Life cycle assessment as a prospective tool for sustainable agriculture and food planning at a local level

Andrea Lulovicova , Stephane Bouissou

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 251 -264.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :251 -264. DOI: 10.1016/j.geosus.2024.01.008
Research Article
review-article

Life cycle assessment as a prospective tool for sustainable agriculture and food planning at a local level

Author information +
History +
PDF

Abstract

Owing to the far-reaching environmental consequences of agriculture and food systems, such as their contribution to climate change, there is an urgent need to reduce their impact. International and national governments set sustainability targets and implement corresponding measures. Nevertheless, critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues. Yet, at the sub-national level, local authorities rarely apply a systemic environmental assessment to enhance their action plans. This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning. The objective is to identify significant direct and indirect environmental hotspots, their origins, and formulate effective mitigation strategies. The methodology is applied to the administrative department of Finistere, a strategic agricultural region in North-Western France. Multiple environmental criteria including climate change, fossil resource scarcity, toxicity, and land use are modeled. The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources, such as livestock feed or diesel consumption. Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies, resulting in a 25% decrease in the climate change indicator. However, the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator. These results highlight the innovative application of life cycle assessment led at a local level, offering insights for the further advancement of systematic and prospective local agri-food assessment. Additionally, they provide guidance for local authorities to enhance the sustainability of planning strategies.

Keywords

Environmental analysis / Territorial life cycle assessment / Prospective scenario / Agri-food planning / Local food system

Cite this article

Download citation ▾
Andrea Lulovicova, Stephane Bouissou. Life cycle assessment as a prospective tool for sustainable agriculture and food planning at a local level. Geography and Sustainability, 2024, 5(2): 251-264 DOI:10.1016/j.geosus.2024.01.008

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the French Agency for Ecological Transition. The authors wish to thank Alistair Ward for proofreading the article, and the anonymous reviewers for the detailed feedback provided improving the quality of the paper.

References

[1]

ADEME, 2016. Study of food waste and losses: inventory and waste management for each food supply chain phase. ADEME (in French)

[2]

Agreste Britanny, 2019. Farming statistics memento. Ministry of Ecological Transition, Britanny (in French).

[3]

Agreste Brittany, 2016. Description of Brittany’s farming. Agreste Brittany (in French).

[4]

Air Breizh, 2020. ISEA Spatial Inventory of atmospheric emissions 2020. https://isea.airbreizh.asso.fr/index.php?emission = GEStot#cartos (in French).

[5]

Anses, 2017. A national study on food diets (INCA 3) (in French).

[6]

Atallah, S. S., Gómez, M. I., Björkman, T., 2014. Localization effects for a fresh vegetable product supply chain: broccoli in the eastern United States. Food Policy, 49, pp. 151-159. doi: 10.1016/j.foodpol.2014.07.005.

[7]

Avadí, A, Corson, M. S., van der Werf, H. M. G., 2018. Modeling environmental effects of selected agricultural management strategies with regional statistically-based screening LCA. Int. J. Life Cycle Assess., 23, pp. 12-25. doi: 10.1007/s11367-017-1300-4.

[8]

Barbier, C., Couturier, C., Dumas, P., Kesse-Guyot, E., Baudry, J., Pharabod, I., Pourouchottamin, P., Toilier, F., 2022. Prospective of the food system and its carbon and energy footprint in 2050. 100 p. (in French).

[9]

Borghino, N, Corson, M, Nitschelm, L, Wilfart, A, Fleuet, J, Moraine, M, Breland, T. A., Lescoat, P, Godinot, O., 2021. Contribution of LCA to decision making: a scenario analysis in territorial agricultural production systems. J. Environ. Manage., 287, Article 112288. doi: 10.1016/j.jenvman.2021.112288.

[10]

Butt, N., Beyer, H.L., Bennett, J.R., Biggs, D., Maggini, R., Mills, M., Renwick, A.R., Seabrook, L.M., Possingham, H.P., 2013. Biodiversity risks from fossil fuel extraction. Science 342 (6157), 425–426. doi: 10.1126/science.1237261.

[11]

Chamber of Agriculture Brittany, 2020. Farming statistics. Ministry of Agriculture and Food.

[12]

Charles, E., Charles,K., 2020. Report: mobility in Finistere, reality and perspective for tomorrow ? (in French).

[13]

Chiffoleau, Y, Dourian, T., 2020. Sustainable food supply chains: is shortening the answer? A literature review for a research and innovation agenda. Sustainability, 12 (23), p. 9831. doi: 10.3390/su12239831.

[14]

Colomb, V., Ait-Amar, S., Basset-Mens, C., Gac, A., Gaillard, G., Koch, P., Mousset, J., Salou, T., Tailleur, A., Van Der Werf, H.M., 2015. AGRIBALYSE®, the French LCI Database for agricultural products: high-quality data for producers and environmental labeling. OCL Oilseed. Fats Crops Lipids 22 (1), D104. doi: 10.1051/ocl/20140047.

[15]

Couturier, C, Aubert, P. M. I., Duru, M. I., 2021. What kind of sustainable agri-food system for tomorrow? Comparative analysis of 16 carbon-neutral scenarios. Solagro, IDDRI, INRAE. Angers, p. 62

[16]

Cucurachi, S, Scherer, L, Guinée, J, Tukker, A., 2019. Life cycle assessment of food systems. One Earth., 1 (3), pp. 292-297. doi: 10.1016/j.oneear.2019.10.014.

[17]

Dansero, E, Pettenati, G., 2018. 273-301. doi: 10.1007/978-3-319-90409-2_14.

[18]

Dansero, E, Puttilli, M., 2014. Multiple territorialities of alternative food networks: six cases from Piedmont, Italy. Local Environ., 19, pp. 626-643. doi: 10.1080/13549839.2013.836163.

[19]

Delgado, C., 2023. The role of land as the central piece to sustainable food systems: lessons learned from Portugal national food-related policies. Geogr. Sustain., 4 (1), pp. 84-90. doi: 10.1016/j.geosus.2023.01.001.

[20]

Dias, A, Lemos, D, Gabarrell, X, Arroja, L., 2018. Comparison of tools for quantifying the environmental performance of an urban territory. J. Ind. Ecol., 22, pp. 868-880. doi: 10.1111/jiec.12614.

[21]

Eau France, 2020. National base for pesticide sales. Sales per French postal code (in French).

[22]

Enedis, 2022. Enedis Open Data. Annual electricity consumption for French communes (in French).

[23]

European Environment Agency, 2020. Corine Land Cover (CLC) 2018, Version 2020_20u1.

[24]

European, Environmentgency, A., 2019. Pesticide sales [WWW Document]. https://www.eea.europa.eu/airs/2018/environment-and-health/pesticides-sales (accessed 31 July 2023).

[25]

Europeanommission, C., 2023. Farm to Fork strategy, for a fair, healthy and environmentally-friendly food system. https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed 12 January 2023).

[26]

Europeanarliament, P., 2023. First pillar of the common agricultural policy (CAP): II – direct payments to farmers. https://www.europarl.europa.eu/factsheets/en/sheet/109/first-pillar-of-the-common-agricultural-policy-cap-ii-direct-payments-to-farmers (accessed 12 January 2023).

[27]

Eurostat, 2022a. Farms and farmland in the European Union - statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farms_and_farmland_in_the_European_Union_-_statistics#The_evolution_of_farms_and_farmland_between_2005_and_2020 (accessed 31 July 2023).

[28]

Eurostat, 2022b. Mineral fertilizer consumption remained high in 2020. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220628-1 (accessed 31 July 2023).

[29]

Fantke, E.P., Bijster, M., Guignard, C., Hauschild, M., Huijbregts, M., Jolliet, O., Kounina, A., Magaud, V., Margni, M., Mckone, T., Posthuma, L., Rosenbaum, R.K., Van, Deeent, M, D., Van Zelm, R., 2017. US, Etox ® 2.0 Documentation. https://doi.org/10.11581/DT, U:00000011

[30]

FA, O.Biofuel Co-Products As Livestock feed: Opportunities and Challenges.edited by, Harinder, P. Food and, Agriculture, Organization of the, Unitedations, N, Makkar, Rome.

[31]

FAO, 2020a. The State of Agricultural Commodity Markets 2020, The State of Agricultural Commodity Markets 2020. FAO. https://doi.org/10.4060/cb0665en

[32]

FAO, 2020b. Farming France. https://www.fao.org/country-showcase/item-detail/ en/c/1278517/ (accessed 1 August 2023).

[33]

FAO, 2020c. FAOSTAT, Crops, and livestock products.

[34]

FAO, 2022. World Food and Agriculture – Statistical Yearbook 2022. Rome. https://doi.org/10.4060/cc2211en

[35]

Finistere, Departmentalouncil, C.Finistere's food territorial project: diagnostic.Administrative, Departmentalouncil, C, Quimper (in, French).

[36]

Finistere Departmental Council, 2017b. Finistere’s food territorial project: action plan. Administrative Departmental Council, Quimper (in French).

[37]

Flach, B, Selten, M., 2021. Dutch Parliament Approves Law to Reduce Nitrogen Emissions. NL2020-069. United States Department of Agriculture, Netherlands

[38]

Flatrès, P., 1963. The second farming revolution in Finistere. Etud. Rurales., 8, pp. 5-55. doi: 10.3406/rural.1963.1048.

[39]

François, C, Gondran, N, Nicolas, J. P., 2021. Spatial and territorial developments for life cycle assessment applied to urban mobility-case study on Lyon area in France. Int. J. Life Cycle Assess., 26, pp. 543-560. doi: 10.1007/s11367-020-01861-2.

[40]

French, General, Accountingffice, O.The subsidies for the beef industry.French, General, Accounting, Office (in, French).

[41]

Frischknecht, R, Büsser Knöpfel, S., 2014. Ecological scarcity 2013—New features and its application in industry and administration—54th LCA forum, Ittigen/Berne, Switzerland,. Int. J. Life Cycle Assess., 19, pp. 1361-1366. doi: 10.1007/s11367-014-0744-z.

[42]

Fu, B, Liu, Y, Li, Y, Wang, C, Li, C, Jiang, W, Hua, T, Zhao, W., 2021. The research priorities of Resources and Environmental Sciences. Geogr. Sustain., 2, pp. 87-94. doi: 10.1016/j.geosus.2021.04.001.

[43]

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food Security: The Challenge of Feeding 9 Billion People. Science 327 (5967), 812–818. doi: 10.1126/science. 1185383.

[44]

Hauck, J, Schleyer, C, Priess, J. A., Veerkamp, C. J., Dunford, R, Alkemade, R, Berry, P, Primmer, E, Kok, M, Young, J, Haines-Young, R, Dick, J, Harrison, P. A., Bela, G, Vadineanu, A, Görg, C., 2019. Combining policy analyses, exploratory scenarios, and integrated modelling to assess land use policy options. Environ. Sci. Policy, 94, pp. 202-210. doi: 10.1016/j.envsci.2018.12.009.

[45]

Heinonen, J, Junnila, S., 2011. Case study on the carbon consumption of two metropolitan cities. Int. J. Life Cycle Assess., 16, pp. 569-579. doi: 10.1007/s11367-011-0289-3.

[46]

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G, Verones, F, Vieira, M, Zijp, M, Hollander, A, van Zelm, R., 2017. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess., 22, pp. 138-147. doi: 10.1007/s11367-016-1246-y.

[47]

IDH, 2020. The urgency of action to tackle tropical deforestatio: protecting forests and fostering sustainable agriculture. Prepared for IDH by FACTS Consulting, COWI A/S and AlphaBeta Singapore. IDH, Utrecht.

[48]

GIS, S. O. L., 2022. BDAT, Outil cartographique GEOSOL. https://webapps.gissol.fr/geosol/ (accessed 2 August 2023). [dataset].

[49]

GRD, F., 2022. GRDF Open data on gas consumption.[dataset]

[50]

INSE, E.Dataset SIRENE.https://www.sirene.fr/sirene/public/creation-fichier. (accessed 13 September 2022) (in, French).

[51]

Kissinger, G, Herold, M, de Sy, V., 2012. Drivers of deforestation and forest degradation A synthesis report for REDD+ policymakers. Lexeme Consulting

[52]

Kneafsey, M, Venn, L, Schmutz, U, Balázs, B, Trenchard, L, Eyden-Wood, T, Bos, E, Sutton, G, Blackett Editors, M, Santini, F, Gomez Paloma, S., 2013. Short Food Supply Chains and Local Food Systems in the EU. A State of Play of their Socio-Economic Characteristics. EU Publication JRC Scientific and policy reports. Luxembourg . doi: 10.2791/88784.

[53]

Loiseau, E, Aissani, L, le Féon, S, Laurent, F, Cerceau, J, Sala, S, Roux, P., 2018. Territorial Life Cycle Assessment (LCA): What exactly is it about? A proposal towards using a common terminology and a research agenda. J. Clean. Prod., 176, pp. 474-485. doi: 10.1016/j.jclepro.2017.12.169.

[54]

Loiseau, E, Colin, M, Alaphilippe, A, Coste, G, Roux, P., 2020. To what extent are short food supply chains (SFSCs) environmentally friendly? Application to French apple distribution using Life Cycle Assessment. J. Clean. Prod., 276, Article 124166. doi: 10.1016/j.jclepro.2020.124166.

[55]

Loiseau, E, Junqua, G, Roux, P, Bellon-Maurel, V., 2012. Environmental assessment of a territory: An overview of existing tools and methods. J. Environ. Manage., 112, pp. 213-225. doi: 10.1016/j.jenvman.2012.07.024.

[56]

Loiseau, E, Roux, P, Junqua, G, Maurel, P, Bellon-Maurel, V., 2013. Adapting the LCA framework to environmental assessment in land planning. Int. J. Life Cycle Assess., 18, pp. 1533-1548. doi: 10.1007/s11367-013-0588-y.

[57]

Lulovicova, A, Bouissou, S., 2023. Environmental assessment of local food policies through a territorial life cycle approach. Sustainability, 15, p. 4740. doi: 10.3390/su15064740.

[58]

Majewski, E, Komerska, A, Kwiatkowski, J, Malak-Rawlikowska, A, Was, A, Sulewski, P, Goła, M, Pogodzinska, K, Lecoeur, J. L., Tocco, B, Török, Á, Donati, M, Vittersø, G., 2020. Are short food supply chains more environmentally sustainable than long chains? a life cycle assessment (LCA) of the eco-efficiency of food chains in selected EU countries. Energies, 13 (18), p. 4853. doi: 10.3390/en13184853.

[59]

Mansfield, B, Mendes, W., 2013. Municipal food strategies and integrated approaches to urban agriculture: exploring three cases from the Global North. Int. Plan. Stud., 18, pp. 37-60. doi: 10.1080/13563475.2013.750942.

[60]

IS 14040, O.Environmental Management.Life, Cycle, Assessment. Principles andramework, F, pp. 1–28.

[61]

ISO 14040, 2006. Environmental Management. Life Cycle Assessment. Principles and Framework, pp. 1–28.

[62]

Martínez-Valderrama, J, Sanjuán, M. E., del Barrio, G, Guirado, E, Ruiz, A, Maestre, F. T., 2021. Mediterranean landscape re-greening at the expense of South American agricultural expansion. Land, 10, p. 204. doi: 10.3390/land10020204.

[63]

Mbow, C, Rosenzweig, C, Barioni, L. G., Benton, T. G., Shukla, P. R., Skea, J, Masson-Delmotte, E, Calvo Buendia, V, Pörtner, H. O., Roberts, D. C., Zhai, P, Slade, R, Connors, S, van Diemen, R, Ferrat, M, Haughey, E, Luz, S, Neogi, S, Pathak, M, Petzold, J, Pereira, J. P., Vyas, P, Huntley, E, Kissick, K, Belkacemi, M, Malley, J., 2019. Food security. In: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management. Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SR2). IPCC, Ginevra

[64]

Ministry of Agriculture and Food, 2023a. Almost 430 Food Territorial projects labelized by the Ministry 1st of April 2023 (in French).

[65]

Ministry of Agriculture and Food, 2023b. The Numbers of Organic Agriculture in France in 2022. https://agriculture.gouv.fr/les-chiffres-de-lagriculture-biologique-en-2022 (accessed 6 August 2023) (in French).

[66]

Ministry of Ecological Transition, 2020. National Low Carbon Strategy.

[67]

Ministry of Ecological Transition, 2021. Key number about energy. https://www. statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-energie- 2021/13-petrole (accessed 3 August 2023) (in French).

[68]

Mirabella, N., Allacker, K., Sala, S., 2019. Current trends and limitations of life cycle assessment applied to the urban scale: critical analysis and review of selected literature. Int. J. Life Cycle Assess. 24, 1174–1193. doi: 10.1007/s11367-018-1467-3.

[69]

Morgan, K. J., Morely, A., 2002. Relocalising the Food chain: the Role of Creative Public procurement. The Regeneration Insitute, Cardiff University

[70]

Morgan, K. J., Santo, R. 2018. The rise of municipal food movements. A. Kalfagianni, S. Skordili (Eds.), Localizing Global Food: Short Food Supply Chains As Responses to Agrifood System Challenges, Routledge, pp.27-40.

[71]

Nitschelm, L, Flipo, B, Auberger, J, Chambaut, H, Colomb, V, Gac, A, Dauguet, S, Espagnol, S, Le Gall, C, Malnoe, C, Perrin, A, Ponchant, P, Renaud-Gentié, C, Roinsard, A, Sautereau, N, Tailleur, A, Van Der Werf, H., 2020. Transition towards organic and sustainable food systems. Using life cycle assessment to assess and improve the environmental performance of organic production systems

[72]

Nitschelm, L, Aubin, J, Corson, M. S., Viaud, V, Walter, C., 2016. Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: current practices and method development. J. Clean. Prod., 112, pp. 2472-2484. doi: 10.1016/j.jclepro.2015.09.138.

[73]

OEC, 2020. Pesticides. https://oec.world/en/profile/hs/pesticides (accessed 15 December 2022).

[74]

Oliver-Solà, J, Josa, A, Arena, A. P., Gabarrell, X, Rieradevall, J., 2011. The GWP-Chart: an environmental tool for guiding urban planning processes. Application to concrete sidewalks. Cities, 28, pp. 245-250. doi: 10.1016/j.cities.2011.01.003.

[75]

Park, Y. S., Egilmez, G, Kucukvar, M., 2016. Emergy and end-point impact assessment of agricultural and food production in the United States: a supply chain-linked Ecologically-based Life Cycle Assessment. Ecol. Indic., 62, pp. 117-137. doi: 10.1016/j.ecolind.2015.11.045.

[76]

Perez-Neira, D., Simón, X., Copena, D., 2021. Agroecological public policies to mitigate climate change: public food procurement for school canteens in the municipality of Ames (Galicia, Spain). Agroecol. Sustain. Food Syst. 45, 1528–1553. doi: 10.1080/21683565.2021.1932685.

[77]

Perminova, T, Sirina, N, Laratte, B, Baranovskaya, N, Rikhvanov, L., 2016. Methods for land use impact assessment: a review. Environ. Impact Assess. Rev., 60, pp. 64-74. doi: 10.1016/j.eiar.2016.02.002.

[78]

Poore, J, Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science, 360 (2018), pp. 987-992. doi: 10.1126/science.aaq0216.

[79]

Pothukuchi, K, Kaufman, J. L., 2000. The food system: a stranger to the planning field. J. Am. Plann. Assoc., 66 (2), pp. 113-124. doi: 10.1080/01944360008976093.

[80]

Poux, X, Aubert, P. M., 2018. Agroecology in Europe in 2050. Modelisation of European Agri-Food system. IDDRI-AScA, Study N°9/18., p. 78

[81]

Qi, Y, Zhang, Y, Jiang, H, Hou, H, Li, J., 2019. Life cycle assessment in urban territories: a case study of Dalian city, China. Int. J. Life Cycle Assess., 24, pp. 1194-1208. doi: 10.1007/s11367-018-1465-5.

[82]

Qu, W, Shi, W, Zhang, J, Liu, T., 2020. T21 China 2050: a tool for national sustainable development planning. Geogr. Sustain., 1 (1), pp. 33-46. doi: 10.1016/j.geosus.2020.03.004.

[83]

Qu, W., Shi, W., Zhang, J., Liu, T., 2020. T21 China 2050: a tool for national sustainable development planning. Geogr. Sustain. 1 (1), 33–46. doi: 10.1016/j.geosus.2020. 03.004.

[84]

Region Brittany, 2021. SRADDET Objectives (in French).

[85]

Regionrittany, B.Regional sustainable planning document.Brittany, France (in, French).

[86]

Robinson, G. M., Carson, D. A. 2015. The globalisation of agriculture: introducing the Handbook. G.M. Robinson, D.A. Carson (Eds.), Handbook on the Globalisation of Agriculture, Edward Elgar, pp.1-28.

[87]

Rouault, A, Perrin, A, Renaud-Gentié, C, Julien, S, Jourjon, F., 2020. Using LCA in a participatory eco-design approach in agriculture: the example of vineyard management. Int. J. Life Cycle Assess., 25, pp. 1368-1383. doi: 10.1007/s11367-019-01684-w.

[88]

Shukla, P.R., Skea, J., Reisinger, A., Slade, R., Fradera, R., Pathak, M., Al, A., Malek, K., Renée Van Diemen, B., Hasija, A., Lisboa, G., Luz, S., Malley, J., Mccollum, D., Some, S., 2022. Climate Change 2022 Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers.

[89]

Solagro, 2016. Scenario Afterres 2050: Modelling the future farming system (in French).

[90]

Stefanovic, L., 2022. SDG performance in local organic food systems and the role of sustainable public procurement. Sustainability 14 (18), 11510. doi: 10.3390/su141811510.

[91]

Terres en ville, 2020. PATnorama n°1 (in French).

[92]

Usubiaga-Liaño, A., Behrens, P., Daioglou, V., 2020. Energy use in the global food system. J. Ind. Ecol. 24 (4), 830–840. doi: 10.1111/jiec.12982.

[93]

van der Werf, H, Kanyarushoki, C, Corson, M. S., 2011. Life cycle analysis : a new look on farming production systems. Innovations Agronomiques, INRAE (in French)

[94]

van der Werf, H. M. G., Knudsen, M. T., Cederberg, C., 2020. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain., 3, pp. 419-425. doi: 10.1038/s41893-020-0489-6.

[95]

Van Maele-Fabry, G, Libotte, V, Willems, J, Lison, D., 2006. Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers. Cancer Causes Control, 17, pp. 353-373. doi: 10.1007/s10552-005-0443-y.

[96]

Vidergar, P, Perc, M, Lukman, R. K., 2021. A survey of the life cycle assessment of food supply chains. J. Clean. Prod., 286, Article 125506. doi: 10.1016/j.jclepro.2020.125506.

[97]

Wallet, F, Bouroullec, M. D. M., 2021. Public policies and development of short supply chains: analysis of the Occitania region. Sustainble Development and Territories, 12 . doi: 10.4000/developpementdurable.18989.

[98]

Wernet, G, Bauer, C, Steubing, B, Reinhard, J, Moreno-Ruiz, E, Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess., 21, pp. 1218-1230. doi: 10.1007/s11367-016-1087-8.

PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

/