The carrying capacity for vegetation of forest land across China: Near real-time monitoring and short-term forecasting based on satellite observation

Huiqian Yu , Nan Lu , Bojie Fu , Lu Zhang , Shufen Pan

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 415 -429.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :415 -429. DOI: 10.1016/j.geosus.2024.04.005
Research Article
review-article

The carrying capacity for vegetation of forest land across China: Near real-time monitoring and short-term forecasting based on satellite observation

Author information +
History +
PDF

Abstract

Ecological restoration projects implemented over the past 20 years have substantially increased forest coverage in China, but the high tree mortality of new afforestation forest remains a challenging but unsolved problem. It is still not clear how much vegetation can be sustained by the forest lands with given water, energy and soil conditions, i.e., the carrying capacity for vegetation (CCV) of forest lands, which is the prerequisite for planning and implementing forest restoration projects. Here, we used a simplified method to evaluate the CCV across forest lands nationwide. Specifically, based on leaf area index (LAI) dataset, we use boosted regression tree and multiple linear regression model to analyze the CCV during 2001–2020 and 2021–2030 and explore the contribution of environmental factors. We find that there are three typical regions with lower CCV located in the Loess Plateau and the southern region of the Inner Mongolia Plateau, the Hengduan Mountain region, and the Tianshan Mountains. More importantly, the vegetation in the regions near the dry-wet climate transition zone show excess local carrying capacity for vegetation over the past two decades and they are more susceptible to potential climatic stress. In comparison, in the Greater Khingan Mountains and Hengduan Mountains, there is high potential to improve the forest growth. Temperature, precipitation and soil affects the CCV by shaping the vegetation in the optimal range. This indicates that more consideration should be given to restrictions of regional environmental constraints when planning afforestation and forest management. This study has important implications for guiding future forest scheme in China.

Keywords

Carrying capacity for vegetation / Leaf area index / Ecosystem restoration / Forest management

Cite this article

Download citation ▾
Huiqian Yu, Nan Lu, Bojie Fu, Lu Zhang, Shufen Pan. The carrying capacity for vegetation of forest land across China: Near real-time monitoring and short-term forecasting based on satellite observation. Geography and Sustainability, 2024, 5(3): 415-429 DOI:10.1016/j.geosus.2024.04.005

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Huiqian Yu: Conceptualization, Writing – original draft, Visualization. Nan Lu: Conceptualization, Writing – review & editing. Bojie Fu: Funding acquisition, Writing – review & editing. Lu Zhang: Writing – review & editing. Shufen Pan: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Joint CAS-MPG Research Project (Grant No. HZXM20225001MI), the National Natural Science Foundation of China (NSFC) (Grant No. 41991234), and the National Science Foundation (Grant No. 1903722).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.04.005.

References

[1]

Adamsa, H. D., Guardiola-Claramontea, M, Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., Troch, P. A., Huxman, T. E., 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. U.S.A., 106(17), 7063-7066.

[2]

Adilai, S, Chang, S, Zhang, Y, Sun, X, Li, J, Li, X., 2021. A decade variation of species composition and community structure of spruce forest in Tianshan Mountains. Chin. J. Ecol., 40(10), 3033-3040.

[3]

Ahrends, A, Hollingsworth, P. M., Beckschafer, P, Chen, H, Zomer, R. J., Zhang, L, Wang, M, Xu, J., 2017. China's fight to halt tree cover loss. Proc. R. Soc. B-Biol. Sci., 284(1854), 20162559.

[4]

Allen, C. D., Macalady, A. K., Chenchouni, H, Bachelet, D, McDowell, N, Vennetier, M, Kitzberger, T, Rigling, A, Breshears, D. D., Hogg, E. H., Gonzalez, P, Fensham, R, Zhang, Z, Castro, J, Demidova, N, J-Lim, H, Allard, G, Running, S. W., Semerci, A, Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag., 259(4), 660-684.

[5]

Betts, M. G., Wolf, C, Ripple, W. J., Phalan, B, Millers, K. A., Duarte, A, Butchart, S. H. M., Levi, T., 2017. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547(7664), 441-444.

[6]

Birhanu, D, Kim, H, Jang, C., 2019. Effectiveness of introducing crop coefficient and leaf area index to enhance evapotranspiration simulations in hydrologic models. Hydrol. Process., 33, 2206-2226.

[7]

Brancalion, P. H. S., Niamir, A, Broadbent, E, Crouzeilles, R, Barros, F. S. M., Zambrano, A. M. A., Baccini, A, Aronson, J, Goetz, S, Reid, J. L., Strassburg, B. B. N., Wilson, S, Chazdon, R. L., 2019. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv., 5, eaav3223.

[8]

Bryan, B. A., Gao, L, Ye, Y, Sun, X, Connor, J. D., Crossman, N. D., Stafford-Smith, M, Wu, J, He, C, Yu, D, Liu, Z, Li, A, Huang, Q, Ren, H, Deng, X, Zheng, H, Niu, J, Han, G, Hou, X., 2018. China's response to a national land-system sustainability emergency. Nature 559(7713), 193-204.

[9]

Burton, P. J., Macdonald, S. E., 2011. The restorative imperative: challenges, objectives and approaches to restoring naturalness in forests. Silva Fenn., 45(5), 843-863.

[10]

Canelas, J. V., Pereira, H. M., 2022. Impacts of land-use intensity on ecosystems stability. Ecol. Model., 472, 110093.

[11]

Cao, S., 2008. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol., 42(6), 1826-1831.

[12]

Cao, S, Chen, L, Shankman, D, Wang, C, Wang, X, Zhang, H., 2011. Excessive reliance on afforestation in China's arid and semi-arid regions: lessons in ecological restoration. Earth-Sci. Rev., 104(4), 240-245.

[13]

Cao, S, Tian, T, Chen, L, Dong, X, Yu, X, Wang, G., 2010. Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio 39(4), 279-283.

[14]

Chen, C, Park, T, Wang, X, Piao, S, Xu, B, Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R, Tommervik, H, Bala, G, Zhu, Z, Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2, 122-129.

[15]

Chen, H, Hu, Y, Chang, Y, Bu, R, Li, Y, Liu, M., 2015. Changes of forest fire regime and landscape pattern under different harvesting modes in a boreal forest of Northeast China. J. Arid Land 7(6), 841-851.

[16]

Chollet, S, Rambal, S, Fayolle, A, Hubert, D, Foulquié, D, Garnier, E., 2014. Combined effects of climate, resource availability, and plant traits on biomass produced in a Mediterranean rangeland. Ecology 95(3), 737-748.

[17]

Chu, X, Zhan, J, Li, Z, Zhang, F, Qi, W., 2019. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod., 215, 382-389.

[18]

Croft, H, Chen, J. M., Noland, T. L., 2014. Stand age effects on Boreal forest physiology using a long time-series of satellite data. For. Ecol. Manag., 328, 202-208.

[19]

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A, Hansen, M. C., 2018. Classifying drivers of global forest loss. Science 361, 1108-1111.

[20]

De'Ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88, 243-251.

[21]

Deng, L, Liu, G. B., Shangguan, Z. P., 2014. Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green’ Program: a synthesis. Glob. Change Biol., 20(11), 3544-3556.

[22]

Deng, L, Liu, S, Kim, D. G., Peng, C, Sweeney, S, Shangguan, Z., 2017. Past and future carbon sequestration benefits of China's grain for green program. Glob. Environ. Change 47, 13-20.

[23]

Deyle, E. R., Fogarty, M, Hsieh, C. H., Kaufman, L, MacCall, A. D., Munch, S. B., Perretti, C. T., Ye, H, Sugihara, G., 2013. Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. U.S.A., 110(16), 6430-6435.

[24]

Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S, Sugihara, G., 2016. Global environmental drivers of influenza. Proc. Natl. Acad. Sci. U.S.A., 113(46), 13081-13086.

[25]

Deyle, E. R., May, R. M., Munch, S. B., Sugihara, G., 2016. Tracking and forecasting ecosystem interactions in real time. Proc. R. Soc. B-Biol. Sci., 283(1822), 20152258.

[26]

Dockendorff, C, Fuss, S, Agra, R, Guye, V, Herrera, D, Kraxner, F., 2022. Committed to restoring tropical forests: an overview of Brazil's and Indonesia's restoration targets and policies. Environ. Res. Lett., 17(9), 093002.

[27]

Domke, G. M., Oswalt, S. N., Walters, B. F., Morin, R. S., 2020. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. U.S.A., 117(40), 24649-24651.

[28]

Duursma, R. A., Gimeno, T. E., Boer, M. M., Crous, K. Y., Tjoelker, M. G., Ellsworth, D. S., 2016. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. Glob. Change Biol., 22(4), 1666-1676.

[29]

Elith, J, Leathwick, J. R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. Ecol., 77(4), 802-813.

[30]

Feng, X, Fu, B, Piao, S, Wang, S, Ciais, P, Zeng, Z, , Y, Zeng, Y, Li, Y, Jiang, X, Wu, B., 2016. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6(11), 1019-1022.

[31]

Fensholt, R, Langanke, T, Rasmussen, K, Reenberg, A, Prince, S. D., Tucker, C, Scholes, R. J., Le, Q. B., Bondeau, A, Eastman, R, Epstein, H, Gaughan, A. E., Hellden, U, Mbow, C, Olsson, L, Paruelo, J, Schweitzer, C, Seaquist, J, Wessels, K., 2012. Greenness in semi-arid areas across the globe 1981–2007 — an Earth observing satellite based analysis of trends and drivers. Remote Sens. Environ., 121, 144-158.

[32]

Frank, D, Reichstein, M, Bahn, M, Thonicke, K, Frank, D, Mahecha, M. D., Smith, P, van der Velde, M, Vicca, S, Babst, F, Beer, C, Buchmann, N, Canadell, J. G., Ciais, P, Cramer, W, Ibrom, A, Miglietta, F, Poulter, B, Rammig, A, Seneviratne, S. I., Walz, A, Wattenbach, M, Zavala, M. A., Zscheischler, J., 2015. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol., 21(8), 2861-2880.

[33]

Gao, L, Li, H., 2023. Improving carbon sequestration capacity of forest vegetation in China: afforestation or forest management?. Forests, 14 (6), p. 1077. doi: 10.3390/f14061077.

[34]

Gao, M, Piao, S, Chen, A, Yang, H, Liu, Q, Fu, Y. H., Janssens, I. A., 2019. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun., 10(1), 2970.

[35]

Gibbs, H. K., Ruesch, A. S., Achard, F, Clayton, M. K., Holmgren, P, Ramankutty, N, Foley, J. A., 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. U.S.A., 107(38), 16732-16737.

[36]

Goldberg, L, Lagomasino, D, Thomas, N, Fatoyinbo, T., 2020. Global declines in human-driven mangrove loss. Glob. Change Biol., 26(10), 5844-5855.

[37]

Guan, X, Langhamer, L, Schneider, C., 2022. Lagrangian analysis of moisture sources of precipitation in the Tianshan Mountains, Central Asia. Earth Space Sci., 9(7), e2022EA002318.

[38]

Guo, Z. S., 2021. Soil water carrying capacity for vegetation. Land Degrad. Dev., 32(14), 3801-3811.

[39]

Guo, Z. S., Shao, M. A., 2003. Soil water carrying capacity of vegetation and soil desiccation in artificial forestry and grassland in semi-arid regions of the Loess Plateau. Acta Ecol. Sin., 23(8), 1640-1647.

[40]

Halme, P, Allen, K. A., Auniņš, A, Bradshaw, R. H. W., Brūmelis, G, Clear, J. L, Eriksson, A-.M, Hannon, G, Hyvärinen, E, Ikauniece, S, Iršėnaitė, R, Jonsson, B. G., Junninen, K, Kareksela, S, Komonen, A, Kotiaho, J. S., Kouki, J, Kuuluvainen, T, Mazziotta, A, Mönkkönen, M, Nyholm, K, Oldén, A, Shorohova, E, Strange, N, Toivanen, T, Vanha-Majamaa, I, Wallenius, T, A-Ylisirniö, L, Zin, E., 2013. Challenges of ecological restoration: lessons from forests in northern Europe. Biol. Conserv., 167, 248-256.

[41]

Harris, N. L., Brown, S, Hagen, S. C., Saatchi, S. S., Petrova, S, Salas, W, Hansen, M. C., Potapov, P. V., Lotsch, A., 2012. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573-1578.

[42]

He, L, Chen, J. M., Pan, Y, Birdsey, R, Kattge, J., 2012. Relationships between net primary productivity and forest stand age in U.S. forests. Glob. Biogeochem. Cycle 26(3), GB3009.

[43]

Helman, D, Lensky, I. M., Yakir, D, Osem, Y., 2017. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests. Glob. Change Biol., 23(7), 2801-2817.

[44]

Hu, Y, Li, H, Wu, D, Chen, W, Zhao, X, Hou, M, Li, A, Zhu, Y., 2021. LAI-indicated vegetation dynamic in ecologically fragile region: a case study in the Three-North Shelter Forest program region of China. Ecol. Indic., 120, 106932.

[45]

Huang, B, Lu, F, Wang, X, Wu, X, Zhang, L, Ouyang, Z., 2021. Ecological restoration and rising CO2 enhance carbon sink, counteracting climate change in northeastern China. Environ. Res. Lett., 17 (1), Article 014002. doi: 10.1088/1748-9326/ac3871.

[46]

Huang, C, Yang, Q, Guo, Y, Zhang, Y, Guo, L., 2020. The pattern, change and driven factors of vegetation cover in the Qin Mountains region. Sci. Rep., 10(1), 20591.

[47]

Huang, J. P., Yu, H. P., Han, D. L., Zhang, G. L., Wei, Y, Huang, J. P., An, L. L., Liu, X. Y., Ren, Y., 2020. Declines in global ecological security under climate change. Ecol. Indic., 117, 106651.

[48]

Huang, L, Liu, J, Shao, Q, Xu, X., 2012. Carbon sequestration by forestation across China: past, present, and future. Renew. Sustain. Energy Rev., 16(2), 1291-1299.

[49]

Huang, M, Piao, S, Ciais, P, Penuelas, J, Wang, X, Keenan, T. F., Peng, S, Berry, J. A., Wang, K, Mao, J, Alkama, R, Cescatti, A, Cuntz, M, De Deurwaerder, H, Gao, M, He, Y, Liu, Y, Luo, Y, Myneni, R. B., Niu, S, Shi, X, Yuan, W, Verbeeck, H, Wang, T, Wu, J, Janssens, I. A., 2019. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol., 3(5), 772-779.

[50]

IUCN, 2015. Forest landscape restoration. https://www.iucn.org/about/work/programmes/forest/fp_our_work/fp_our_work_thematic/fp_our_work_flr/.

[51]

Jia, K, Li, Y, Liang, S, Wei, X, Yao, Y., 2017. Combining estimation of green vegetation fraction in an arid region from Landsat 7 ETM+ data. Remote Sens., 9(11), 1121.

[52]

Jia, X, Shao, M, Yu, D, Zhang, Y, Binley, A., 2019. Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agric. Ecosyst. Environ., 273, 25-35.

[53]

Jian, S, Zhao, C, Fang, S, Yu, K., 2015. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agric. For. Meteorol., 206, 85-96.

[54]

Jump, A. S., Ruiz-Benito, P, Greenwood, S, Allen, C. D., Kitzberger, T, Fensham, R, Martinez-Vilalta, J, Lloret, F., 2017. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol., 23(9), 3742-3757.

[55]

Kira, O, Nguy-Robertson, A. L., Arkebauer, T. J., Linker, R, Gitelson, A. A., 2017. Toward generic models for green LAI estimation in maize and soybean: satellite observations. Remote Sens., 9(4), 318.

[56]

Larjavaara, M, Mulle-Landau, H. C., 2011. Temperature explains global variation in biomass among humid old-growth forests. Glob. Ecol. Biogeogr., 21(10), 998-1006.

[57]

Le, T. S., Harper, R, Dell, B., 2023. Application of remote sensing in detecting and monitoring water stress in forests. Remote Sens., 15(13), 3360.

[58]

Li, B, Yang, Y, Li, Z., 2021. Combined effects of multiple factors on spatiotemporally varied soil moisture in China's Loess Plateau. Agric. Water Manag., 258, 107180.

[59]

Li, G, Chen, W, Mu, L, Zhang, X, Bi, P, Wang, Z, Yang, Z., 2022. Analysis and prediction of global vegetation dynamics: past variations and future perspectives. J. For. Res., 34(2), 317-332.

[60]

Li, X, Zhang, Z, Tan, H, Gao, Y, Liu, L, Wang, X., 2014. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert. Sci. China-Life Sci., 57(5), 539-548.

[61]

Li, Y, Wu, Z, Xu, X, Fan, H, Tong, X, Liu, J., 2021. Forest disturbances and the attribution derived from yearly Landsat time series over 1990–2020 in the Hengduan Mountains region of Southwest China. For. Ecosyst., 8(1), 73.

[62]

Lian, J, Zhao, X, Li, X, Zhang, T, Wang, S, Luo, Y, Zhu, Y, Feng, J., 2017. Detecting sustainability of desertification reversion: vegetation trend analysis in part of the agro-pastoral transitional zone in Inner Mongolia, China. Sustainability 9(2), 211.

[63]

Liu, B, Zhang, L, Lu, F, Deng, L, Zhao, H, Luo, Y, Liu, X, Zhang, K, Wang, X, Liu, W, Wang, X, Yuan, Y., 2019. Greenhouse gas emissions and net carbon sequestration of the Beijing-Tianjin sand source control project in China. J. Clean. Prod., 225, 163-172.

[64]

Liu, H, Xu, C, Allen, C. D., Hartmann, H, Wei, X, Yakir, D, Wu, X, Yu, P., 2022. Nature-based framework for sustainable afforestation in global drylands under changing climate. Glob. Change Biol., 28(7), 2202-2220.

[65]

Ma, Y. J., Shi, F. Z., Hu, X, Li, X. Y., 2020. Threshold vegetation greenness under water balance in different desert areas over the silk road economic belt. Remote Sens., 12(15), 2452.

[66]

Mao, D, Wang, Z, Luo, L, Ren, C., 2012. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf., 18, 528-536.

[67]

Mayle, F. E., Beerling, D. J., Gosling, W. D., Bush, M. B., 2004. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philos. Trans. R Soc. B Biol. Sci., 359(1443), 499-514.

[68]

McDowell, N, Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N, Kolb, T, Plaut, J, Sperry, J, West, A, Williams, D. G., Yepez, E. A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytol., 178(4), 719-739.

[69]

Munch, S. B., Rogers, T. L., Sugihara, G., 2022. Recent developments in empirical dynamic modelling. Methods Ecol. Evol., 14(3), 732-745.

[70]

Na-U-Dom, T, Mo, X, Garcίa, M., 2017. Assessing the climatic effects on vegetation dynamics in the Mekong River basin. Environments 4(1), 17.

[71]

Nemani, R. R., Keeling, C. D., Hashimoto, H, Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., Running, S. W., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560-1564.

[72]

Osem, Y, O'Hara, K., 2016. An ecohydrological approach to managing dryland forests: integration of leaf area metrics into assessment and management. Forestry 89(4), 338-349.

[73]

Pan, N, Wang, S, Wei, F, Shen, M, Fu, B., 2021. Inconsistent changes in NPP and LAI determined from the parabolic LAI versus NPP relationship. Ecol. Indic., 131, 108134.

[74]

Pan, S, Pan, N, Tian, H, Friedlingstein, P, Sitch, S, Shi, H, Arora, V. K., Haverd, V, Jain, A. K., Kato, E, Lienert, S, Lombardozzi, D, Nabel, J. E. M. S., Ottlé, C, Poulter, B, Zaehle, S, Running, S. W., 2020. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci., 24(3), 1485-1509.

[75]

Pan, S, Tian, H, Dangal, S. R. S., Ouyang, Z, Lu, C, Yang, J, Tao, B, Ren, W, Banger, K, Yang, Q, Zhang, B., 2015. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci., 25(9), 1027-1044.

[76]

Peng, S, Ding, Y, Liu, W, Li, Z., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11(4), 1931-1946.

[77]

Piao, S, Nan, H, Huntingford, C, Ciais, P, Friedlingstein, P, Sitch, S, Peng, S, Ahlstrom, A, Canadell, J. G., Cong, N, Levis, S, Levy, P. E., Liu, L, Lomas, M. R., Mao, J, Myneni, R. B., Peylin, P, Poulter, B, Shi, X, Yin, G, Viovy, N, Wang, T, Wang, X, Zaehle, S, Zeng, N, Zeng, Z, Chen, A., 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun., 5, 5018.

[78]

Piao, S, Wang, X, Park, T, Chen, C, Lian, X, He, Y, Bjerke, J. W., Chen, A, Ciais, P, Tømmervik, H, Nemani, R. R., Myneni, R. B., 2019. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1(1), 14-27.

[79]

Pivovaroff, A. L., Pasquini, S. C., De Guzman, M. E., Alstad, K. P., Stemke, J. S., Santiago, L. S., Field, K., 2015. Multiple strategies for drought survival among woody plant species. Funct. Ecol., 30(4), 517-526.

[80]

Prasad, A. M., Iverson, L. R., Liaw, A., 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2), 181-199.

[81]

Qu, S, Wang, L, Lin, A, Zhu, H, Yuan, M., 2018. What drives the vegetation restoration in Yangtze River basin, China: climate change or anthropogenic factors?. Ecol. Indic., 90, 438-450.

[82]

Raz-Yaseef, N, Rotenberg, E, Yakir, D., 2010. Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agric. For. Meteorol., 150(3), 454-462.

[83]

Roy, A, Fleischman, F., 2022. The evolution of forest restoration in India: the journey from precolonial to India's 75th year of Independence. Land Degrad. Dev., 33(10), 1527-1540.

[84]

Schapire, R. E. 2003. The boosting approach to machine learning: an overview. D.D. Denison, M.H. Hansen, C.C. Holmes, B. Mallick, B. Yu (Eds.), Nonlinear Estimation and Classification, Springer, New York, pp.149-171.

[85]

Smettem, K. R., Waring, R. H., Callow, J. N., Wilson, M, Mu, Q., 2013. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate. Glob. Change Biol., 19(8), 2401-2412.

[86]

Su, K, Liu, H, Wang, H., 2022. Spatial–temporal changes and driving force analysis of ecosystems in the Loess Plateau ecological screen. Forests 13(1), 54.

[87]

Suding, K. N., 2011. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst., 42(1), 465-487.

[88]

Tian, H, Chen, G, Liu, M, Zhang, C, Sun, G, Lu, C, Xu, X, Ren, W, Pan, S, Chappelka, A., 2010. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag., 259(7), 1311-1327.

[89]

Tian, H, Lu, C, Chen, G, Xu, X, Liu, M, Ren, W, Tao, B, Sun, G, Pan, S, Liu, J., 2011. Climate and land use controls over terrestrial water use efficiency in monsoon Asia. Ecohydrology 4(2), 322-340.

[90]

Valencia, E, Maestre, F. T., Le Bagousse-Pinguet, Y, Quero, J. L., Tamme, R, Borger, L, Garcia-Gomez, M, Gross, N., 2015. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol., 206(2), 660-671.

[91]

Verdone, M, Seidl, A., 2017. Time, space, place, and the Bonn challenge global forest restoration target. Restor. Ecol., 25(6), 903-911.

[92]

Wang, F, Pan, X, Gerlein-Safdi, C, Cao, X, Wang, S, Gu, L, Wang, D, Lu, Q., 2020. Vegetation restoration in Northern China: a contrasted picture. Land Degrad. Dev., 31(6), 669-676.

[93]

Peng, S., 2019. 1-km monthly mean temperature dataset for china (1901–2022). National Tibetan Plateau /Third Pole Environment Data Center. https://doi.org/10.11888/Meteoro.tpdc.270961 [dataset]

[94]

Wang, J., 2013. The Map of Desert Distribution in 1:2,000,000 in China. National Tibetan Plateau /Third Pole Environment Data Center. https://doi.org/10.3972/westdc.009.2013.db. https://cstr.cn/18406.11.westdc.009.2013.db . [dataset].

[95]

Wang, X, Zhang, C, Hasi, E, Dong, Z., 2010. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China?. J. Arid. Environ., 74(1), 13-22.

[96]

Wang, Y, Cao, S., 2011. Carbon sequestration may have negative impacts on ecosystem health. Environ. Sci. Technol., 45(5), 1759-1760.

[97]

Wang, Y, Yu, P, Xiong, W, Shen, Z, Guo, M, Shi, Z, Du, A, Wang, L., 2008. Water-yield reduction after afforestation and related processes in the semiarid Liupan Mountains, Northwest China. J. Am. Water Resour. Assoc., 44(5), 1086-1097.

[98]

Wang, Y, Xiong, W, Gampe, S, Coles, N. A., Yu, P, Xu, L, Zuo, H, Wang, Y., 2015. A water yield-oriented practical approach for multifunctional forest management and its application in dryland regions of China. J. Am. Water Resour. Assoc., 51(3), 689-703.

[99]

Wang, Z, Ma, Y, Zhang, Y, Shang, J., 2022. Review of remote sensing applications in grassland monitoring. Remote Sens., 14(12), 2903.

[100]

Wu, Z, Li, M, Wang, B, Tian, Y, Quan, Y, Liu, J., 2022. Analysis of factors related to forest fires in different forest ecosystems in China. Forests, 13 (7), p. 1021. doi: 10.3390/f13071021.

[101]

Xia, Y. Q., Shao, M. A., 2008. Soil water carrying capacity for vegetation: a hydrologic and biogeochemical process model solution. Ecol. Model., 214(2–4), 112-124.

[102]

Xia, Y. Q., Shao, M. A., 2009. Evaluation of soil water-carrying capacity for vegetation: the concept and the model. Acta Agric. Scand. Sect. B-Soil Plant Sci., 59(4), 342-348.

[103]

Xing, X, Qian, J, Chen, X, Chen, C, Sun, J, Wei, S, Yimamaidi, D, Zhanar, Z., 2022. Analysis of effects of recent changes in hydrothermal conditions on vegetation in Central Asia. Land 11(3), 327.

[104]

Yan, C., Wang, J., 2019. 1:100000 desert (sand) distribution data set in China. National Cryosphere Desert Data Center. https://www.doi.org/10.12072/ncdc.Westdc. db0027.2021 . [dataset].

[105]

Yang, Y., Wang, S., Bai, X., Tan, Q., Li, Q., Wu, L., Tian, S., Hu, Z., Li, C., Deng, Y., 2019. Factors affecting long-term trends in global NDVI. Forests 10 (5), 372.

[106]

Yin, L, Dai, E, Zheng, D, Wang, Y, Ma, L, Tong, M., 2020. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: climate change or human activity?. Ecol. Indic., 112, 106013.

[107]

You, N, Meng, J, Zhu, L., 2017. Sensitivity and resilience of ecosystems to climate variability in the semi-arid to hyper-arid areas of Northern China: a case study in the Heihe River basin. Ecol. Res., 33(1), 161-174.

[108]

Zhang, C, Ju, W, Chen, J. M., Li, D, Wang, X, Fan, W, Li, M, Zan, M., 2014. Mapping forest stand age in China using remotely sensed forest height and observation data. J. Geophys. Res., 119(6), 1163-1179.

[109]

Zhang, J, Zhang, Y, Qin, S, Wu, B, Ding, G, Wu, X, Gao, Y, Zhu, Y., 2020. Carrying capacity for vegetation across northern China drylands. Sci. Total Environ., 710, 136391.

[110]

Zhang, L, Sun, P, Huettmann, F, Liu, S., 2022. Where should China practice forestry in a warming world?. Glob. Change Biol., 28(7), 2461-2475.

[111]

Zhang, W, Luo, G, Chen, C, Ochege, F. U., Hellwich, O, Zheng, H, Hamdi, R, Wu, S., 2021. Quantifying the contribution of climate change and human activities to biophysical parameters in an arid region. Ecol. Indic., 129, 107996.

[112]

Zhang, W, Shao, H, Sun, H, Zhang, W, Yan, Q., 2023. Optimizing carbon sequestration in forest management plans using advanced algorithms: a case study of Greater Khingan Mountains. Forests, 14 (9), p. 1785. doi: 10.3390/f14091785.

[113]

Zhang, Y, Peng, C, Li, W, Tian, L, Zhu, Q, Chen, H, Fang, X, Zhang, G, Liu, G, Mu, X, Li, Z, Li, S, Yang, Y, Wang, J, Xiao, X., 2016. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic., 61, 404-412.

[114]

Zhang, Z, Huang, M, Yang, Y, Zhao, X., 2020. Evaluating drought-induced mortality risk for Robinia pseudoacacia plantations along the precipitation gradient on the Chinese Loess Plateau. Agric. For. Meteorol., 284, 107897.

[115]

Zhao, Y, Chi, W, Kuang, W, Bao, Y, Ding, G., 2020. Ecological and environmental consequences of ecological projects in the Beijing–Tianjin sand source region. Ecol. Indic., 112, 106111.

[116]

Zheng, G, Moskal, L. M., 2009. Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors. Sensors 9(4), 2719-2745.

[117]

Zhu, H, Xu, L, Jiang, J, Fan, H., 2019. Spatiotemporal variations of summer precipitation and their correlations with the East Asian summer monsoon in the Poyang Lake basin, China. Water 11(8), 1705.

[118]

Zhu, Z, Piao, S, Myneni, R. B., Huang, M, Zeng, Z, Canadell, J. G., Ciais, P, Sitch, S, Friedlingstein, P, Arneth, A, Cao, C, Cheng, L, Kato, E, Koven, C, Li, Y, Lian, X, Liu, Y, Liu, R, Mao, J, Pan, Y, Peng, S, Peñuelas, J, Poulter, B, Pugh, T. A. M., Stocker, B. D., Viovy, N, Wang, X, Wang, Y, Xiao, Z, Yang, H, Zaehle, S, Zeng, N., 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6(8), 791-795.

[119]

Zong, X., Tian, X., Wang, X., 2021. An optimal firebreak design for the boreal forest of China. Sci. Total Environ. 781, 146822. doi: 10.1016/j.scitotenv.2021.146822.

PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

/