Projected impacts of climate change and anthropogenic effects on habitat distribution of endangered Javan Hawk-Eagle in Indonesia

Syartinilia , Aryo Adhi Condro , Satoshi Tsuyuki

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 241 -250.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :241 -250. DOI: 10.1016/j.geosus.2024.01.009
Research Article
research-article

Projected impacts of climate change and anthropogenic effects on habitat distribution of endangered Javan Hawk-Eagle in Indonesia

Author information +
History +
PDF

Abstract

Changing climate will jeopardize biodiversity, particularly the geographic distribution of endemic species. One such species is the Javan Hawk-Eagle (JHE, Nisaetus bartelsi), a charismatic raptor found only on Java Island, Indonesia. Thus, it is crucial to develop an appropriate conservation strategy to preserve the species. Ecological niche modeling is considered a valuable tool for designing conservation plans for the JHE. We provide an ecological niche modeling approach and transfer its model to future climate scenarios for the JHE. We utilize various machine learning algorithms under sustainability and business-as-usual (BAU) scenarios for 2050. Additionally, we investigate the conservation vulnerability of the JHE, capturing multifaceted pressures on the species from climate dissimilarities and human disturbance variables. Our study reveals that the ensemble model performs exceptionally well, with temperature emerging as the most critical factor affecting the JHE distribution. This finding indicates that climate change will have a significant impact on the JHE species. Our results suggest that the JHE distribution will likely decrease by 28.41% and 40.16% from the current JHE distribution under sustainability and BAU scenarios, respectively. Furthermore, our study reveals high-potential refugia for future JHE, covering 7,596 km2 (61%) under the sustainability scenario and only 4,403 km2 (35%) under the BAU scenario. Therefore, effective management and planning, including habitat restoration, refugia preservation, habitat connectivity, and local community inclusivity, should be well-managed to achieve JHE conservation targets.

Keywords

Climate change / Ecological niche / Ensemble model / Refugia / Javan Hawk-Eagle

Cite this article

Download citation ▾
Syartinilia, Aryo Adhi Condro, Satoshi Tsuyuki. Projected impacts of climate change and anthropogenic effects on habitat distribution of endangered Javan Hawk-Eagle in Indonesia. Geography and Sustainability, 2024, 5(2): 241-250 DOI:10.1016/j.geosus.2024.01.009

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Syartinilia reports financial support was provided by Ministry of Education, Culture, Research and Technology, Indonesia.

Acknowledgement

The authors sincerely thank IPB University and The University of Tokyo, Japan. We are grateful to World Class Professor Program 2023 from Directorate of Resources, Director General of Higher Education, Research, and Technology - Ministry of Education, Culture, Research, and Technology, Indonesia (Grant No. 108/E/KPT/2023) which supported this manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.01.009.

References

[1]

Adhikari, P., Kim, B.-J., Hong, S.-H., Lee, D.-H., 2022. Climate change induced habitat expansion of nutria ( Myocastor coypus ) in South Korea. Sci. Rep. 12 (1), 3300. doi: 10.1038/s41598-022-07347-5.

[2]

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43 (6), 1223-1232. doi: 10.1111/j.1365-2664.2006.01214.x.

[3]

Andrade, A.F.A., Velazco, S.J.E., De Marco Júnior, P., 2020. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Model. Softw. 125, 104615. doi: 10.1016/j.envsoft.2019.104615.

[4]

Araújo, M.B., New, M., 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22 (1), 42-47. doi: 10.1016/j.tree.2006.09.010.

[5]

Ashcroft, M.B., 2010. Identifying refugia from climate change. J. Biogeogr. 37 (8), 1407-1413. doi: 10.1111/j.1365-2699.2010.02300.x.

[6]

Aulia, O.D., Apriani, I., Juanda, A., Barri, M.F., Dewi, R.W., Muharam, F.N., Oktanine, B., Phoa, T.B., Condro, A.A., 2023. Refining national forest cover data based on fusion optical satellite imageries in Indonesia. Int. J. For. Res. 2023, 1-11. doi: 10.1155/2023/7970664.

[7]

Barbet-Massin, M., Thuiller, W., Jiguet, F., 2012. The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob. Change Biol. 18 (3), 881-890. doi: 10.1111/j.1365-2486.2011.02552.x.

[8]

Berton, C., Harris, J., Fordham, D.A., Mooney, P.A., Pedler, L.P., Araújo, M.B., Paton, D.C., Stead, M.G., Watts, M.J., Re şit Akçakaya, H., Brook, B.W., 2012. Managing the longterm persistence of a rare cockatoo under climate change. J. Appl. Ecol. 49 (4), 785-794. doi: 10.1111/j.1365-2664.2012.02163.x.

[9]

Bocedi, G., Palmer, S.C.F., Pe’er, G., Heikkinen, R.K., Matsinos, Y.G., Watts, K., Travis, J.M.J., 2014. RangeShifter: a platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods Ecol. Evol. 5 (4), 388-396. doi: 10.1111/2041-210X.12162.

[10]

Bocedi, G., Palmer, S.C.F., Malchow, A.-K., Zurell, D., Watts, K., Travis, J.M.J., 2020. RangeShifter 2.0: an extended and enhanced platform for modelling spatial ecoevolutionary dynamics and species’ responses to environmental changes. Ecography 40 (10), 1453-1462. doi: 10.1111/ecog.05687.

[11]

Borges, F.J.A., Loyola, R., 2020. Climate and land-use change refugia for Brazilian Cerrado birds. Perspect. Ecol. Conserv. 18 (2), 109-115. doi: 10.1016/j.pecon.2020.04.002.

[12]

BPS, 2023. Statistics of Indonesia 2023. https://www.bps.go.id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html.

[13]

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5-32. doi: 10.1023/A:1010933404324.

[14]

Brook, B.W., Sodhi, N.S., Bradshaw, C.J.A., 2008. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23 (8), 453-460. doi: 10.1016/j.tree.2008.03.011.

[15]

Ceresa, F., Kranebitter, P., Monrós, J.S., Rizzolli, F., Brambilla, M., 2021. Disentangling direct and indirect effects of local temperature on abundance of mountain birds and implications for understanding global change impacts. PeerJ 9, e12560. doi: 10.7717/peerj.12560.

[16]

Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C., Longino, J.T., Cardelus, C.L., Gilman, A.C., Longino, J.T., 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322 (1), 258-261. doi:10.1126/science.1162547.

[17]

Condro, A.A., Syartinilia, Higuchi, H., Mulyani, Y.A., Raffiudin, R., Rusniarsyah, L., Setiawan, Y., Prasetyo, L.B., 2022a. Climate change leads to range contraction for Japanese population of the oriental honey-buzzards: implications for future conservation strategies. Glob. Ecol. Evol. 34 (2), e02044. doi: 10.1016/j.gecco.2022.e02044.

[18]

Condro, A.A., Prasetyo, L.B., Rushayati, S.B., Santikayasa, I.P., Iskandar, E., 2022b. Protected areas slow down tropical rainforest disturbance in the Leuser Ecosystem, Indonesia. J. Land Use Sci. 17 (1), 454-470. doi: 10.1080/1747423X.2022.2115571.

[19]

Coxen, C.L., Frey, J.K., Carleton, S.A., Collins, D.P., 2017. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob. Ecol. Conserv. 11, 298-311. doi: 10.1016/j.gecco.2017.08.001.

[20]

Dickson, B.G., Albano, C.M., Anantharaman, R., Beier, P., Fargione, J., Graves, T.A., Gray, M.E., Hall, K.R., Lawler, J.J., Leonard, P.B., Littlefield, C.E., McClure, M.L., Novembre, J., Schloss, C.A., Schumaker, N.H., Shah, V.B., Theobald, D.M., 2019. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 33 (2), 239-249. doi: 10.1111/cobi.13230.

[21]

Dixon, M.J., Galli, A., Gaveau, V., Gregory, R.D., Gutierrez, N.L., Hirsch, T., Höft, R., Januchowski ‐Hartley, S.R., Karmann, M., Krug, C.B., Leverington, F., Loh, J., Lojenga, R.K., Malsch, K., Marques, A., Morgan, D.H., Mumby, P.J., Newbold, T., Noonan-Mooney, K., Pagad, S., Parks, B.C., Pereira, H.M., Robertson, T., Rondinini, C., Santini, L., Scharlemann, J.P., Schindler, S., Sumaila, U.R., Teh, L.S., Kolck, J.V., 2014. A mid-term analysis of progress toward international biodiversity targets. Science 346 (6206), 241-244. doi: 10.1126/science.1257484.

[22]

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., Mcclean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 (1), 27-46. doi: 10.1111/j.1600-0587.2012.07348.x.

[23]

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77 (4), 802-813. doi: 10.1111/j.1365-2656.2008.01390.x.

[24]

Engler, J.O., Stiels, D., Schidelko, K., Strubbe, D., Quillfeldt, P., Brambilla, M., 2017. Avian SDMs: current state, challenges, and opportunities. J. Avian Biol. 48 (12), 1483-1504. doi: 10.1111/jav.01248.

[25]

Fahmi, I., Syartinilia, 2020. Habitat preferences of current record of JHE (Nisaetus bartelsi) in lowland forest in Ujung Kulon National Park. IOP Conf. Ser. Earth Environ. Sci. 590 (1), 012004. doi: 10.1088/1755-1315/590/1/012004.

[26]

Feng, X., Park, D.S., Liang, Y., Pandey, R., Pape ş, M., 2019. Collinearity in ecological niche modeling: confusions and challenges. Ecol. Evol. 9 (18), 10365-10376. doi: 10.1002/ece3.5555.

[27]

Foden, W.B., Young, B.E., Akçakaya, H.R., Garcia, R.A., Hoffmann, A.A., Stein, B.A., Thomas, C.D., Wheatley, C.J., Bickford, D., Carr, J.A., Hole, D.G., Martin, T.G., Pacifici, M., Pearce-Higgins, J.W., Platts, P.J., Visconti, P., Watson, J.E.M., Huntley, B., 2019. Climate change vulnerability assessment of species. Clim. Change 10 (1), 1-36. doi: 10.1002/wcc.551.

[28]

Forman, R.T.T., Godron, M., 1986. Landscape Ecology. John Wiley and Sons Ltd.

[29]

Garcia, R.A., Cabeza, M, Rahbek, C, Araújo, M.B., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344 (6183), 1247579. doi: 10.1126/science.1247579.

[30]

GBIF, 2023. Nisaetus bartelsi occurrences data. https://doi.org/10.15468/dl.77yj8b (accessed 12 August 2023).

[31]

Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A., 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2 (4), 045023. doi: 10.1088/1748-9326/2/4/045023.

[32]

Goldstein, D.L., 1988. Estimates of daily energy expenditure in birds: the time-energy budget as an integrator of laboratory and field studies. Am. Zool. 28 (3), 829-844.

[33]

Gunawan, Paridi, A., Noske, R.A., 2017. The illegal trade of Indonesian raptors through social media. Kukila 20 (1), 1-11. https://kukila.org/index.php/KKL/article/view/518. (accessed 12 August 2023).

[34]

Gvoždík, L., 2018. Just what is the thermal niche? Oikos 127 (12), 1701-1710. doi: 10.1111/oik.05563.

[35]

Haight, J., Hammill, E., 2020. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241 (1), 108258. doi: 10.1016/j.biocon.2019.108258.

[36]

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M.A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., Kawamiya, M., 2020. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13 (5), 2197-2244. doi: 10.5194/gmd-13-2197-2020.

[37]

Hama, A.A., Khwarahm, N.R., 2023. Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: range overlap and implications for conservation. Ecol. Inform. 73 (1), 101930. doi: 10.1016/j.ecoinf.2022.101930.

[38]

Hermes, C., Keller, K., Nicholas, R.E., Segelbacher, G., Schaefer, H.M., 2018. Projected impacts of climate change on habitat availability for an endangered parakeet. PLOS One 13 (1), e0191773. doi: 10.1371/journal.pone.0191773.

[39]

Hughes, L., Mcintyre, S., Lindenmayer, D.B., Parmesan, C., Possingham, H.P., Thomas, C.D., 2008. Assisted colonization and rapid climate change. Science 321, 345-346.

[40]

Huntley, B., Collingham, Y.C., Green, R.E., Hilton, G.M., Rahbek, C., Willis, S.G., 2006. Potential impacts of climatic change upon geographical distributions of birds. Ibis 148 (1), 8-28. doi: 10.1111/j.1474-919X.2006.00523.x.

[41]

Iqbal, M., 2016. Predators become prey! Can Indonesian raptors survive online bird trading? BirdingASIA 25 (1), 30-35.

[42]

Iskandar, R.R.D., Elfidasari, D., Prawiradilaga, D.M., 2022. Identification of spatial data and ecology of Javan hawk-eagle’s nest ( Nisaetus bartelsi ) in the Kondang Merak Coastal, South Malang, East Java, Indonesia. Biodiversitas 23 (7), 3419-3428. doi: 10.13057/biodiv/d230714.

[43]

Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2006. Hole-filled SRTM for the globe version 3, from the CGIAR-CSI SRTM 90m database. http://srtm.csi.cgiar.org (accessed 12 August 2023).

[44]

Jiao, N.-Z., Chen, D.-K., Luo, Y.-M., Huang, X.-P., Zhang, R., Zhang, H.-B., Jiang, Z. -, J., Zhang, F., 2015. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China. Adv. Clim. Change Res. 6 (2), 118-125. doi: 10.1016/j.accre.2015.09.010.

[45]

Karatzoglou, A., Hornik, K., Smola, A., Zeileis, A., 2004. kernlab - an S 4 package for kernel methods in R. J. Stat. Softw. 11, 1-20. doi: 10.18637/jss.v011.i09.

[46]

Karger, D.N., Schmatz, D.R., Dettling, G., Zimmermann, N.E., 2020. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Sci. Data 7 (1), 1-10. doi: 10.1038/s41597-020-00587-y.

[47]

Keeley, A.T.H., Beier, P., Jenness, J.S., 2021. Connectivity metrics for conservation planning and monitoring. Biol. Conserv. 255, 109008. doi: 10.1016/j.biocon.2021.109008.

[48]

Kennedy, C.M., Oakleaf, J.R., Theobald, D.M., Baruch-Mordo, S., Kiesecker, J., 2019. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25 (3), 811-826. doi: 10.1111/gcb.14549.

[49]

Khosravi, R., Hemami, M.R., Malakoutikhah, S., Ashrafzadeh, M.R., Cushman, S.A., 2021. Prey availability modulates predicted range contraction of two large felids in response to changing climate. Biol. Conserv. 255, 109018. doi: 10.1016/j.biocon.2021.109018.

[50]

Khwarahm, N.R., 2020. Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region, Iraq. Ecol. Process. 9 (1), 56. doi: 10.1186/s13717-020-00259-0.

[51]

Kremen, C., Cameron, A., Moilanen, A., Phillips, S.J., Thomas, C.D., Beentje, H., Dransfield, J., Fisher, B.L., Glaw, F., Good, T.C., Harper, G.J., Hijmans, R.J., Lees, D.C., Louis, E., Nussbaum, R.A., Raxworthy, C.J., Razafimpahanana, A., Schatz, G.E., Vences, M., Vieites, D.R., Wright, P.C., Zjhra, M.L., 2008. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320 (5873), 222-226. doi: 10.1126/science.1155193.

[52]

Lehikoinen, A., Jaatinen, K., Vähätalo, A.V., Clausen, P., Crowe, O., Deceuninck, B., Hearn, R., Holt, C.A., Hornman, M., Keller, V., Nilsson, L., Langendoen, T., Tománková, I., Wahl, J., Fox, A.D., 2013. Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob. Change Biol. 19 (7), 2071-2081. doi: 10.1111/gcb.12200.

[53]

Leroy, B., Delsol, R., Hugueny, B., Meynard, C.N., Barhoumi, C., Barbet-Massin, M., Bellard, C., 2018. Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45 (9), 1994-2002. doi: 10.1111/jbi.13402.

[54]

Li, Z., Ma, Z., Zhou, G., 2022. Impact of land use change on habitat quality and regional biodiversity capacity: temporal and spatial evolution and prediction analysis. Front. Environ. Sci. 10, 1041573. doi: 10.3389/fenvs.2022.1041573.

[55]

Liu, C., Newell, G., White, M., Bennett, A.F., 2018. Identifying wildlife corridors for the restoration of regional habitat connectivity: a multispecies approach and comparison of resistance surfaces. PLOS One 13 (11), 1-14. doi: 10.1371/journal.pone.0206071.

[56]

MacPherson, M.P., Jahn, A.E., Murphy, M.T., Kim, D.H., Cueto, V.R., Tuero, D.T., Hill, E.D., 2018. Follow the rain? Environmental drivers of Tyrannus migration across the New World. Auk Ornitol. Adv. 135 (4), 881-894. doi: 10.1642/AUK-17- 209.1.

[57]

McClure, C.J.W., Westrip, J.R.S., Johnson, J.A., Schulwitz, S.E., Virani, M.Z., Davies, R., Symes, A., Wheatley, H., Thorstrom, R., Amar, A., Buij, R., Jones, V.R., Williams, N.P., Buechley, E.R., Butchart, S.H.M., 2018. State of the world’s raptors: distributions, threats, and conservation recommendations. Biol. Conserv. 227, 390-402. doi: 10.1016/j.biocon.2018.08.012.

[58]

Mendes, P., Velazco, S.J.E., de Andrade, A.F.A., De Marco, P., 2020. Dealing with overprediction in species distribution models: how adding distance constraints can improve model accuracy. Ecol. Model. 432 (6), 109180. doi: 10.1016/j.ecolmodel.2020.109180.

[59]

Millar, C.I., Stephenson, N.L., Stephens, S.L., 2007. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17 (8), 2145-2151.

[60]

Monadjem, A., Virani, M.Z., Jackson, C., Reside, A., 2013. Rapid decline and shift in the future distribution predicted for the endangered Sokoke Scops Owl Otus ireneae due to climate change. Bird Conserv. Int. 23 (2), 247-258. doi: 10.1017/S0959270912000330.

[61]

Morrison, J., 2021. Indonesia: Java Island. (accessed 2023 September 15). https://www.worldwildlife.org/ecoregions/im0168

[62]

Newbold, T., 2018. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. Royal Soc. B Biol. Sci. 285 (1881), 20180792. doi: 10.1098/rspb.2018.0792.

[63]

Ngila, P.M., Chiawo, D.O., Owuor, M.A., Wasonga, V.O., Mugo, J.W., 2023. Mapping suitable habitats for globally endangered raptors in Kenya: integrating climate factors and conservation planning. Ecol. Evol. 13 (9), e10443. doi: 10.1002/ece3.10443.

[64]

Nijman, V., Shepherd, C.R., van Balen, S., 2009. Declaration of the Javan hawk eagle Spizaetus bartelsi as Indonesia’s National Rare Animal impedes conservation of the species. Oryx 43 (1), 122. doi: 10.1017/S0030605307001081.

[65]

Nurfatimah, C., Syartinilia, Mulyani, Y.A., 2017. Potential habitat of Javan Hawk-Eagle based on multi-scale approach and its implication for conservation. IOP Conf. Ser. Earth Environ. Sci. 54, 012064. doi: 10.1088/1755-1315/54/1/012064.

[66]

Nursamsi, I., Partasasmita, R., Cundaningsih, N., Ramadhani, H.S., 2018. Modeling the predicted suitable habitat distribution of Javan hawk-eagle Nisaetus bartelsi in the Java Island, Indonesia. Biodiversitas 19 (4), 1539-1551. doi: 10.13057/biodiv/d190447.

[67]

Ordonez, A., Martinuzzi, S., Radeloff, V.C., Williams, J.W., 2014. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat. Clim. Change 4 (9), 811-816. doi: 10.1038/nclimate2337.

[68]

Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C.M., Myers, C.E., Peterson, A.T., 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10-18. doi: 10.1016/j.ecolmodel.2013.04.011.

[69]

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421 (1), 37-42. doi: 10.1038/nature01286.

[70]

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259. doi: 10.1016/j.ecolmodel.2005.03.026.

[71]

Prawiradilaga, D.M., 2006. Ecology and conservation of endangered Javan Hawk-eagle Spizaetus bartelsi. Ornithol. Sci. 5 (2), 177-186. doi: 10.2326/1347-0558(2006)5[177:EACOEJ]2.0.CO;2.

[72]

Rahman, D.A., Santosa, Y., Purnamasari, I., Condro, A.A., 2022. Drivers of three most charismatic mammalian species distribution across a multiple-use tropical forest landscape of Sumatra, Indonesia. Animals 12 (19), 2722. doi: 10.3390/ani12192722.

[73]

Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlík, P., Humpenöder, F., Silva, L., Smith, S.J., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., 2017. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42 (1), 153-168. doi: 10.1016/j.gloenvcha.2016.05.009.

[74]

Robb, G.N., McDonald, R.A., Chamberlain, D.E., Bearhop, S., 2008. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6 (9), 476-484. doi: 10.1890/060152.

[75]

Simard, M, Pinto, N, Fisher, J.B., Baccini, A, 2011. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116 (G4), G04021. doi: 10.1029/2011JG001708.

[76]

Soberon, J., Peterson, A.T., 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. 2 (1), 1-10. doi: 10.17161/bi.v2i0.4.

[77]

Soto-Navarro, C., Ravilious, C., Arnell, A., De Lamo, X., Harfoot, M., Hill, S.L.L., Wearn, O.R., Santoro, M., Bouvet, A., Mermoz, S., Le Toan, T., Xia, J., Liu, S., Yuan, W., Spawn, S.A., Gibbs, H.K., Ferrier, S., Harwood, T., Alkemade, R., Schipper, A.M., Schmidt-Traub, G., Strassburg, B., Miles, L., Burgess, N.D., Kapos, V., 2020. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Phil. Trans. R Soc. B Biol. Sci. 375 (1794), 20190128. doi: 10.1098/rstb.2019.0128.

[78]

Suggitt, A.J., Gillingham, P.K., Hill, J.K., Huntley, B., Kunin, W.E., Roy, D.B., Thomas, C.D., 2011. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120 (1), 1-8. doi: 10.1111/j.1600-0706.2010.18270.x.

[79]

Swasti, P.A.I., Syartinilia, S., 2022. Karakteristik habitat Elang Jawa (Nisaetus bartelsi) di Taman Nasional Alas Purwo. Jurnal Biologi Udayana 26 (2), 165-174 (in Indonesian). doi: 10.24843/JBIOUNUD.2022.v26.i02.p02.

[80]

Syartinilia, Tsuyuki, S., 2008. GIS-based modeling of Javan Hawk-Eagle distribution using logistic and autologistic regression models. Biol. Conserv. 141 (3), 756-769. doi: 10.1016/j.biocon.2007.12.030.

[81]

Syartinilia, Tsuyuki, S., Lee, J.S., Eds.), Conservation and Biodiversity. Nova, Science Publishers, Inc., 2009. GIS-based habitat model of Javan hawkeagle (Spizaetus bartelsi) using inductive approach in Java Island, Indonesia. In: Harris, J.D., Brown, P.L. (Wildlife: Destruction, pp. 301-312.

[82]

Syartinilia, Mulyani, Y.A., Suyitno, R.A., Condro, A.A., Tsuyuki, S., S., 2023. Population estimates of the endangered Javan Hawk-Eagle based on habitat distribution modeling and patch occupancy surveys. J. Raptor Res. 57 (4), 581-594. doi: 10.3356/JRR-22-16.

[83]

Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O’Ishi, R., Kimoto, M., 2019. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12 (7), 2727-2765. doi: 10.5194/gmd-12-2727-2019.

[84]

Theobald, D.M., Kennedy, C., Chen, B., Oakleaf, J., Baruch-Mordo, S., Kiesecker, J., 2020. Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth Syst. Sci. Data 12 (3), 1953-1972. doi: 10.5194/essd-12-1953-2020.

[85]

Thuiller, W., 2004. Patterns and uncertainties of species’ range shifts under climate change. Glob. Change Biol. 10 (12), 2020-2027. doi: 10.1111/j.1365-2486.2004.00859.x.

[86]

Valavi, R., Elith, J., Lahoz-Monfort, J.J., Guillera-Arroita, G., 2021. Modelling species presence-only data with random forests. Ecography 44 (12), 1731-1742. doi: 10.1111/ecog.05615.

[87]

van Balen, S. (BAS), Nijman, V., Sözer, R., 1999. Distribution and conservation of the Javan Hawk-eagle Spizaetus bartelsi. Bird Conserv. Int. 9 (4), 333-349. doi: 10.1017/S0959270900003695.

[88]

van Balen, S. (Bas), Nijman, V., Prins, H.H.T., 2000. The Javan hawk-eagle: misconceptions about rareness and threat. Biol. Conserv. 96 (3), 297-304. doi: 10.1016/S0006-3207(00)00092-6.

[89]

Velazco, S.J.E., Villalobos, F., Galvão, F., De Marco Júnior, P., 2019. A dark scenario for Cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25 (4), 660-673. doi: 10.1111/ddi.12886.

[90]

Watson, J.E.M., Iwamura, T., Butt, N., 2013. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3 (11), 989-994. doi: 10.1038/nclimate2007.

[91]

Williams, J.W., Jackson, S.T., Kutzbach, J.E., 2007. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U.S.A. 104 (14), 5738-5742. doi: 10.1073/pnas.0606292104.

[92]

Wilson, E.C., Zuckerberg, B., Peery, M.Z., Pauli, J.N., 2020. The past, present and future impacts of climate and land use change on snowshoe hares along their southern range boundary. Biol. Conserv. 249, 108731. doi: 10.1016/j.biocon.2020.108731.

[93]

Xu, A., Zhang, J., Li, Q., Li, Z., Zhu, Q., 2023. The benefits of being smaller: consistent pattern for climate-induced range shift and morphological difference of three falconiforme species. Avian Res. 14, 100079. doi: 10.1016/j.avrs.2023.100079.

[94]

Yang, H., Dou, H., Baniya, R.K., Han, S., Guan, Y., Xie, B., Zhao, G., Wang, T., Mou, P., Feng, L., Ge, J., 2018. Seasonal food habits and prey selection of Amur tigers and Amur leopards in Northeast China. Sci. Rep. 8 (1), 1-9. doi: 10.1038/s41598-018-25275-1.

[95]

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., Ishii, M., 2019. The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. 97 (5), 931-965. doi: 10.2151/jmsj.2019-051.

[96]

Yuliamalia, L., Sunarto, Utami, T., 2021. Conservations Javan Hawk Eagle (Nisaetus bartelsi) in Gunung Picis Ponorogo nature reserve. IOP Conf. Ser. Earth Environ. Sci. 940 (1), 012037. doi: 10.1088/1755-1315/940/1/012037.

[97]

Zhang, X., Ren, W., Peng, H., 2022. Urban land use change simulation and spatial responses of ecosystem service value under multiple scenarios: a case study of Wuhan, China. Ecol. Indic. 144, 109526. doi: 10.1016/j.ecolind.2022.109526.

[98]

Zurell, D., Graham, C.H., Gallien, L., Thuiller, W., Zimmermann, N.E., 2018. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8 (11), 992-996. doi: 10.1038/s41558-018-0312-9.

PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

/