Urbanity mapping reveals the complexity, diffuseness, diversity, and connectivity of urbanized areas

Dawa Zhaxi , Weiqi Zhou , Steward T. A. Pickett , Chengmeng Guo , Yang Yao

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 357 -369.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :357 -369. DOI: 10.1016/j.geosus.2024.03.004
Research Article
review-article

Urbanity mapping reveals the complexity, diffuseness, diversity, and connectivity of urbanized areas

Author information +
History +
PDF

Abstract

There are urgent calls for new approaches to map the global urban conditions of complexity, diffuseness, diversity, and connectivity. However, existing methods mostly focus on mapping urbanized areas as bio physical entities. Here, based on the continuum of urbanity framework, we developed an approach for cross-scale urbanity mapping from town to city and urban megaregion with different spatial resolutions using the Google Earth Engine. This approach was developed based on multi-source remote sensing data, Points of Interest – Open Street Map (POIs-OSM) big data, and the random forest regression model. This approach is scale-independent and revealed significant spatial variations in urbanity, underscoring differences in urbanization patterns across megaregions and between urban and rural areas. Urbanity was observed transcending traditional urban boundaries, diffusing into rural settlements within non-urban locales. The finding of urbanity in rural communities far from urban areas challenges the gradient theory of urban-rural development and distribution. By mapping livelihoods, lifestyles, and connectivity simultaneously, urbanity maps present a more comprehensive characterization of the complexity, diffuseness, diversity, and connectivity of urbanized areas than that by land cover or population density alone. It helps enhance the understanding of urbanization beyond biophysical form. This approach can provide a multifaceted understanding of urbanization, and thereby insights on urban and regional sustainability.

Keywords

Continuum of Urbanity / Big data / Mapping / Spatial regression / Multiscale

Cite this article

Download citation ▾
Dawa Zhaxi, Weiqi Zhou, Steward T. A. Pickett, Chengmeng Guo, Yang Yao. Urbanity mapping reveals the complexity, diffuseness, diversity, and connectivity of urbanized areas. Geography and Sustainability, 2024, 5(3): 357-369 DOI:10.1016/j.geosus.2024.03.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge support from the National Natural Science Fund for Distinguished Young Scholars (Grant No. 42225104) and the National Natural Science Foundation (Grant No. U21A2010). We would also like to thank Dr. Wenjuan Yu for her assistance in research ideas. We would also be grateful to Prof. Dan Childers at Arizona State University for providing a comfortable research environment and presentation platform for this study.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.03.004.

References

[1]

Bai, X., Shi, P., Liu, Y., 2014. Society: realizing China’s urban dream. Nature 509 (7499), 158–160. doi: 10.1038/509158a.

[2]

Barrington Leigh, C, Millard Ball, A., 2020. Global trends toward urban street-network sprawl. Proc. Natl. Acad. Sci. U.S.A., 117 (4), pp. 1941-1950. doi: 10.1073/pnas.1905232116.

[3]

Boone, C. G., Redman, C. L., Blanco, H, Haase, D, Koch, J, Lwasa, S, Nagendra, H, Pauleit, S, Pickett, S. T. A., Seto, K. C., Yokohari, M., 2014. 313-330. doi: 10.7551/mitpress/9780262026901.003.0016.

[4]

Boone, C. G., Redman, C. L., Blanco, H, Haase, D, Koch, J, Lwasa, S, Nagendra, H, Pauleit, S, Pickett, S. T. A., Seto, K. C., Yokohari, M., 2014. 313-330. doi: 10.7551/mitpress/9780262026901.003.0016.

[5]

Breiman, L., 2001. Random forests. Mach. Learn., 45 (1), pp. 5-32. doi: 10.1023/a:1010933404324.

[6]

Brown, C. F., Brumby, S. P., Guzder-Williams, B, Birch, T, Hyde, S. B., Mazzariello, J, Czerwinski, W, Pasquarella, V. J., Haertel, R, Ilyushchenko, S, Schwehr, K, Weisse, M, Stolle, F, Hanson, C, Guinan, O, Moore, R, Tait, A. M., 2022. Dynamic World, near real-time global 10 m land use land cover mapping. Sci. Data, 9 (1), p. 251. doi: 10.1038/s41597-022-01307-4.

[7]

Cai, J., Huang, B., Song, Y., 2017. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 202, 210–221. doi: 10.1016/j.rse.2017.06.039.

[8]

Cattaneo, A., Nelson, A., McMenomy, T., 2021. Global mapping of urban-rural catchment areas reveals unequal access to services. Proc. Natl. Acad. Sci. U.S.A. 118 (2), e2011990118. doi: 10.1073/pnas.2011990118.

[9]

Chai, T, Draxler, R. R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7 (3), pp. 1247-1250. doi: 10.5194/gmd-7-1247-2014.

[10]

Childers, D. L., Pickett, S. T. A., Grove, J. M., Ogden, L, Whitmer, A., 2014. Advancing urban sustainability theory and action: challenges and opportunities. Landsc. Urban Plan., 125, pp. 320-328. doi: 10.1016/j.landurbplan.2014.01.022.

[11]

Zhou, W, Cao, J., 2022. Integrating 2-D built-up and 3-D technomass reveals the continuity and hybridity of urban-rural gradient. Sustain. Cities Soc., 87, Article 104217. doi: 10.1016/j.scs.2022.104217.

[12]

Zhou, W, Yu, W, Yao, Y, Jing, C., 2023. Understanding the indirect impacts of urbanization on vegetation growth using the Continuum of Urbanity framework. Sci. Total Environ., 899, Article 165693. doi: 10.1016/j.scitotenv.2023.165693.

[13]

Dewey, R., 1960. The rural-urban continuum: real but relatively unimportant. Am. J. Sociol., 66 (1), pp. 60-66. doi: 10.1086/222824.

[14]

Diggle, P., 1985. A kernel method for smoothing point process data. J. R. Stat. Soc. Ser. C, 34 (2), pp. 138-147. doi: 10.2307/2347366.

[15]

Fang, C, Yu, D., 2017. Urban agglomeration: an evolving concept of an emerging phenomenon. Landsc. Urban Plan., 162, pp. 126-136. doi: 10.1016/j.landurbplan.2017.02.014.

[16]

Gebreyes, M, Bazzana, D, Simonetto, A, Müller-Mahn, D, Zaitchik, B, Gilioli, G, Simane, B., 2020. Local perceptions of water-energy-food security: livelihood consequences of dam construction in Ethiopia. Sustainability, 12 (6), p. 2161. doi: 10.3390/su12062161.

[17]

Gutierrez-Velez, V. H., Gilbert, M. R., Kinsey, D, Behm, J. E., 2022. Beyond the ‘urban’ and the ‘rural’: conceptualizing a new generation of infrastructure systems to enable rural–urban sustainability. Curr. Opin. Environ. Sustain., 56, Article 101177. doi: 10.1016/j.cosust.2022.101177.

[18]

Hahs, A. K., 2016. Urban megaregions and the continuum of urbanity—embracing new frameworks or extending the old?. Ecosyst. Health Sustain., 2 (1), p. e01201. doi: 10.1002/ehs2.1201.

[19]

Halfacree, K.H., 2009. Urban–rural continuum. In: Kitchin, R., Thrift, N. (Eds.), International Encyclopedia of Human Geography. Elsevier, Oxford, pp. 119–124. doi: 10.1016/b978-008044910-4.01109-3.

[20]

Hastie, T. J., 1990. Generalized Additive Models, 1st ed. Routledge, New York . doi: 10.1201/9780203753781.

[21]

Hecht, S, Yang, A. L., Basnett, B. S., Padoch, C, Peluso, N. L., 2015. People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests. CIFOR . doi: 10.17528/cifor/005762.

[22]

Herfort, B, Lautenbach, S, Porto de Albuquerque, J, Anderson, J, Zipf, A., 2023. A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap. Nat. Commun., 14 (1), p. 3985. doi: 10.1038/s41467-023-39698-6.

[23]

Hubacek, K, Guan, D, Barrett, J, Wiedmann, T., 2009. Environmental implications of urbanization and lifestyle change in China: ecological and water footprints. J. Clean. Prod., 17 (14), pp. 1241-1248. doi: 10.1016/j.jclepro.2009.03.011.

[24]

Hutchings, P, Willcock, S, Lynch, K, Bundhoo, D, Brewer, T, Cooper, S, Keech, D, Mekala, S, Mishra, P. P., Parker, A, Shackleton, C. M., Venkatesh, K, Vicario, D. R., Welivita, I., 2022. Understanding rural–urban transitions in the Global South through peri-urban turbulence. Nat. Sustaina., 5 (11), pp. 924-930. doi: 10.1038/s41893-022-00920-w.

[25]

Irwin, E. G., Bockstael, N. E., 2007. The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. U.S.A., 104 (52), pp. 20672-20677. doi: 10.1073/pnas.0705527105.

[26]

Kaminski, A, Bauer, D. M., Bell, K. P., Loftin, C. S., Nelson, E. J., 2021. Using landscape metrics to characterize towns along an urban-rural gradient. Landsc. Ecol., 36 (10), pp. 2937-2956. doi: 10.1007/s10980-021-01287-7.

[27]

Khuri, A.I., 2013. Book review: Introduction to Linear Regression Analysis, fifth edition by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining. Int. Stat. Rev. 81 (2), 318–319. doi: 10.1111/insr.12020_10.

[28]

Lennon, A, Berg, N. G., 2022. Alternative places for alternative people? A changing ecovillage discourse from Othered lifestyle to another rurality. J. Rural Stud., 95, pp. 302-315. doi: 10.1016/j.jrurstud.2022.09.024.

[29]

Li, S, Dragicevic, S, Castro, F. A., Sester, M, Winter, S, Coltekin, A, Pettit, C, Jiang, B, Haworth, J, Stein, A, Cheng, T., 2016. Geospatial big data handling theory and methods: a review and research challenges. ISPRS J. Photogramm. Remote Sens., 115, pp. 119-133. doi: 10.1016/j.isprsjprs.2015.10.012.

[30]

Li, T, Lu, Y, Fu, B, Comber, A. J., Harris, P, Wu, L., 2017. Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: their effectiveness and socio-economic relationships. Sci. Total Environ., 607-608, pp. 911-919. doi: 10.1016/j.scitotenv.2017.07.044.

[31]

Li, X-.C, Gong, P, Zhou, Y, Wang, J, Bai, Y, Chen, B, Hu, T, Xiao, Y, Xu, B, Yang, J, Liu, X, Cai, W, Huang, H, Wu, T, Wang, X, Lin, P, Li, X, Chen, J, He, C, Li, X, Yu, L, Clinton, N, Zhu, Z., 2020. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett., 15 (9), Article 094044. doi: 10.1088/1748-9326/ab9be3.

[32]

Mahtta, R, Fragkias, M, Güneralp, B, Mahendra, A, Reba, M, Wentz, E. A., Seto, K. C., 2022. Urban land expansion: the role of population and economic growth for 300+ cities. Npj Urban Sustain., 2 (1), p. 5. doi: 10.1038/s42949-022-00048-y.

[33]

Marcotullio, P.J., Solecki, W., 2013. What is a city? An essential definition for sustainability. In: Boone, C.G., Fragkias, M. (Eds.), Urbanization and Sustainability. Springer Netherlands, Dordrecht, pp. 11–25. doi: 10.1007/978-94-007-5666-3_2.

[34]

Mcdonnell, M. J., Pickett, S. T. A., 1990. Ecosystem structure and function along urban rural gradients - an unexploited opportunity for ecology. Ecology, 71 (4), pp. 1232-1237. doi: 10.2307/1938259.

[35]

McGranahan, G, Marcotullio, P, Bai, X, Balk, D, Braga, T, Douglas, I, Elmqvist, T, Rees, W, Satterthwaite, D, Songsore, J.Urban systems. R. Hassan, R.J. Scholes, N. Ash (Eds.), Ecosystems and Human Well-being: Current State and Trends, Island Press, Washington, D.C. 2005; 795-825.

[36]

McGranahan, G, Satterthwaite, D., 2014. Urbanisation concepts and trends. IIED Working paper. IIED, London

[37]

McHale, M, Pickett, S, Barbosa, O, Bunn, D, Cadenasso, M, Childers, D, Gartin, M, Hess, G, Iwaniec, D, McPhearson, T, Peterson, M, Poole, A, Rivers, L, Shutters, S, Zhou, W., 2015. The new global urban realm: complex, connected, diffuse, and diverse social-ecological systems. Sustainability, 7 (5), pp. 5211-5240. doi: 10.3390/su7055211.

[38]

McHale, M. R., Bunn, D. N., Pickett, S. T., Twine, W., 2013. Urban ecology in a developing world: why advanced socioecological theory needs Africa. Front. Ecol. Environ., 11 (10), pp. 556-564. doi: 10.1890/120157.

[39]

McKenzie, R. D., 1930. Book review: Principles of Rural-urban Sociology. By Pitirim Sorokin and Carle C. Zimmerman. Am. J. Sociol., 36 (1), pp. 135-137. doi: 10.1086/215291.

[40]

Mohammed, A. M. S., Ukai, T., 2023. Agent-based modelling for spatiotemporal patterns of urban land expansion around university campuses. Model. Earth Syst. Environ., 9 (1), pp. 1119-1133. doi: 10.1007/s40808-022-01551-y.

[41]

Montgomery, J., 1998. Making a city: urbanity, vitality and urban design. J. Urban Des., 3 (1), pp. 93-116. doi: 10.1080/13574809808724418.

[42]

Murayama, Y., Estoque, R.C., 2020. Urbanization: concept, mechanism, and global implications. In: Himiyama, Y., Satake, K., Oki, T. (Eds.), Human Geoscience. Springer Singapore, Singapore, pp. 261–282. doi: 10.1007/978-981-32-9224-6_19.

[43]

Nagendra, H., Unnikrishnan, H., Sen, S., 2013. Villages in the city: spatial and temporal heterogeneity in rurality and urbanity in Bangalore, India. Land 3 (1), 1–18. doi: 10.3390/land3010001.

[44]

Padilla, B. J., Sutherland, C., 2019. A framework for transparent quantification of urban landscape gradients. Landsc. Ecol., 34 (6), pp. 1219-1229. doi: 10.1007/s10980-019-00858-z.

[45]

Pahl, R. E., 2008. The rural-urban continuum. Sociol. Rura., 6 (3), pp. 299-329. doi: 10.1111/j.1467-9523.1966.tb00537.x.

[46]

Pandey, B, Brelsford, C, Seto, K. C., 2022. Infrastructure inequality is a characteristic of urbanization. Proc. Natl. Acad. Sci. U.S.A., 119 (15), Article e2119890119. doi: 10.1073/pnas.2119890119.

[47]

Pauleit, S., Sauerwein, M., Breuste, J., 2021. Urbanisation and its challenges for ecological urban development. In: Breuste, J., Pauleit, S., Haase, D., Sauerwein, M. (Eds.), Urban Ecosystems. Springer Berlin, Berlin, Heidelberg, pp. 1–39. doi: 10.1007/978-3-662-63279-6_1.

[48]

Pickett, S. T. A., Zhou, W., 2017. Global urbanization as a shifting context for applying ecological science toward the sustainable city. Ecosyst. Health Sustain., 1 (1), pp. 1-15. doi: 10.1890/ehs14-0014.1.

[49]

Reia, S. M., Rao, P. S. C., Barthelemy, M, Ukkusuri, S. V., 2022. Spatial structure of city population growth. Nat. Commun., 13 (1), p. 5931. doi: 10.1038/s41467-022-33527-y.

[50]

Rosier, J. F., Taubenböck, H, Verburg, P. H., van Vliet, J., 2022. Fusing Earth observation and socioeconomic data to increase the transferability of large-scale urban land use classification. Remote Sens. Environ., 278, Article 113076. doi: 10.1016/j.rse.2022.113076.

[51]

Schiavina, M., Melchiorri, M., Pesaresi, M., Panagiotis, P., Freire, S., Maffenini, L., Goch, K., Tommasi, P., Kemper, T., 2022. GHSL Data Package 2022. 10.2760/19817.

[52]

Serra, P, Vera, A, Tulla, A. F., Salvati, L., 2014. Beyond urban–rural dichotomy: exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr., 55, pp. 71-81. doi: 10.1016/j.apgeog.2014.09.005.

[53]

Seto, K. C., Golden, J. S., Alberti, M, Turner II, B. L., 2017. Turner II. Sustainability in an urbanizing planet. Proc. Natl. Acad. Sci. U.S.A., 114 (34), pp. 8935-8938. doi: 10.1073/pnas.1606037114.

[54]

Seto, K. C., Reenberg, A., 2014. Rethinking Global Land Use in an Urban Era. The MIT Press, Cambridge, Massachusetts

[55]

Seto, K. C., Reenberg, A, Boone, C. G., Fragkias, M, Haase, D, Langanke, T, Marcotullio, P, Munroe, D. K., Olah, B, Simon, D., 2012. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. U.S.A., 109 (20), pp. 7687-7692. doi: 10.1073/pnas.1117622109.

[56]

Uhl, J. H., Hunter, L. M., Leyk, S, Connor, D. S., Nieves, J. J., Hester, C, Talbot, C, Gutmann, M., 2023. Place-level urban-rural indices for the United States from 1930 to 2018. Landsc. Urban Plan., 236, Article 104762. doi: 10.1016/j.landurbplan.2023.104762.

[57]

van Vliet, J., 2019. Direct and indirect loss of natural area from urban expansion. Nat. Sustain., 2 (8), pp. 755-763. doi: 10.1038/s41893-019-0340-0.

[58]

Wahba Tadros, S. N., Wellenstein, A, Das, M. B., Palmarini, N, D'Aoust, O. S., Singh, G, Restrepo Cadavid, P, Goga, S, Terraza, H. C., Lakovits, C, Baeumler, A. E. N., Gapihan, A. T., 2021. Demographic trends and urbanization (English). World Bank Group, Washington, D.C

[59]

Wang, C., Yang, Y., Zhang, Y., 2012. Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: evidence from China. Renew. Sust. Energ. Rev. 16 (5), 2475–2482. doi: 10.1016/j.rser.2012.01.070.

[60]

Wang, L, Wang, S, Zhou, Y, Liu, W, Hou, Y, Zhu, J, Wang, F., 2018. Mapping population density in China between 1990 and 2010 using remote sensing. Remote Sens. Environ., 210, pp. 269-281. doi: 10.1016/j.rse.2018.03.007.

[61]

Wang, Y., Zhang, H., Liu, L., 2022. Does city construction improve life quality?- Evidence from POI data of China. Int. Rev. Econ. Financ. 80, 643–653. doi: 10.1016/j.iref.2022.01.004.

[62]

Wang, Z., 2022. Reconceptualizing urban heat island: beyond the urban-rural dichotomy. Sustain. Cities Soc., 77, Article 103581. doi: 10.1016/j.scs.2021.103581.

[63]

Weiss, D. J., Nelson, A, Gibson, H. S., Temperley, W, Peedell, S, Lieber, A, Hancher, M, Poyart, E, Belchior, S, Fullman, N, Mappin, B, Dalrymple, U, Rozier, J, Lucas, T. C. D., Howes, R. E., Tusting, L. S., Kang, S. Y., Cameron, E, Bisanzio, D, Battle, K. E., Bhatt, S, Gething, P. W., 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature, 553 (2018), pp. 333-336. doi: 10.1038/nature25181.

[64]

Wirth, L., 1938. Urbanism as a way of life. Am. J. Sociol., 44 (1), pp. 1-24. doi: 10.1086/217913.

[65]

Xu, Y, Olmos, L. E., Mateo, D, Hernando, A, Yang, X, González, M. C., 2023. Urban dynamics through the lens of human mobility. Nat. Comput. Sci., 3 (7), pp. 611-620. doi: 10.1038/s43588-023-00484-5.

[66]

Yang, S, Yang, X, Zhang, J, Gao, X, Zhou, J, Wu, X., 2024. Assessing the impacts of rural depopulation and urbanization on vegetation cover: based on land use and nighttime light data in China, 2000–2020. Ecol. Indic., 159, Article 111639. doi: 10.1016/j.ecolind.2024.111639.

[67]

Yap, W., Stouffs, R., Biljecki, F., 2023. Urbanity: automated modelling and analysis of multidimensional networks in cities. Npj Urban Sustain. 3 (1), 45. doi: 10.1038/s42949-023-00125-w.

[68]

Ye, T, Zhao, N, Yang, X, Ouyang, Z, Liu, X, Chen, Q, Hu, K, Yue, W, Qi, J, Li, Z, Jia, P., 2019. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ., 658, pp. 936-946. doi: 10.1016/j.scitotenv.2018.12.276.

[69]

Ye, Y, Yeh, A, Zhuang, Y, van Nes, A, Liu, J., 2017. “Form Syntax” as a contribution to geodesign: a morphological tool for urbanity-making in urban design. Urban Des. Int., 22 (1), pp. 73-90. doi: 10.1057/s41289-016-0035-3.

[70]

Yu, W, Zhou, W., 2017. The spatiotemporal pattern of urban expansion in China: a comparison study of three urban megaregions. Remote Sens., 9 (1), p. 45. doi: 10.3390/rs9010045.

[71]

Zanaga, D, Van De Kerchove, R, Daems, D, De Keersmaecker, W, Brockmann, C, Kirches, G, Wevers, J, Cartus, O, Santoro, M, Fritz, S., 2022. ESA WorldCover 10m 2021 v200. Zenodo . doi: 10.5281/zenodo.7254221.

[72]

Zhang, L., Yang, L., Zohner, C.M., Crowther, T.W., Li, M., Shen, F., Guo, M., Qin, J., Yao, L., Zhou, C., 2022a. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 8 (27), eabo0095. doi: 10.1126/sciadv.abo0095.

[73]

Zhang, X., Brandt, M., Tong, X., Ciais, P., Yue, Y., Xiao, X., Zhang, W., Wang, K., Fensholt, R., 2022b. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 5 (4), 321–328. doi: 10.1038/s41893-021-00843-y.

[74]

Zheng, Q, Seto, K. C., Zhou, Y, You, S, Weng, Q., 2023. Nighttime light remote sensing for urban applications: progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens., 202, pp. 125-141. doi: 10.1016/j.isprsjprs.2023.05.028.

[75]

Zhou, L., Zhao, Q., Yang, F., 2019. Identification of urban agglomeration boundary based on POI and NPP/VIIRS night light data. Prog. Geogr. 38 (6), 840–850. doi: 10.18306/dlkxjz.2019.06.005 , (in Chinese).

[76]

Zhou, W, Pickett, S. T. A., McPhearson, T., 2021. Conceptual frameworks facilitate integration for transdisciplinary urban science. Npj Urban Sustain., 1 (1), p. 1. doi: 10.1038/s42949-020-00011-9.

[77]

Zhou, W, Yu, W, Qian, Y, Han, L, Pickett, S. T. A., Wang, J, Li, W, Ouyang, Z., 2022. Beyond city expansion: multi-scale environmental impacts of urban megaregion formation in China. Natl. Sci. Rev., 9 (1), p. nwab107. doi: 10.1093/nsr/nwab107.

[78]

Zhu, Z, Zhou, Y, Seto, K. C., Stokes, E. C., Deng, C, Pickett, S. T. A., Taubenböck, H., 2019. Understanding an urbanizing planet: strategic directions for remote sensing. Remote Sens. Environ., 228, pp. 164-182. doi: 10.1016/j.rse.2019.04.020.

PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

/