Prevalence of vegetation browning in China’s drylands under climate change

Li Fu , Guolong Zhang , Jianping Huang , Ming Peng , Lei Ding , Dongliang Han

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 405 -414.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :405 -414. DOI: 10.1016/j.geosus.2024.04.002
Research Article
review-article

Prevalence of vegetation browning in China’s drylands under climate change

Author information +
History +
PDF

Abstract

Vegetation greening has long been acknowledged, but recent studies have pointed out that vegetation greening is possibly stalled or even reversed. However, detailed analyses about greening reversal or increased browning of vegetation remain scarce. In this study, we utilized the normalized difference vegetation index (NDVI) as an indicator of vegetation to investigate the trends of vegetation greening and browning (monotonic, interruption, and reversal) through the breaks for the additive season and trend (BFAST) method across China’s drylands from 1982 to 2022. It also reveals the impacts of ecological restoration programs (ERPs) and climate change on these vegetation trends. We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands. Greening trends mainly exhibits monotonic greening (29.8 %) and greening with setback (36.8 %), whereas browning shows a greening to browning reversal (19.2 %). The increase rate of greening to browning reversal is 0.0342/yr, which is apparently greater than that of greening with setback, 0.0078/yr. This research highlights that, under the background of widespread vegetation greening, vegetation browning is progressively increasing due to the effects of climate change. Furthermore, the ERPs have significantly increased vegetation coverage, with the increase rate in 2000–2022 being twice as much as that of 1982–1999 in revegetation regions. Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances, which offset the efforts of ERPs.

Keywords

China’s drylands / Ecological restoration programs / Climate change / Greening to browning reversal / BFAST

Cite this article

Download citation ▾
Li Fu, Guolong Zhang, Jianping Huang, Ming Peng, Lei Ding, Dongliang Han. Prevalence of vegetation browning in China’s drylands under climate change. Geography and Sustainability, 2024, 5(3): 405-414 DOI:10.1016/j.geosus.2024.04.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Li Fu: Data curation, Investigation, Methodology, Writing – original draft. Guolong Zhang: Data curation, Methodology. Jianping Huang: Funding acquisition, Methodology, Supervision, Writing – review & editing. Ming Peng: Data curation, Investigation. Lei Ding: Data curation, Investigation. Dongliang Han: Data curation, Investigation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No. 41991231, 42041004, and 41888101), the China University Research Talents Recruitment Program (111 project, Grant No. B13045). The authors acknowledge Guangyao Gao for providing the ecological restoration programs dataset.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.04.002.

References

[1]

Bernardino, P. N., De Keersmaecker, W, Fensholt, R, Verbesselt, J, Somers, B, Horion, S., 2020. Global-scale characterization of turning points in arid and semi-arid ecosystem functioning. Glob. Ecol. Biogeogr., 29 (7), pp. 1230-1245. doi: 10.1111/geb.13099.

[2]

Brienen, R. J., Phillips, O. L., Feldpausch, T. R., Gloor, E, Baker, T. R., Lloyd, J, Lopez-Gonzalez, G, Monteagudo-Mendoza, A, Malhi, Y, Lewis, S. L., Vásquez Martinez, R, Alexiades, M, Alvarez-Loayza, P, Andrade, A, Aragaõ, L. E. O. C., Araujo-Murakami, A, Arets, E. J. M. M., Arroyo, L, Aymard, C, Bánki, O. S., Baraloto, C, Barroso, J, Bonal, D, Boot, R. G. A., Camargo, J. L. C., Castilho, C. V., Chama, V, Chao, K. J., Chave, J, Comiskey, J. A., Cornejo Valverde, F, da Costa, L, de Oliveira, E. A., Di Fiore, A, Erwin, T. L., Fauset, S, Forsthofer, M, Galbraith, D. R., Grahame, E. S., Groot, N, Hérault, B, Higuchi, N, Honorio Coronado, E. N., Keeling, H, Killeen, T. J., Laurance, W. F., Laurance, S, Licona, J, Magnussen, W. E., Marimon, B. S., Marimon-Junior, B. H., Mendoza, C, Neill, D. A., Nogueira, E. M., Núñez, P, Pallqui Camacho, N. C., Parada, A, Pardo-Molina, G, Peacock, J, Peña-Claros, M, Pickavance, G. C., Pitman, N. C. A., Poorter, L, Prieto, A, Quesada, C. A., Ramírez, F, Ramírez-Angulo, H, Restrepo, Z, Roopsind, A, Rudas, A, Salomão, R. P., Schwarz, M, Silva, N, Silva-Espejo, J. E., Silveira, M, Stropp, J, Talbot, J, ter Steege, H, Teran-Aguilar, J, Terborgh, J, Thomas-Caesar, R, Toledo, M, Torello-Raventos, M, Umetsu, R. K., van der Heijden, G. M. F., van der Hout, P, Guimarães Vieira, I. C., Vieira, S. A., Vilanova, E, Vos, V. A., Zagt, R. J., 2015. Long-term decline of the Amazon carbon sink. Nature, 519, pp. 344-348. doi: 10.1038/nature14283.

[3]

Bryan, B. A., Gao, L, Ye, Y, Sun, X, Connor, J. D., Crossman, N. D., Stafford-Smith, M, Wu, J, He, C, Yu, D, Liu, Z, Li, A, Huang, Q, Ren, H, Deng, X, Zheng, H, Niu, J, Han, G, Hou, X., 2018. China’s response to a national land-system sustainability emergency. Nature, 559, pp. 193-204. doi: 10.1038/s41586-018-0280-2.

[4]

Cai, D, Ge, Q, Wang, X, Liu, B, Goudie, A. S., Hu, S., 2020. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett., 15, Article 114046. doi: 10.1088/1748-9326/abbde9.

[5]

Cao, S, Chen, L, Shankman, D, Wang, C, Wang, X, Zhang, H., 2011. Excessive reliance on afforestation in China's arid and semi-arid regions: lessons in ecological restoration. Earth-Sci. Rev., 104, pp. 240-245. doi: 10.1016/j.earscirev.2010.11.002.

[6]

Chen, A, Huang, L, Liu, Q, Piao, S., 2021. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Change Biol., 27, pp. 1942-1951. doi: 10.1111/gcb.15542.

[7]

De Jong, R, Verbesselt, J, Schaepman, M. E., De Bruin, S., 2012. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol., 18, pp. 642-655. doi: 10.1111/j.1365-2486.2011.02578.x.

[8]

De Jong, R, Verbesselt, J, Zeileis, A, Schaepman, M., 2013. Shifts in global vegetation activity trends. Remote Sens., 5, pp. 1117-1133. doi: 10.3390/rs5031117.

[9]

Eamus, D, Boulain, N, Cleverly, J, Breshears, D. D., 2013. Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol., 3, pp. 2711-2729. doi: 10.1002/ece3.664.

[10]

Fang, X, Zhu, Q, Ren, L, Chen, H, Wang, K, Peng, C., 2018. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: a case study in Quebec, Canada. Remote Sens. Environ., 206, pp. 391-402. doi: 10.1016/j.rse.2017.11.017.

[11]

Feng, S, Fu, Q., 2013. Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, pp. 10081-10094. doi: 10.5194/acp-13-10081-2013.

[12]

Feng, X, Fu, B, Zhang, Y, Pan, N, Zeng, Z, Tian, H, Lyu, Y, Chen, Y, Ciais, P, Wang, Y, Zhang, L, Cheng, L, Maestre, F. T., Fernández-Martínez, M, Sardans, J, Peñuelas, J., 2021. Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening. Earth. Sci. Bull., 66, pp. 1462-1471. doi: 10.1016/j.scib.2021.02.023.

[13]

Forzieri, G, Alkama, R, Miralles, D. G., Cescatti, A., 2017. Satellites reveal contrasting responses of regional climate to the widespread greening of earth. Science, 356, pp. 1180-1184. doi: 10.1126/science.aal1727.

[14]

Fu, B, Ouyang, Z, Shi, P, Fan, J, Wang, X, Zheng, H, Zhao, W, Wu, F., 2021. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci., 36(11), 1298-1306.

[15]

Gao, T, Yang, X, Jin, Y, Ma, H, Li, J, Yu, H, Yu, Q, Zheng, X, Xu, B., 2013. Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the xilingol grasslands, northern China. PLoS One, 8, Article e83824. doi: 10.1371/journal.pone.0083824.

[16]

Higginbottom, T. P., Symeonakis, E., 2020. Identifying ecosystem function shifts in Africa using breakpoint analysis of long-term NDVI and RUE data. Remote Sens., 12, p. 1894. doi: 10.3390/rs12111894.

[17]

Holben, B. N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens., 7, pp. 1417-1434. doi: 10.1080/01431168608948945.

[18]

Huang, J, Li, Y, Fu, C, Chen, F, Fu, Q, Dai, A, Shinoda, M, Ma, Z, Guo, W, Li, Z, Zhang, L, Liu, Y, Yu, H, He, Y, Xie, Y, Guan, X, Ji, M, Lin, L, Wang, S, Yan, H, Wang, G., 2017. Dryland climate change: recent progress and challenges: dryland climate change. Rev. Geophys., 55, pp. 719-778. doi: 10.1002/2016RG000550.

[19]

Huang, J, Yu, H, Guan, X, Wang, G, Guo, R., 2016. Accelerated dryland expansion under climate change. Nat. Clim. Change, 6, pp. 166-171. doi: 10.1038/nclimate2837.

[20]

Jiang, W, Yuan, L, Wang, W, Cao, R, Zhang, Y, Shen, W., 2015. Spatio-temporal analysis of vegetation variation in the Yellow River basin. Ecol. Indic., 51, pp. 117-126. doi: 10.1016/j.ecolind.2014.07.031.

[21]

Li, C, Fu, B, Wang, S, Stringer, L. C., Wang, Y, Li, Z, Liu, Y, Zhou, W., 2021. Drivers and impacts of changes in China's drylands. Nat. Rev. Earth Environ., 2, pp. 858-873. doi: 10.1038/s43017-021-00226-z.

[22]

Li, P., Hu, Z., Liu, Y., 2020. Shift in the trend of browning in southwestern Tibetan Plateau in the past two decades. Agric. For. Meteorol. 287, 107950. doi: 10.1016/j.agrformet.2020.107950.

[23]

Li, Z, Chen, Y, Li, W, Deng, H, Fang, G., 2015. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos., 120, pp. 12345-12356. doi: 10.1002/2015JD023618.

[24]

Li, Z, Wang, S, Li, C, Ye, C, Gao, D, Chen, P., 2022. The trend shift caused by ecological restoration accelerates the vegetation greening of China’s drylands since the 1980s. Environ. Res. Lett., 17, Article 044062. doi: 10.1088/1748-9326/ac6002.

[25]

Liu, X, Zhao, W, Yao, Y, Pereira, P., 2024. The rising human footprint in the Tibetan Plateau threatens the effectiveness of ecological restoration on vegetation growth. J. Environ. Manage., 351, Article 119963. doi: 10.1016/j.jenvman.2023.119963.

[26]

Lu, F, Hu, H, Sun, W, Zhu, J, Liu, G, Zhou, W, Zhang, Q, Shi, P, Liu, X, Wu, X., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 20doi: 10. Proc. Natl. Acad. Sci. U.S.A., 115, pp. 4039-4044, 10.1073/pnas.1700294115.

[27]

Ma, J, Xiao, X, Miao, R, Li, Y, Chen, B, Zhang, Y, Zhao, B., 2019. Trends and controls of terrestrial gross primary productivity of China during 2000–2016. Environ. Res. Lett., 14, Article 084032. doi: 10.1088/1748-9326/ab31e4.

[28]

Mousivand, A, Arsanjani, J. J., 2019. Insights on the historical and emerging global land cover changes: the case of ESA-CCI-LC datasets. Appl. Geogr., 106, pp. 82-92. doi: 10.1016/j.apgeog.2019.03.010.

[29]

Muoz-Sabater, J, Dutra, E, Agustí-Panareda, A, Albergel, C, Arduini, G, Balsamo, G, Boussetta, S, Choulga, M, Harrigan, S, Hersbach, H, Martens, B, Miralles, D. G., Piles, M, Rodríguez-Fernández, N. J., Zsoter, E, Buontempo, C, J-Thépaut, N., 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13, pp. 4349-4383. doi: 10.5194/essd-13-4349-2021.

[30]

Ni, Y, Zhou, Y, Fan, J., 2020. 8, pp. 56518-56527. doi: 10.1109/ACCESS.2020.2982661.

[31]

Niu, Q, Xiao, X, Zhang, Y, Qin, Y, Dang, X, Wang, J, Zou, Z, Doughty, R. B., Brandt, M, Tong, X, Horion, S, Fensholt, R, Chen, C, Myneni, R. B., Xu, W, Di, G, Zhou, X., 2019. Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid northern China. Land Degrad. Dev., 30, pp. 1620-1631. doi: 10.1002/ldr.3351.

[32]

Pan, N, Feng, X, Fu, B, Wang, S, Ji, F, Pan, S., 2018. Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends. Remote Sens. Environ., 214, pp. 59-72. doi: 10.1016/j.rse.2018.05.018.

[33]

Peng, S, Ding, Y, Liu, W, Li, Z., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data, 11, pp. 1931-1946. doi: 10.5194/essd-11-1931-2019.

[34]

Piao, S, Nan, H, Huntingford, C, Ciais, P, Friedlingstein, P, Sitch, S, Peng, S, Ahlström, A, Canadell, J. G., Cong, N, Levis, S, Levy, P. E., Liu, L, Lomas, M. R., Mao, J, Myneni, R. B., Peylin, P, Poulter, B, Shi, X, Yin, G, Viovy, N, Wang, T, Wang, X, Zaehle, S, Zeng, N, Zeng, Z, Chen, A., 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun., 5, p. 5018. doi: 10.1038/ncomms6018.

[35]

Piao, S, Wang, X, Ciais, P, Zhu, B, Wang, T, Liu, J., 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal eurasia from 1982 to 2006. Glob. Change Biol., 17, pp. 3228-3239. doi: 10.1111/j.1365-2486.2011.02419.x.

[36]

Piao, S, Wang, X, Park, T, Chen, C, Lian, X, He, Y, Bjerke, J. W., Chen, A, Ciais, P, Tømmervik, H, Nemani, R. R., Myneni, R. B., 2019. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1, pp. 14-27. doi: 10.1038/s43017-019-0001-x.

[37]

Pinzon, J, Pak, E, Tucker, C, Bhatt, U, Frost, G, Macander, M., 2023. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022. ORNL DAAC, Oak Ridge,Tennessee, USA . doi: 10.3334/ORNLDAAC/2187.

[38]

Schuldt, B, Buras, A, Arend, M, Vitasse, Y, Beierkuhnlein, C, Damm, A, Gharun, M, Grams, T. E., Hauck, M, Hajek, P, Hartmann, H, Hiltbrunner, E, Hoch, G, Holloway-Phillips, M, Körner, C, Larysch, E, Lübbe, T, Nelson, D. B., Rammig, A, Rigling, A, Rose, L, Ruehr, N. K., Schumann, K, Weiser, F, Werner, C, Wohlgemuth, T, Zang, C. S., Kahmen, A., 2020. A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic Appl. Ecol., 45, pp. 86-103. doi: 10.1016/j.baae.2020.04.003.

[39]

Shi, S, Yu, J, Wang, F, Wang, P, Zhang, Y, Jin, K., 2021. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ., 755, Article 142419. doi: 10.1016/j.scitotenv.2020.142419.

[40]

Tong, X, Brandt, M, Yue, Y, Horion, S, Wang, K, Keersmaecker, W. D., Tian, F, Schurgers, G, Xiao, X, Luo, Y, Chen, C, Myneni, R, Shi, Z, Chen, H, Fensholt, R., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain., 1, pp. 44-50. doi: 10.1038/s41893-017-0004-x.

[41]

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D., 2010a. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115. doi: 10.1016/j.rse.2009.08.014.

[42]

Verbesselt, J., Hyndman, R., Zeileis, A., Culvenor, D., 2010b. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 114, 2970–2980. doi: 10.1016/j.rse.2010.08.003.

[43]

Verbesselt, J., Zeileis, A., Herold, M., 2012. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 123, 98–108. doi: 10.1016/j.rse.2012.02.022.

[44]

Wang, S, Dai, E, Jia, L, Wang, Y, Huang, A, Liao, L, Cai, L, Fan, D., 2023. Assessment of multiple factors and interactions affecting grassland degradation on the Tibetan Plateau. Ecol. Indic., 154, Article 110509. doi: 10.1016/j.ecolind.2023.110509.

[45]

Wang, S, Zhang, Y, Ju, W, Chen, J. M., Ciais, P, Cescatti, A, Sardans, J, Janssens, I. A., Wu, M, Berry, J. A., Campbell, E, Fernández-Martínez, M, Alkama, R, Sitch, S, Friedlingstein, P, Smith, W. K., Yuan, W, He, W, Lombardozzi, D, Kautz, M, Zhu, D, Lienert, S, Kato, E, Poulter, B, Sanders, T. G. M., Krüger, I, Wang, R, Zeng, N, Tian, H, Vuichard, N, Jain, A. K., Wiltshire, A., 2020. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370, pp. 1295-1300. doi: 10.1126/science.abb7772.

[46]

Watts, L. M., Laffan, S. W., 2014. Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ., 154, pp. 234-245. doi: 10.1016/j.rse.2014.08.023.

[47]

Wei, Y, Lu, H, Wang, J, Wang, X, Sun, J., 2022. Dual influence of climate change and anthropogenic activities on the spatiotemporal vegetation dynamics over the Qinghai-Tibetan Plateau from 1981 to 2015. Earths Future, 10, Article e2021EF002566. doi: 10.1029/2021EF002566.

[48]

Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D, Woodhouse, C, Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R, Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C, Cai, M, McDowell, N. G., 2012. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change, 3, pp. 292-297. doi: 10.1038/nclimate1693.

[49]

Wu, Z, Wu, J, He, B, Liu, J, Wang, Q, Zhang, H, Liu, Y., 2014. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing-Tianjin sand source region China. Environ. Sci. Technol., 48, pp. 12108-12117. doi: 10.1021/es502408n.

[50]

Xu, L, Gao, G, Wang, X, Fu, B., 2023. Distinguishing the effects of climate change and vegetation greening on soil moisture variability along aridity gradient in the drylands of northern China. Agric. For. Meteorol., 343, Article 109786. doi: 10.1016/j.agrformet.2023.109786.

[51]

Xu, W, Xia, X, Piao, S, Wu, D, Li, W, Yang, S, Yuan, W., 2024. Weakened increase in global near-surface water vapor pressure during the last 20 years. Geophys. Res. Lett., 51, Article e2023GL107909. doi: 10.1029/2023GL107909.

[52]

Yao, J, Mao, W, Chen, J, Dilinuer, T., 2021. Signal and impact of wet-to-dry shift over Xinjiang, China. Acta Geogr. Sin., 76, pp. 57-72. doi: 10.1007/s11442-021-1898-9.

[53]

Yao, T, Thompson, L, Yang, W, Yu, W, Gao, Y, Guo, X, Yang, X, Duan, K, Zhao, H, Xu, B, Pu, J, Lu, A, Xiang, Y, Kattel, D. B., Joswiak, D., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change, 2, pp. 663-667. doi: 10.1038/nclimate1580.

[54]

Yuan, W, Zheng, Y, Piao, S, Ciais, P, Lombardozzi, D, Wang, Y, Ryu, Y, Chen, G, Dong, W, Hu, Z, Jain, A. K., Jiang, C, Kato, E, Li, S, Lienert, S, Liu, S, Nabel, J, Qin, Z, Quine, T. A., Sitch, S. A., Smith, W. K., Wang, F, Wu, C, Xiao, Z, Yang, S., 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv., 5, p. eaax1396. doi: 10.1126/sciadv.aax1396.

[55]

Zhang, Y, Peng, C, Li, W, Tian, L, Zhu, Q, Chen, H, Fang, X, Zhang, G, Liu, G, Mu, X, Li, Z, Li, S, Yang, Y, Wang, J, Xiao, X., 2016. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic., 61, pp. 404-412. doi: 10.1016/j.ecolind.2015.09.041.

[56]

Zhao, H., Wu, C., Wang, X., 2022. Large-scale forest conservation and restoration programs significantly contributed to land surface greening in China. Environ. Res. Lett. 17, 024023. doi: 10.1088/1748-9326/ac44c5.

[57]

Zhu, Z, Piao, S, Myneni, R. B., Huang, M, Zeng, Z, Canadell, J. G., Ciais, P, Sitch, S, Friedlingstein, P, Arneth, A, Cao, C, Cheng, L, Kato, E, Koven, C, Li, Y, Lian, X, Liu, Y, Liu, R, Mao, J, Pan, Y, Peng, S, Peñuelas, J, Poulter, B, Pugh, T. A. M., Stocker, B. D., Viovy, N, Wang, X, Wang, Y, Xiao, Z, Yang, H, Zaehle, S, Zeng, N., 2016. Greening of the Earth and its drivers. Nat. Clim. Change, 6, pp. 791-795. doi: 10.1038/nclimate3004.

PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

/