Access to green areas and the frequency of visits – a case study in Helsinki. Urban For. Urban Green., 6 (4), pp. 235-247. doi: 10.1016/j.ufug.2007.05.003.

[41]

Neves, A, Brand, C., 2019. Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approach. Transport. Res. Part A-Policy Pract., 123, pp. 130-146. doi: 10.1016/j.tra.2018.08.022.

[42]

Nieuwenhuijsen, M. J., 2016. Nieuwenhuijsen. Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. Environ. Health, 15 (S1), p. S38. doi: 10.1186/s12940-016-0108-1.

[43]

Nordbø, E. C. A., Nordh, H, Raanaas, R. K., Aamodt, G., 2018. GIS-derived measures of the built environment determinants of mental health and activity participation in childhood and adolescence: a systematic review. Landsc. Urban Plan., 177, pp. 19-37. doi: 10.1016/j.landurbplan.2018.04.009.

[44]

Nordh, H, Hartig, T, Hagerhall, C. M., Fry, G., 2009. Components of small urban parks that predict the possibility for restoration. Urban For. Urban Green., 8 (4), pp. 225-235. doi: 10.1016/j.ufug.2009.06.003.

[45]

Perchoux, C, Chaix, B, Cummins, S, Kestens, Y., 2013. Conceptualization and measurement of environmental exposure in epidemiology: accounting for activity space related to daily mobility. Health Place, 21, pp. 86-93. doi: 10.1016/j.healthplace.2013.01.005.

[46]

Perchoux, C., Chaix, B., Cummins, S., Kestens, Y., 2013. Conceptualization and measurement of environmental exposure in epidemiology: accounting for activity space related to daily mobility. Health Place 21, 86–93. doi: 10.1016/j.healthplace.2013.01.005.

[47]

Samuelsson, K., 2021. The topodiverse city: urban form for subjective well-being. Front. Built Environ., 7, Article 735221. doi: 10.3389/fbuil.2021.735221.

[48]

Samuelsson, K, Colding, J, Barthel, S., 2019. 187, pp. 70-80. doi: 10.1016/j.landurbplan.2019.03.015.

[49]

Scheepers, E, Wendel-Vos, W, Van Kempen, E, Panis, L. I., Maas, J, Stipdonk, H, Moerman, M, Hertog, F. D., Staatsen, B, Van Wesemael, P, Schuit, J., 2013. Personal and environmental characteristics associated with choice of active transport modes versus car use for different trip purposes of trips up to 7.5 kilometers in the Netherlands. PLoS One, 8 (9), p. e73105. doi: 10.1371/journal.pone.0073105.

[50]

Schläpfer, M, Dong, L, O'Keeffe, K, Santi, P, Szell, M, Salat, H, Anklesaria, S, Vazifeh, M, Ratti, C, West, G. B., 2021. The universal visitation law of human mobility. Nature, 593 (2021), pp. 522-527. doi: 10.1038/s41586-021-03480-9.

[51]

Shiffman, S, Stone, A. A., Hufford, M. R., 2008. Stone, M.R. Hufford. Ecological momentary assessment. Annu. Rev. Clin. Psychol., 4 (1), pp. 1-32. doi: 10.1146/annurev.clinpsy.3.022806.091415.

[52]

Short Gianotti, A. G., Getson, J. M., Hutyra, L. R., Kittredge, D. B., 2016. Short Gianotti, J.M. Getson, L.R. Hutyra, D.B. Kittredge. Defining urban, suburban, and rural: a method to link perceptual definitions with geospatial measures of urbanization in central and eastern Massachusetts. Urban Ecosyst., 19 (2), pp. 823-833. doi: 10.1007/s11252-016-0535-3.

[53]

Statisticsweden, S., 2023. Open geodata. https://www.scb.se/en/services/open-data-api/open-geodata/(accessed 15 June 2023).

[54]

Statisticsweden, S., 2020. Localities and urban areas 2020 (MI 38 2020A02). https://www.scb.se/publication/47139

[55]

Sun, B, Ermagun, A, Dan, B., 2017. 52, pp. 441-453. doi: 10.1016/j.trd.2016.06.001.

[56]

Tu, X, Huang, G, Wu, J, Guo, X., 2020. How do travel distance and park size influence urban park visits?. Urban For. Urban Green., 52, Article 126689. doi: 10.1016/j.ufug.2020.126689.

[57]

Tyndall, J., 2022. Cycling mode choice amongst US commuters: the role of climate and topography. Urban Stud., 59 (1), pp. 97-119. doi: 10.1177/0042098020957583.

[58]

United Nations, 2018. The World’s Cities in 2018 - Data Booklet (ST/ESA/SER.A/417). United Nations, Department of Economic and Social Affairs, Population Division, New York.

[59]

Wang, Y, Chau, C. K., Ng, W. Y., Leung, T. M., 2016. Chau, W.Y. Ng, T.M. Leung. A review on the effects of physical built environment attributes on enhancing walking and cycling activity levels within residential neighborhoods. Cities, 50, pp. 1-15. doi: 10.1016/j.cities.2015.08.004.

[60]

Yu, Z, Li, P, Schwanen, T, Zhao, P, Zhao, Z., 2023. Role of rural built environment in travel mode choice: evidence from China. Transport. Res. Part D-Transport Environ., 117, Article 103649. doi: 10.1016/j.trd.2023.103649.

PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

/