Spatial patterns and driving forces of urban vegetation greenness in China: A case study comprising 289 cities

Yansong Jin , Fei Wang , Quanli Zong , Kai Jin , Chunxia Liu , Peng Qin

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 370 -381.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :370 -381. DOI: 10.1016/j.geosus.2024.03.001
Research Article
review-article

Spatial patterns and driving forces of urban vegetation greenness in China: A case study comprising 289 cities

Author information +
History +
PDF

Abstract

Urban vegetation in China has changed substantially in recent decades due to rapid urbanization and dramatic climate change. Nevertheless, the spatial differentiation of greenness among major cities of China and its evolution process and drivers are still poorly understood. This study examined the spatial patterns of vegetation greenness across 289 cities in China in 2000, 2005, 2010, 2015, and 2018 by using spatial autocorrelation analysis on the Normalized Difference Vegetation Index (NDVI); then, the influencing factors were analyzed by using the optimal parameters-based geographical detector (OPGD) model and 18 natural and anthropogenic indicators. The findings demonstrated a noticeable rise in the overall greenness of the selected cities during 2000–2018. The cities in northwest China and east China exhibited the rapidest and slowest greening, respectively, among the six sub-regions. A significant positive spatial correlation was detected between the greenness of the 289 cities in different periods, but the correlation strength weakened over time. The hot and very hot spots in southern and eastern China gradually shifted to the southwest. While the spatial pattern of urban greenness in China is primarily influenced by wind speed (WS) and precipitation (PRE), the interaction between PRE and gross domestic product (GDP) has the highest explanatory power. The explanatory power of most natural factors decreased and, conversely, the influence of anthropogenic factors generally increased. These findings emphasize the variations in the influence strength of multiple factors on urban greenness pattern, which should be taken into account to understand and adapt to the changing urban ecosystem.

Keywords

Vegetation greenness / Spatial heterogeneity / Influencing factors / Geographical detector / Urban areas

Cite this article

Download citation ▾
Yansong Jin, Fei Wang, Quanli Zong, Kai Jin, Chunxia Liu, Peng Qin. Spatial patterns and driving forces of urban vegetation greenness in China: A case study comprising 289 cities. Geography and Sustainability, 2024, 5(3): 370-381 DOI:10.1016/j.geosus.2024.03.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The author declares that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

This work was supported by the Foundation of High-level Talents of Qingdao Agricultural University (Grant No. 665/1120041), the Open Research Fund of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (Grant No. A314021402-202221), the Natural Science Foundation of Shandong Province (Grants No. ZR2020QD114 and ZR2021ME167), and the Postgraduate Innovation Program of Qingdao Agricultural University (Grant No. QNYCX22031).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.03.001.

References

[1]

Anselin, L., 1995. Local indicators of spatial association: LISA. Geogr. Anal., 27(2), 93-115.

[2]

Chang, Y, Zhang, G, Zhang, T, Xie, Z, Wang, J., 2020. Vegetation dynamics and their response to the urbanization of the Beijing-Tianjin-Hebei Region, China. Sustainability 12(20), 8550.

[3]

Cottagiri, S. A., Villeneuve, P. J., Raina, P, Griffith, L. E., Rainham, D, Dales, R, Peters, C. E., Ross, N. A., Crouse, D. L., 2022. Increased urban greenness associated with improved mental health among middle-aged and older adults of the Canadian Longitudinal Study on Aging (CLSA). Environ. Res., 206, 112587.

[4]

Dobbs, C, Nitschke, C, Kendal, D., 2017. Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci. Total Environ., 592, 171-177.

[5]

Du, J. Q., Fu, Q, Fang, S. F., Wu, J. H., He, P, Quan, Z. J., 2019. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades. Ecol. Indic., 107, 105458.

[6]

Duan, Q. W., Tan, M. H., 2020. Using a geographical detector to identify the key factors that influence urban forest spatial differences within China. Urban For. Urban Green., 49, 126623.

[7]

Fang, G. C., Gao, Z. Y., Tian, L. X., Fu, M., 2022. What drives urban carbon emission efficiency? – Spatial analysis based on nighttime light data. Appl. Energy 312, 118772.

[8]

Fawzy, S, Osman, A. I., Doran, J, Rooney, D. W., 2020. Strategies for mitigation of climate change: a review. Environ. Chem. Lett., 18(6), 2069-2094.

[9]

Feyisa, G. L., Dons, K, Meilby, H., 2014. Efficiency of parks in mitigating urban heat island effect: an example from Addis Ababa. Landsc. Urban Plan., 123, 87-95.

[10]

Fu, Y. S. H., Zhao, H. F., Piao, S. L., Peaucelle, M, Peng, S. S., Zhou, G. Y., Ciais, P, Huang, M. T., Menzel, A, Uelas, J. P., Song, Y, Vitasse, Y, Zeng, Z. Z., Janssens, I. A., 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526(7571), 104-107.

[11]

Gao, F, Deng, X. D., Liao, S. Y., Liu, Y, Li, H. B., Li, G. Y., Chen, W. Y., 2023. Portraying business district vibrancy with mobile phone data and optimal parameters-based geographical detector model. Sustain. Cities Soc., 96, 104635.

[12]

Gao, J. H., Woodward, A, Vardoulakis, S, Kovats, S, Wilkinson, P, Li, L. P., Xu, L, Li, J, Yang, J, Li, J, Cao, L, Liu, X. B., Wu, H. X., Liu, Q. Y., 2017. Haze, public health and mitigation measures in China: a review of the current evidence for further policy response. Sci. Total Environ., 578, 148-157.

[13]

Getis, A, Ord, J. K., 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal., 24(3), 189-206.

[14]

Huang, C. H., Xu, N., 2022. Climatic factors dominate the spatial patterns of urban green space coverage in the contiguous United States. Int. J. Appl. Earth Obs. Geoinf., 107, 102691.

[15]

Jia, W. X., Zhao, S. Q., Zhang, X. Y., Liu, S. G., Henebry, G. M., Liu, L. L., 2021. Urbanization imprint on land surface phenology: the urban-rural gradient analysis for Chinese cities. Glob. Change Biol., 27(12), 2895-2904.

[16]

Jin, K, Jin, Y. S., Wang, F, Wang, S. X., 2022. Impacts of anthropogenic activities on vegetation cover changes in the Circum-Bohai-Sea region, China. Geocarto Int., 37(25), 9339-9354.

[17]

Jin, K, Jin, Y. S., Wang, F, Zong, Q. L., 2023. Should time-lag and time-accumulation effects of climate be considered in attribution of vegetation dynamics? Case study of China's temperate grassland region. Int. J. Biometeorol., 67(7), 1213-1223.

[18]

Jin, K, Wang, F, Li, P. F., 2018. Responses of vegetation cover to environmental change in large cities of China. Sustainability 10(1), 270.

[19]

Li, D. L., Wu, S. Y., Liang, Z, Li, S. C., 2020. The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban For. Urban Green., 54, 126764.

[20]

Li, H, Hou, E. K., Deng, J. W., 2022. Spatio-temporal differentiation characteristic and evolution process of meteorological drought in Northwest China from 1960 to 2018. Front. Earth Sci., 10, 857953.

[21]

Liu, H, Fan, J, Zhou, K, Xu, X, Zhang, H, Guo, R, Chen, S. F., 2023. Assessing the dynamics of human activity intensity and its natural and socioeconomic determinants in Qinghai–Tibet Plateau. Geogr. Sustain., 4(4), 294-304.

[22]

Liu, H. M., Huang, B, Gao, S. H., Wang, J, Yang, C, Li, R. R., 2021. Impacts of the evolving urban development on intra-urban surface thermal environment: evidence from 323 Chinese cities. Sci. Total Environ., 771, 144810.

[23]

Liu, Y, Wang, G. P., Hu, Z. Y., Shi, P. J., Lyu, Y. L., Zhang, G. M., Gu, Y, Liu, Y, Hong, C, Guo, L. L., Hu, X, Yang, Y. Y., Zhang, X. X., Zheng, H, Liu, L. Y., 2020. Dust storm susceptibility on different land surface types in arid and semiarid regions of northern China. Atmos. Res., 243, 105031.

[24]

Lu, Y. H., Coops, N. C., Hermosilla, T., 2017. Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data. ISPRS J. Photogramm. Remote Sens., 126, 11-23.

[25]

Miao, L. J., He, Y, Kattel, G. R., Shang, Y, Wang, Q. F., Zhang, X., 2022. Double effect of urbanization on vegetation growth in China's 35 cities during 2000–2020. Remote Sens., 14(14), 3312.

[26]

Mu, B. H., Zhao, X, Zhao, J. C., Liu, N. J., Si, L. P., Wang, Q, Sun, N, Sun, M. M., Guo, Y. K., Zhao, S. Q., 2022. Quantitatively assessing the impact of driving factors on vegetation cover change in China's 32 major cities. Remote Sens., 14(4), 839.

[27]

Nesbitt, L, Meitner, M. J., Girling, C, Sheppard, S. R. J., Lu, Y. H., 2019. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan., 181, 51-79.

[28]

Ouyang, Z, Zheng, H, Xiao, Y, Polasky, S, Liu, J, Xu, W, Wang, Q, Zhang, L, Xiao, Y, Rao, E. M., Jiang, L, Lu, F, Wang, X. K., Yang, G. B., Gong, S. H., Wu, B. F., Zeng, Y, Yang, W, Daily, G. C., 2016. Improvements in ecosystem services from investments in natural capital. Science 352(6292), 1455-1459.

[29]

Pathak, V, Tripathi, B. D., Mishra, V. K., 2011. Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban For. Urban Green., 10(1), 61-66.

[30]

Piao, S. L., Wang, X. H., Park, T, Chen, C, Lian, X, He, Y, Bjerke, J. W., Chen, A. P., Ciais, P, Tommervik, H, Nemani, R. R., Myneni, R. B., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1(1), 14-27.

[31]

Richards, D. R., Belcher, R. N., 2020. Global changes in urban vegetation cover. Remote Sens., 12(1), 23.

[32]

Shu, Y. Q., Zheng, G. B., Yan, X. W., 2022. Application of multiple geographical units convolutional neural network based on neighborhood effects in urban waterlogging risk assessment in the city of Guangzhou, China. Phys. Chem. Earth 126, 103054.

[33]

Song, Y, Aryal, J, Tan, L, Jin, L, Gao, Z, Wang, Y., 2020. Comparison of changes in vegetation and land cover types between Shenzhen and Bangkok. Land Degrad. Dev., 32(3), 1192-1204.

[34]

Song, Y. Z., Wang, J. F., Ge, Y, Xu, C. D., 2020. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data. GISci. Remote Sens., 57(5), 593-610.

[35]

Sun, G. Q., Guo, B, Zang, W. Q., Huang, X. Z., Han, B. M., Yang, X, Chen, S. T., Wei, C. X., Wu, H. W., 2020. Spatial-temporal change patterns of vegetation coverage in China and its driving mechanisms over the past 20 years based on the concept of geographic division. Geomat. Nat. Hazards Risk 11(1), 2263-2681.

[36]

United Nations Department of Economic and Social Affairs, 2019. World urbanization prospects: the 2018 revision. United Nations Department of Economic Social Affairs, New York. doi: 10.18356/b9e995fe-en.

[37]

Venkatesh, K, John, R, Chen, J. Q., Xao, J. F., Amirkhiz, R. G., Giannico, V, Kussainova, M., 2022. Optimal ranges of social-environmental drivers and their impacts on vegetation dynamics in Kazakhstan. Sci. Total Environ., 847, 157562.

[38]

Wan, L, Liu, H, Gong, H, Ren, Y., 2020. Effects of climate and land use changes on vegetation dynamics in the Yangtze River Delta, China based on abrupt change analysis. Sustainability 12(5), 1955.

[39]

Wang, J. F., Xu, C. D., 2017. Geodetector: principle and prospective. Acta Geogr. Sin., 72(1), 116-134.

[40]

Wang, H, Yan, S. J., Liang, Z, Jiao, K. W., Li, D. L., Wei, F. L., Li, S. C., 2021. Strength of association between vegetation greenness and its drivers across China between 1982 and 2015: regional differences and temporal variations. Ecol. Indic., 128, 107831.

[41]

White, J. G., Sparrius, J, Robinson, T, Hale, S, Lupone, L, Healey, T, Cooke, R, Rendall, A. R., 2022. Can NDVI identify drought refugia for mammals and birds in mesic landscapes?. Sci. Total Environ., 851(2), 158318.

[42]

Wu, D. H., Zhao, X, Liang, S. L., Zhou, T, Huang, K. C., Tang, B. J., Zhao, W. Q., 2015. Time-lag effects of global vegetation responses to climate change. Glob. Change Biol., 21(9), 3520-3531.

[43]

Xu, Y. P., Wang, W. W., Chen, B. Y., Chang, M, Wang, X. M., 2021. Identification of ventilation corridors using backward trajectory simulations in Beijing. Sustain. Cities Soc., 70, 102889.

[44]

Yan, M, Fan, S, Zhang, L, Mahmood, R, Chen, B, Dong, Y., 2022. Vegetation dynamics due to urbanization in the coastal cities along the Maritime Silk Road. Land 11, 164.

[45]

Yao, R, Cao, J, Wang, L, Zhang, W, Wu, X., 2019. Urbanization effects on vegetation cover in major African cities during 2001–2017. Int. J. Appl. Earth Obs. Geoinf., 75, 44-53.

[46]

Yang, J, Huang, X., 2021. The 30 m annual land cover datasets and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 13(8), 3907-3925.

[47]

Yang, J. L., Dong, J. W., Xiao, X. M., Dai, J. H., Wu, C. Y., Xia, J. Y., Zhao, G. S., Zhao, M. M., Li, Z. L., Zhang, Y, Ge, Q. S., 2019. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ., 233, 111395.

[48]

Yang, K, Sun, W. Z., Luo, Y, Zhao, L., 2021. Impact of urban expansion on vegetation: the case of China (2000–2018). J. Environ. Manag., 291, 112598.

[49]

Yang, P, Sheng, X, Zhao, Y, Zhu, L., 2019. Evaluation of ecological civilization development in the post-Olympic times. Appl. Ecol. Environ. Res., 17(4), 8513-8525.

[50]

Zhang, P, Dong, Y. L., Ren, Z. B., Wang, G. D., Guo, Y. J., Wang, C. C., Ma, Z. J., 2023. Rapid urbanization and meteorological changes are reshaping the urban vegetation pattern in urban core area: a national 315-city study in China. Sci. Total Environ., 904, 167269.

[51]

Zhang, T, Xu, X, Jiang, H. L., Qiao, S. R., Guan, M. X., Huang, Y. M., Gong, R., 2022. Widespread decline in winds promoted the growth of vegetation. Sci. Total Environ., 825, 153682.

[52]

Zhang, W. M., Randall, M, Jensen, M. B., Brandt, M, Wang, Q, Fensholt, R., 2021. Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Glob. Environ. Change 71, 102385.

[53]

Zhang, X, Wang, J, Gao, Y, Wang, L., 2021. Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geogr. Sustain., 2(1), 74-85.

[54]

Zhang, Z. J., Zhao, W. W., Liu, Y, Pereira, P., 2023. Impacts of urbanisation on vegetation dynamics in Chinese cities. Environ. Impact Assess. Rev., 103, 107227.

[55]

Zhao, D. S., Gao, X, Wu, S. H., Zheng, D., 2020. Trend of climate variation in China from 1960 to 2018 based on natural regionalization. Adv. Earth Sci., 35(7), 750-760.

[56]

Zheng, K. Y., Tan, L. S., Sun, Y. W., Wu, Y. J., Duan, Z, Xu, Y, Cao, C., 2021. Impacts of climate change and anthropogenic activities on vegetation change: evidence from typical areas in China. Ecol. Indic., 126, 107648.

[57]

Zhou, Q. Q., van den Bosch, C. C. K., Chen, Z. G., Wang, X. Y., Zhu, L. Y., Chen, J. R., Lin, Y. B., Dong, J. W., 2021. China’s Green space system planning: development, experiences, and characteristics. Urban For. Urban Green., 60, 127017.

[58]

Zhu, L. J., Meng, J. J., Zhu, L. K., 2020. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic., 117, 106545.

PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

/