Modeling urban redevelopment: A novel approach using time-series remote sensing data and machine learning

Li Lin , Liping Di , Chen Zhang , Liying Guo , Haoteng Zhao , Didarul Islam , Hui Li , Ziao Liu , Gavin Middleton

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 211 -219.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :211 -219. DOI: 10.1016/j.geosus.2024.02.001
Research Article
review-article

Modeling urban redevelopment: A novel approach using time-series remote sensing data and machine learning

Author information +
History +
PDF

Abstract

Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decision-makers to foster sustainable urban development. Traditional mapping methods heavily depend on field surveys and subjective questionnaires, yielding less objective, reliable, and timely data. Recent advancements in Geographic Information Systems (GIS) and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations. Nonetheless, challenges persist, particularly concerning accuracy and significant temporal delays. This study introduces a novel approach to modeling urban redevelopment, leveraging machine learning algorithms and remote-sensing data. This methodology can facilitate the accurate and timely identification of urban redevelopment activities. The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment. The model is thoroughly evaluated, and the results indicate that it can accurately capture the time-series patterns of urban redevelopment. This research’s findings are useful for evaluating urban demographic and economic changes, informing policymaking and urban planning, and contributing to sustainable urban development. The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment.

Keywords

Urban redevelopment / Urban sustainability / Remote sensing / Time-series analysis / Machine learning

Cite this article

Download citation ▾
Li Lin, Liping Di, Chen Zhang, Liying Guo, Haoteng Zhao, Didarul Islam, Hui Li, Ziao Liu, Gavin Middleton. Modeling urban redevelopment: A novel approach using time-series remote sensing data and machine learning. Geography and Sustainability, 2024, 5(2): 211-219 DOI:10.1016/j.geosus.2024.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of conflicting interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank the editors and two anonymous referees for their valuable comments and suggestions.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.02.001.

References

[1]

Alejandro, Y., Palafox, L., 2019. Gentrification prediction using machine learning. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (Eds.), Advances in Soft Computing, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 187–199. https://doi.org/10.1007/978-3-030-33749-0_16

[2]

Atkinson, R., 2000. The hidden costs of gentrification: displacement in central London. J. Hous. Built Environ., 15, pp. 307-326. doi: 10.1023/A:1010128901782.

[3]

Betancur, J. J., 2014. Gentrification in Latin America: overview and critical analysis. Urban Stud. Res., 2014, Article 986961. doi: 10.1155/2014/986961.

[4]

Bishop, C. M., Nasrabadi, N. M., 2006. Pattern Recognition and Machine Learning. Springer, New York

[5]

Bostic, R. W., Martin, R. W., 2003. Black home-owners as a gentrifying force? Neighbourhood dynamics in the context of minority home-ownership. Urban Stud., 40, pp. 2427-2449. doi: 10.1080/0042098032000136147.

[6]

Bousquet, C., 2017. Using mapping to understand gentrification, prevent displacement. Government Technology Magazine, United States

[7]

Buettner, R, Schunter, M., 2019. Efficient machine learning based detection of heart disease. Proceedings of the IEEE International Conference on E-Health Networking, Application & Services (HealthCom), IEEE, pp. 1-6. doi: 10.1109/HealthCom46333.2019.9009429.

[8]

Chang, C., 2013. The advantage of mapping gentrification with geographic information systems: comparisons of three New York city neighborhoods, 1980 – present. Ph.D. thesis, City University of New York, New York

[9]

Chapple, K, Waddell, P, Chatman, D, Zuk, M, Loukaitou-Sideris, A, Ong, P, Gorska, K, Pech, C, Gonzalez, S. R., 2017. Developing a new methodology for analyzing potential displacement. UC Berkeley Transportation Library, UC Berkeley, Berkeley

[10]

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20, pp. 37-46. doi: 10.1177/001316446002000104.

[11]

Delmelle, E, Nilsson, I., 2020. New rail transit stations and the out-migration of low-income residents. Urban Stud., 57, pp. 134-151. doi: 10.1177/0042098019836631.

[12]

Easton, S, Lees, L, Hubbard, P, Tate, N., 2020. Measuring and mapping displacement: the problem of quantification in the battle against gentrification. Urban Stud., 57, pp. 286-306. doi: 10.1177/0042098019851953.

[13]

Ebert, A, Kerle, N, Stein, A., 2009. Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data. Nat. Hazards 48, 275-294.

[14]

Gao, F, Anderson, M. C., Zhang, X, Yang, Z, Alfieri, J. G., Kustas, W. P., Mueller, R, Johnson, D. M., Prueger, J. H., 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ., 188, pp. 9-25. doi: 10.1016/j.rse.2016.11.004.

[15]

Glass, R. 1964. Aspects of change. Brown Saracino J. (Ed.), The Gentrification Debates: A Reader, Routledge, New York, pp.19-29.

[16]

Gómez, C, White, J. C., Wulder, M. A., 2016. Optical remotely sensed time series data for land cover classification: a review. ISPRS J. Photogramm. Remote Sens., 116, pp. 55-72. doi: 10.1016/j.isprsjprs.2016.03.008.

[17]

Hamida, A. B., Benoit, A, Lambert, P, Amar, C. B., 2018. 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens., 56, pp. 4420-4434. doi: 10.1109/TGRS.2018.2818945.

[18]

Hammel, D. J., Wyly, E. K., 1996. A model for identifying gentrified areas with census data. Urban Geogr., 17, pp. 248-268. doi: 10.2747/0272-3638.17.3.248.

[19]

Helms, A. C., 2003. Understanding gentrification: an empirical analysis of the determinants of urban housing renovation. J. Urban Econ., 54, pp. 474-498. doi: 10.1016/S0094-1190(03)00081-0.

[20]

Herold, M, Liu, X, Clarke, K. C., 2003. Spatial metrics and image texture for mapping urban land use. Photogramm. Eng. Remote Sens., 69, pp. 991-1001. doi: 10.14358/PERS.69.9.991.

[21]

Iino, S., Ito, R., Doi, K., Imaizumi, T., Hikosaka, S., 2018a. CNN-based generation of high-accuracy urban distribution maps utilising SAR satellite imagery for short-term change monitoring. Int. J. Image Data Fusion 9, 302–318. doi: 10.1080/19479832.2018.1491897.

[22]

Iino, S., Ito, R., Imaizumi, T., Hikosaka, S., 2018b. Urban change monitoring in developing countries based on deep learning technique by utilizing time series imageries of the SAR and optical satellites. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 16, 40–46. doi: 10.2322/tastj.16.40.

[23]

Ilic, L., Sawada, M., Zarzelli, A., 2019. Deep mapping gentrification in a large Canadian city using deep learning and Google Street View. PLoS One 14, e0212814. doi: 10.1371/journal.pone.0212814.

[24]

Lees, L., Slater, T., Wyly, E., 2013. Gentrification. Routledge, New York doi: 10.4324/9780203940877.

[25]

Li, W., Wu, G., Du, Q., 2017. Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 14, 597–601. doi: 10.1109/LGRS.2017.2657818.

[26]

Lin, L, Di, L, Yu, E. G., Kang, L, Shrestha, R, Rahman, M. S., Tang, J, Deng, M, Sun, Z, Zhang, C, Hu, L., 2016. A review of remote sensing in flood assessment. 2016 Fifth International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2016, IEEE, pp. 1-4. doi: 10.1109/Agro-Geoinformatics.2016.7577655.

[27]

Lin, L, Di, L, Zhang, C, Guo, L, Di, Y., 2021. Remote sensing of urban poverty and gentrification. Remote Sens., 13, p. 4022. doi: 10.3390/rs13204022.

[28]

Ma, L, Liu, Y, Zhang, X, Ye, Y, Yin, G, Johnson, B. A., 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote Sens., 152, pp. 166-177. doi: 10.1016/j.isprsjprs.2019.04.015.

[29]

Mohan, S., Thirumalai, C., Srivastava, G., 2019. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 7, 81542–81554. doi: 10.1109/ACCESS. 2019.2923707.

[30]

Ndikumana, E, Ho Tong Minh, D, Baghdadi, N, Courault, D, Hossard, L., 2018. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens., 10, p. 1217. doi: 10.3390/rs10081217.

[31]

Nwanna, C. R., 2012. Gentrification in Lagos State: challenges and prospects. Br. J. Arts Soc. Sci., 5, 163-176.

[32]

Olofsson, P, Foody, G. M., Herold, M, Stehman, S. V., Woodcock, C. E., Wulder, M. A., 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ., 148, pp. 42-57. doi: 10.1016/j.rse.2014.02.015.

[33]

Orfield, M. W., 2019. American Neighborhood Change in the 21st Century. Commissioned report. Institute on Metropolitan Opportunity

[34]

Peled, A., 2011. When transparency and collaboration collide: the USA open data program. J. Am. Soc. Inf. Sci. Technol., 62, pp. 2085-2094. doi: 10.1002/asi.21622.

[35]

Pouriyeh, S, Vahid, S, Sannino, G, De Pietro, G, Arabnia, H, Gutierrez, J., 2017. A comprehensive investigation and comparison of machine learning techniques in the domain of heart disease. 2017 IEEE Symposium on Computers and Communications (ISCC), IEEE, pp. 204-207. doi: 10.1109/ISCC.2017.8024530.

[36]

Preis, B, Janakiraman, A, Bob, A, Steil, J., 2021. Mapping gentrification and displacement pressure: An exploration of four distinct methodologies. Urban Stud., 58, pp. 405-424. doi: 10.1177/0042098020903011.

[37]

Richardson, J., Mitchell, B., Edlebi, J., 2020. Gentrification and Disinvestment 2020. National Community Reinvestment Coalition, Washington, D.C.

[38]

Rigolon, A, Nemeth, J., 2020. Green gentrification or “just green enough”: do park location, size and function affect whether a place gentrifies or not?. Urban Stud., 57, pp. 402-420. doi: 10.1177/0042098019849380.

[39]

Rose, D., 1984. Rethinking gentrification: beyond the uneven development of Marxist urban theory. Environ. Plan. Soc. Space, 2, pp. 47-74. doi: 10.1068/d020047.

[40]

Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D, Irons, J. R., Johnson, D. M., Kennedy, R., 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ., 145, pp. 154-172. doi: 10.1016/j.rse.2014.02.001.

[41]

Shi, K, Yu, B, Hu, Y, Huang, C, Chen, Y, Huang, Y, Chen, Z, Wu, J., 2015. Modeling and mapping total freight traffic in China using NPP-VIIRS nighttime light composite data. GISci. Remote Sens., 52, pp. 274-289. doi: 10.1080/15481603.2015.1022420.

[42]

Smith, N., 1979. Toward a theory of gentrification a back to the city movement by capital, not people. J. Am. Plann. Assoc., 45, pp. 538-548. doi: 10.1080/01944367908977002.

[43]

Srivastava, S., 2020. Mapping of urban landuse and landcover with multiple sensors: joining close and remote sensing with deep learning. Ph.D. thesis, Wageningen University, Wageningen. . doi: 10.18174/509667.

[44]

Tomlinson, R. F., 2007. Thinking About GIS: Geographic Information System Planning for Managers. (3rd ed.), ESRI Press, Redlands

[45]

U.S. Census Bureau, 2020. New residential construction: average length of time from start to completion of new privately owned residential buildings. U.S. Census Bureau.

[46]

U.S. Congress, 2018. H.R.4174-Foundations for Evidence-Based Policy Making Act of 2018. 115th Congress.

[47]

Wartell, J., 2001. Privacy in the Information Age: a guide for sharing crime maps and spatial data. U.S. Department of Justice, Office of Justice Programs, National Institute of Justice

[48]

Xie, M, Jean, N, Burke, M, Lobell, D, Ermon, S., 2016. Transfer learning from deep features for remote sensing and poverty mapping. 30th AAAI Conference on Artificial Intelligence, pp. 3929-3935. doi: 10.1609/aaai.v30i1.9906.

[49]

Yonto, D, Schuch, C., 2020. Developing and ground-truthing multi-scalar approaches to mapping gentrification. Pap. Appl. Geogr., 6, pp. 352-368. doi: 10.1080/23754931.2020.1789499.

[50]

Yoon, E-S, Lubienski, C., 2018. Thinking critically in space: toward a mixed-methods geospatial approach to education policy analysis. Educ. Res., 47, pp. 53-61. doi: 10.3102/0013189X17737284.

[51]

Zhang, C, Di, L, Lin, L, Guo, L., 2019. Extracting trusted pixels from historical cropland data layer using crop rotation patterns: a case study in Nebraska, USA. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2019), IEEE, pp. 1-6. doi: 10.1109/Agro-Geoinformatics.2019.8820236.

[52]

Zhu, X. X., Tuia, D, Mou, L, Xia, G. S., Zhang, L, Xu, F, Fraundorfer, F., 2017. Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag., 5 (4), pp. 8-36. doi: 10.1109/MGRS.2017.2762307.

PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

/