Increased population exposures to extreme precipitation in Central Asia under 1.5 ℃ and 2 global warming scenarios

Wei Wei , Shan Zou , Weili Duan , Yaning Chen , Shuai Li , Takahiro Sayama , Jianyu Zhu

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 343 -356.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :343 -356. DOI: 10.1016/j.geosus.2024.02.005
Research Article
review-article

Increased population exposures to extreme precipitation in Central Asia under 1.5 ℃ and 2 global warming scenarios

Author information +
History +
PDF

Abstract

The increase in extreme precipitation (EP) may pose a serious threat to the health and safety of population in arid and semi-arid regions. The current research on the impact of EP on population in Central Asia (CA) is insufficient and there is an urgent need for a comprehensive assessment. Hence, we opted for precipitation and temperature data under two Shared Socioeconomic Pathways (SSP2–4.5 and SSP5–8.5) from ten Global Climate Models (GCMs), which were obtained from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6). By integrating population data in 2020 and 2050 (SSP2 and SSP5), we investigated the future changes in EP and population exposure in CA under 1.5 °C and 2 °C global warming scenarios (GWSs). Our analysis indicates that EP in CA is projected to increase with global warming. Under the SSP5–8.5, the maximum daily precipitation (Rx1day) exhibits an average response rate to global warming of 3.58 %/K (1.99–4.06 %/K). With rising temperatures, an increasing number of areas and populations in CA will be impacted by EP, especially in the Fergana valley. Approximately 25% of the population (land area) in CA is exposed to Rx1day with increases of more than 8.31% (9.32%) under 1.5 °C GWS and 14.18% (13.25%) under 2 °C GWS. Controlling temperature rise can be effective in reducing population exposures to EP. For instance, limiting the temperature increase to 1.5 °C instead of 2 °C results in a 2.79% (1.75%–4.59%) reduction in population exposure to Rx1day. Finally, we found that climate change serves as the predominant factor influencing the population exposure to EP, while the role of population redistribution, although relatively minor, should not be disregarded. Particularly for prolonged drought, the role of population redistribution manifests negatively.

Keywords

Extreme precipitation / Global warming / Population exposure / Central Asia

Cite this article

Download citation ▾
Wei Wei, Shan Zou, Weili Duan, Yaning Chen, Shuai Li, Takahiro Sayama, Jianyu Zhu. Increased population exposures to extreme precipitation in Central Asia under 1.5 ℃ and 2 global warming scenarios. Geography and Sustainability, 2024, 5(3): 343-356 DOI:10.1016/j.geosus.2024.02.005

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

All data used in this study are publicly available and listed in the manuscript.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is jointly supported by the Tienshan Talent Program in Xinjiang (Grant No. 2023TSYCLJ0050), the National Natural Science Foundation of China (Grant No. 42122004), and the West Light Foundation of the Chinese Academy of Sciences (Grant No. xbzg-zdsys-202208).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.02.005.

References

[1]

Abbasian, M, Moghim, S, Abrishamchi, A., 2019. Performance of the general circulation models in simulating temperature and precipitation over Iran. Theor. Appl. Climatol., 135(3–4), 1465-1483.

[2]

Ahmadalipour, A, Moradkhani, H, Castelletti, A, Magliocca, N., 2019. Future drought risk in Africa: integrating vulnerability, climate change, and population growth. Sci. Total. Environ., 662, 672-686.

[3]

Allen, M. R., Ingram, W. J., 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903), 224-232.

[4]

Ayugi, B. O., Chung, E. S., Zhu, H. H., Ogega, O. M., Babousmail, H, Ongoma, V., 2023. Projected changes in extreme climate events over Africa under 1.5, 2.0 and 3.0 global warming levels based on CMIP6 projections. Atmos. Res., 292, 106872.

[5]

Ayugi, B, Jiang, Z. H., Iyakaremye, V, Ngoma, H, Babaousmail, H, Onyutha, C, Dike, V. N., Mumo, R, Ongoma, V., 2022. East African population exposure to precipitation extremes under 1.5 °C and 2.0 °C warming levels based on CMIP6 models. Environ. Res. Lett., 17(4), 044051.

[6]

Brown, T. C., Mahat, V, Ramirez, J. A., 2019. Adaptation to future water shortages in the United States caused by population growth and climate change. Earths Future 7(3), 219-234.

[7]

Chang, J. X., Li, Y. Y., Wang, Y. M., Yuan, M., 2016. Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. J. Hydrol., 540, 824-834.

[8]

Chen, C. Z., Zhang, X. J., Lu, H. Y., Jin, L. Y., Du, Y, Chen, F. H., 2020. Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades. Int. J. Climatol., 41(2), 1024-1038.

[9]

Chen, F. H., Chen, J. H., Huang, W, Chen, S. Q., Huang, X. Z., Jin, L. Y., Jia, J, Zhang, X. J., An, C. B., Zhang, J. W., Zhao, Y, Yu, Z. C., Zhang, R. H., Liu, J. B., Zhou, A. F., Feng, S., 2019. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev., 192, 337-354.

[10]

Chen, F. H., Huang, W, Jin, L. Y., Chen, J. H., Wang, J. S., 2011. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China-Earth. Sci., 54(12), 1812-1821.

[11]

Chen, H. P., Sun, J. Q., 2021. Significant increase of the global population exposure to increased precipitation extremes in the future. Earths Future 9(9), e2020EF001941.

[12]

Chen, H. P., Sun, J. Q., Li, H. X., 2020. Increased population exposure to precipitation extremes under future warmer climates. Environ. Res. Lett., 15(3), 034048.

[13]

Davis, L. W., Gertler, P. J., 2015. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. U.S.A., 112(19), 5962-5967.

[14]

Dike, V. N., Lin, Z. H., Fei, K, Langendijk, G. S., Nath, D., 2022. Evaluation and multimodel projection of seasonal precipitation extremes over central Asia based on CMIP6 simulations. Int. J. Climatol., 42(14), 7228-7251.

[15]

Dike, V.N., Lin, Z.H., Wu, C., Ibe, C.C., 2021. Advances in weather and climate extremes. In: Ongoma, V., Tabari, H. (Eds.), Climate Impacts on Extreme Weather: Current to Future Changes on a Local to Global Scale. Elsevier, Cambridge, pp.49-63.

[16]

Dittus, A. J., Hawkins, E, Wilcox, L. J., Sutton, R. T., Smith, C. J., Andrews, M. B., Forster, P. M., 2020. Sensitivity of historical climate simulations to uncertain aerosol forcing. Geophys. Res. Lett., 47(13), e2019GL085806.

[17]

Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., Maher, N., 2016. More extreme precipitation in the world's dry and wet regions. Nat. Clim. Chang., 6(5), 508-513.

[18]

Dong, T. Y., Dong, W. J., 2021. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim. Dyn., 57, 1751-1769.

[19]

Dottori, F, Szewczyk, W, Ciscar, J. C., Zhao, F, Alfieri, L, Hirabayashi, Y, Bianchi, A, Mongelli, I, Frieler, K, Betts, R. A., Feyen, L., 2018. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang., 8(11), 1021.

[20]

Du, S. X., Wu, R. Y., Sun, H. W., Yan, D, Xue, J, Liao, W. H., Tuo, Y, Zhang, W. X., 2022. Projection of precipitation extremes and flood risk in the China-Pakistan economic corridor. Front. Environ. Sci., 10, 887323.

[21]

Duan, A. M., Wang, M. R., Lei, Y. H., Cui, Y. F., 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Clim., 26(1), 261-275.

[22]

Fischer, E. M., Knutti, R., 2015. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang., 5(6), 560-564.

[23]

Gu, L, Chen, J, Yin, J. B., Sullivan, S. C., Wang, H. M., Guo, S. L., Zhang, L. P., Kim, J. S., 2020. Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2  °C warmer climates. Hydrol. Earth. Syst. Sci., 24(1), 451-472.

[24]

Guo, H, Bao, A. M., Chen, T, Zheng, G. X., Wang, Y. Q., Jiang, L. L., De Maeyer, P., 2021. Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos. Res., 252, 105451.

[25]

Guo, H, Bao, A. M., Liu, T, Jiapaer, G, Ndayisaba, F, Jiang, L. L., Kurban, A, De Maeyer, P., 2018. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total. Environ., 624, 1523-1538.

[26]

Guo, H, Bao, A. M., Liu, T, Ndayisaba, F, Jiang, L. L., Zheng, G. X., Chen, T, De Maeyer, P., 2019. Determining variable weights for an optimal scaled drought condition index (OSDCI): evaluation in Central Asia. Remote. Sens. Environ., 231, 111220.

[27]

Gupta, V, Singh, V, Jain, M. K., 2020. Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. J. Hydrol., 590, 125422.

[28]

Han, J. Y., Du, H. B., Wu, Z. F., He, H. S., 2019. Changes in extreme precipitation over dry and wet regions of China during 1961–2014. J. Geophys. Res. Atmos., 124(11), 5847-5859.

[29]

Henley, B. J., King, A. D., 2017. Trajectories toward the 1.5 °C Paris target: modulation by the interdecadal pacific oscillation. Geophys. Res. Lett., 44(9), 4256-4262.

[30]

Hong, J. Y., Agustin, W, Yoon, S, Park, J. S., 2022. Changes of extreme precipitation in the Philippines, projected from the CMIP6 multi-model ensemble. Weather Clim. Extremes 37, 100480.

[31]

Howarth, M. E., Thorncroft, C. D., Bosart, L. F., 2019. Changes in extreme precipitation in the northeast United States: 1979–2014. J. Hydrometeorol., 20, 673-689.

[32]

Hu, Z. Y., Zhou, Q. M., Chen, X, Qian, C, Wang, S. S., Li, J. F., 2017. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol., 37, 157-170.

[33]

Hua, L. J., Zhao, T. B., Zhong, L. H., 2022. Future changes in drought over Central Asia under CMIP6 forcing scenarios. J. Hydrol.-Reg. Stud., 43, 101191.

[34]

Huang, X, Wang, Y. H., Ma, X. F., 2023. Simulation of extreme precipitation changes in Central Asia using CMIP6 under different climate scenarios. Theor. Appl. Climatol. . doi: 10.1007/s00704-023-04802-9.

[35]

Ingram, W., 2016. Extreme precipitation increases all round. Nat. Clim. Chang. 6 (5), 443–444.

[36]

IPCC, 2021. Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

[37]

Iyakaremye, V, Zeng, G, Yang, X. Y., Zhang, G. W., Ullah, I, Gahigi, A, Vuguziga, F, Asfaw, T. G., Ayugi, B., 2021. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Sci. Total Environ., 790, 148162.

[38]

Iyakaremye, V, Zeng, G, Zhang, G. W., 2020. Changes in extreme temperature events over Africa under 1.5 and 2.0 °C global warming scenarios. Int. J. Clim., 41(2), 1506-1524.

[39]

Jiang, J, Zhou, T. J., 2021. Human-induced rainfall reduction in drought-prone northern Central Asia. Geophys. Res. Lett., 48(7), e2020GL092156.

[40]

Jiang, J, Zhou, T. J., Chen, X. L., Zhang, L. X., 2020. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ. Res. Lett., 15, 54009.

[41]

Jones, B, O'Neill, B. C., McDaniel, L, McGinnis, S, Mearns, L. O., Tebaldi, C., 2015. Future population exposure to US heat extremes. Nat. Clim. Chang., 5(7), 652-655.

[42]

Jose, D. M., Vincent, A. M., Dwarakish, G. S., 2022. Improving multiple model ensemble predictions of daily precipitation and temperature through machine learning techniques. Sci. Rep., 12(1), 4678.

[43]

Kim, Y. H., Min, S. K., Zhang, X. B., Sillmann, J, Sandstad, M., 2020. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extremes 29, 100269.

[44]

King, A. D., Sniderman, J. M. K., Dittus, A. J., Brown, J. R., Hawkins, E, Ziehn, T., 2021. Studying climate stabilization at Paris agreement levels. Nat. Clim. Chang., 11(12), 1010-1013.

[45]

Lei, X. N., Xu, C. C., Liu, F, Song, L. L., Cao, L. L., Suo, N. J., 2023. Evaluation of CMIP6 models and multi-model ensemble for extreme precipitation over arid Central Asia. Remote. Sens., 15(9), 2376.

[46]

Li, W. B., Sun, F. B., Feng, Y, Li, C, Chen, J, Sang, Y. F., Zhang, Q., 2018. Increasing population exposure to global warm-season concurrent dry and hot extremes under different warming levels. Environ. Res. Lett., 16(9), 094002.

[47]

Li, W, Jiang, Z. H., Zhang, X. B., Li, L, Sun, Y., 2018. Additional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levels. Sci. Bull., 63(4), 228-234.

[48]

Li, Z. Y., Liu, T, Huang, Y, Peng, J. B., Ling, Y. A., 2022. Evaluation of the CMIP6 precipitation simulations over global land. Earths Future 10(8), e2021EF002500.

[49]

Liao, X. L., Xu, W, Zhang, J. L., Li, Y, Tian, Y. G., 2019. Global exposure to rainstorms and the contribution rates of climate change and population change. Sci. Total. Environ., 663, 644-653.

[50]

Liu, W. B., Sun, F. B., Feng, Y, Li, C, Chen, J, Sang, Y. F., Zhang, Q., 2021. Increasing population exposure to global warm-season concurrent dry and hot extremes under different warming levels. Environ. Res. Lett., 16(9), 094002.

[51]

Liu, Y. J., Chen, J, Pan, T, Liu, Y. H., Zhang, Y. H., Ge, Q. S., Ciais, P, Penuelas, J., 2020. Global socioeconomic risk of precipitation extremes under climate change. Earths Future 8(9), e2019EF001331.

[52]

Liu, Y. Z., Wu, C. Q., Jia, R, Huang, J. P., 2018. An overview of the influence of atmospheric circulation on the climate in arid and semi-arid region of Central and East Asia. Sci. China-Earth. Sci., 61(9), 1183-1194.

[53]

Lupi, V, Marsiglio, S., 2021. Population growth and climate change: a dynamic integrated climate-economy-demography model. Ecol. Econ., 184, 107011.

[54]

Ma, Q. R., Zhang, J, Game, A. T., Chang, Y, Li, S. S., 2020. Spatiotemporal variability of summer precipitation and precipitation extremes and associated large-scale mechanisms in Central Asia during 1979–2018. J. Hydrol. X., 8, 100061.

[55]

Ma, Q. R., Zhang, J, Ma, Y. J., Game, A. T., Chen, Z. H., Chang, Y, Liu, M. C., 2021. How do multiscale interactions affect extreme precipitationin Eastern Central Asia. J. Clim., 34(18), 7475-7491.

[56]

Milinski, S, Maher, N, Olonscheck, D., 2020. How large does a large ensemble need to be?. Earth Syst. Dyn., 11(4), 885-901.

[57]

Molotoks, A, Smith, P, Dawson, T. P., 2020. Impacts of land use, population, and climate change on global food security. Food Energy Secur., 10(1), e261.

[58]

Myhre, G, Alterskjær, K, Stjern, C. W., Hodnebrog, O, Marelle, L, Samset, B. H., Sillmann, J, Schaller, N, Fischer, E, Schulz, M, Stohl, A., 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep., 9, 16063.

[59]

Nikulin, G, Lennard, C, Dosio, A, Kjellström, E, Chen, Y, Hansler, A, Kupiainen, M, Laprise, R, Mariotti, L, Maule, C. F., van Maijgaard, E, Panitz, H. J., Scinocca, J. F., Somot, S., 2018. The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ. Res. Lett., 13(6), 065003.

[60]

Park, T, Hashimoto, H, Wang, W. L., Thrasher, B, Michaelis, A. R., Lee, T. D., Brosnan, I. G., Nemani, R. R., 2023. What does global land climate look like at 2 degrees warming?. Earths Future 11(5), e2022EF003330.

[61]

Pendergrass, A. G., Lehner, F, Sanderson, B. M., Xu, Y. Y., 2015. Does extreme precipitation intensity depend on the emissions scenario?. Geophys. Res. Lett., 42(20), 8767-8774.

[62]

Peng, D. D., Zhou, T. J., Zhang, L. X., Zhang, W. X., Chen, X. L., 2020. Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim. Dyn., 54(1–2), 543-560.

[63]

Pińskwar, I, Choryński, A, Graczyk, D, Kundzewicz, Z. W., 2019. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol., 135(1–2), 773-787.

[64]

Schlenker, W, Roberts, M. J., Lobell, D. B., 2013. US maize adaptability. Nat. Clim. Chang., 3(8), 690-691.

[65]

Sedlacek, J, Knutti, R., 2014. Half of the world's population experience robust changes in the water cycle for a 2 ℃ warmer world. Environ. Res. Lett., 9(4), 044008.

[66]

Sheffield, J, Goteti, G, Wood, E. F., 2006. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim., 19(13), 3088-3111.

[67]

Shi, X. Y., Chen, J, Gu, L, Xu, C. Y., Chen, H, Zhang, L. P., 2021. Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0°C warmer climates. Sci. Total. Environ., 766, 142665.

[68]

Song, Y. H., Nashwan, M. S., Chung, E. S., Shahid, S., 2021. Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea. Atmos. Res., 247, 105261.

[69]

Sun, J. Q., Ao, J., 2012. Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull., 58(12), 1395-1401.

[70]

Sylla, M. B., Faye, A, Giorgi, F, Diedhiou, A, Kunstmann, H., 2018. Projected heat stress under 1.5 ℃ and 2 ℃ global warming scenarios creates unprecedented discomfort for humans in West Africa. Earths Future, 6 (7), pp. 1029-1044. doi: 10.1029/2018EF000873.

[71]

Tabari, H., 2020. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep., 10(1), 16969.

[72]

Thrasher, B, Maurer, E. P., McKellar, C, Duffy, P. B., 2012. Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth. Syst. Sci., 16(9), 3309-3314.

[73]

Thrasher, B, Wang, W. L., Michaelis, A, Melton, F, Lee, T, Nemani, R., 2022. NASA global daily downscaled projections, CMIP6. Sci. Data 9(1), 1-6.

[74]

Tian, Y. L., Yan, Z. W., Li, Z., 2022. Spatial and temporal variations of extreme precipitation in Central Asia during 1982–2020. Atmosphere 13(1), 60.

[75]

Trenberth, K. E., Dai, A, Rasmussen, R. M., Parsons, D. B., 2003. The changing character of precipitation. Bull. Am. Meteorol. Soc., 84(9), 1205-1217.

[76]

UNFCCC, 2015. Conference of the Parties. Adoption of the Paris Agreement. FCCC/CP/2015/10/Add.1, Paris, pp. 1–32.

[77]

Wang, G, Zhang, Q, Yu, H. Q., Shen, Z. X., Sun, P., 2020. Double increase in precipitation extremes across China in a 1.5 ℃/2.0 ℃ warmer climate. Sci. Total. Environ., 746, 140807.

[78]

Wang, H, Zhang, J, Chen, L, Li, D. L., 2022. Relationship between summer extreme precipitation anomaly in Central Asia and surface sensible heat variation on the Central-Eastern Tibetan Plateau. Clim. Dyn., 59(3–4), 685-700.

[79]

Wang, X. X., Jiang, D. B., Lang, X. M., 2017. Future extreme climate changes linked to global warming intensity. Sci. Bull., 62(24), 1673-1680.

[80]

Wei, W, Zou, S, Duan, W. L., Chen, Y. N., Li, S, Zhou, Y. Q., 2023. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019. J. Hydrol., 620, 129417.

[81]

Xie, T. T., Huang, W, Chang, S. Q., Zheng, F, Chen, J. H., Chen, J, Chen, F. H., 2020. Moisture sources of extreme precipitation events in arid Central Asia and their relationship with atmospheric circulation. Int. J. Climatol., 41, E271-E282.

[82]

Xu, L, Chen, N. C., Zhang, X, Chen, Z. Q., 2020. A data-driven multi-model ensemble for deterministic and probabilistic precipitation forecasting at seasonal scale. Clim. Dyn., 54(7–8), 3355-3374.

[83]

Xue, J. Y., Xie, X. N., Liu, X. D., 2022. Differing responses of precipitation in Northern Hemisphere mid-latitudes to increased black carbon aerosols and carbon dioxide. Environ. Res., 210, 112938.

[84]

Yang, T, Li, Q, Chen, X, De Maeyer, P, Yan, X, Liu, Y, Zhao, T. B., Li, L. H., 2020. Spatiotemporal variability of the precipitation concentration and diversity in Central Asia. Atmos. Res., 241, 104954.

[85]

Yao, J. Q., Chen, Y. N., Chen, J, Zhao, Y, Tuoliewubieke, D, Li, J. G., Yang, L. M., Mao, W. Y., 2021. Intensification of extreme precipitation in arid Central Asia. J. Hydrol., 598, 125760.

[86]

Zarrin, A, Dadashi-Roudbari, A., 2021. Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theor. Appl. Climatol., 144(1–2), 643-660.

[87]

Zhang, W. X., Zhou, T. J., 2020. Increasing impacts from extreme precipitation on population over China with global warming. Sci. Bull., 65(3), 243-252.

[88]

Zhang, W. X., Zhou, T. J., Zou, L. W., Zhang, L. X., Chen, X. L., 2018. Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nat. Commun., 9, 3153.

[89]

Zhang, X. Q., Chen, Y. N., Fang, G. H., Li, Y. P., Li, Z, Wang, F, Xia, Z. H., 2022. Observed changes in extreme precipitation over the Tienshan Mountains and associated large-scale climate teleconnections. J. Hydrol., 606, 127457.

[90]

Zhang, X. J., Chen, C. Z., Zhao, W. W., Jin, L. Y., 2022. Role of Asian westerly jet core's zonal migration in Holocene East Asian summer monsoon precipitation. J. Geophys. Res.-Atmos., 127(13), e2021JD036179.

[91]

Zhao, J. T., Su, B. D., Mondal, S. K., Wang, Y. J., Tao, H, Jiang, T., 2021. Population exposure to precipitation extremes in the Indus River Basin at 1.5 °C, 2.0 °C and 3.0 °C warming levels. Adv. Clim. Chang. Res., 12, 199-209.

[92]

Zhu, X, Wei, Z. G., Dong, W. J., Ji, Z. M., Wen, X. H., Zheng, Z. Y., Yao, D. D., Chen, D. L., 2020. Dynamical downscaling simulation and projection for mean and extreme temperature and precipitation over Central Asia. Clim. Dyn., 54(7–8), 3279-3306.

[93]

Zou, S, Duan, W. L., Christidis, N, Nover, D, Jilili, A, De Maeyer, P. D., Van De Voorde, T., 2021. An extreme rainfall event in summer 2018 of Hami city in eastern Xinjiang, China. Adv. Clim. Chang. Res., 12(6), 795-803.

PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

/