Wind farms increase land surface temperature and reduce vegetation productivity in the Inner Mongolia

Luyao Liu , Pengtao Liu , Jiawei Yu , Gang Feng , Qing Zhang , Jens-Christian Svenning

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 319 -328.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :319 -328. DOI: 10.1016/j.geosus.2024.01.007
Research Article
review-article

Wind farms increase land surface temperature and reduce vegetation productivity in the Inner Mongolia

Author information +
History +
PDF

Abstract

Wind power has been developing rapidly as a key measure to mitigate human-driven global warming. The understanding of the development and impacts of wind farms on local climate and vegetation is of great importance for their rational use but is still limited. In this study, we combined remote sensing and on-site investigations to identify wind farm locations in Inner Mongolia and performed landscape pattern analyses using Fragstats. We explored the impacts of wind farms on land surface temperature (LST) and vegetation net primary productivity (NPP) between 1990 and 2020 by contrasting these metrics in wind farms with those in non-wind farm areas. The results showed that the area of wind farms increased rapidly from 1.2 km2 in 1990 to 10,755 km2 in 2020. Spatially, wind farms are mainly clustered in three aggregation areas in the center. Further, wind farms increased nighttime LST, with a mean value of 0.23 °C, but had minor impacts on the daytime LST. Moreover, wind farms caused a decline in NPP, especially over forest areas, with an average reduction of 12.37 GC/m². Given the impact of wind farms on LST and NPP, we suggest that the development of wind farms should fully consider their direct and potential impacts. This study provides scientific guidance on the spatial pattern of future wind farms.

Keywords

Wind farm / Landscape pattern / LST / NPP / Inner Mongolia

Cite this article

Download citation ▾
Luyao Liu, Pengtao Liu, Jiawei Yu, Gang Feng, Qing Zhang, Jens-Christian Svenning. Wind farms increase land surface temperature and reduce vegetation productivity in the Inner Mongolia. Geography and Sustainability, 2024, 5(3): 319-328 DOI:10.1016/j.geosus.2024.01.007

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

No conflict of interests exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Acknowledgments

This study was supported by the National Key Research and Development Program of China (Grant No. 2021YFC3201201), and the National Natural Science Foundation of China (Grant No. 32071582). JCS considers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (Grant No. DNRF173 to JCS) and his Investigator project “Biodiversity Dynamics in a Changing World”, funded by VILLUM FONDEN (Grant No. 16549).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.01.007.

References

[1]

Aksoy, T, Cetin, M, Cabuk, S. N., Senyel Kurkcuoglu, M. A., Bilge Ozturk, G, Cabuk, A., 2023. Impacts of wind turbines on vegetation and soil cover: a case study of Urla, Cesme, and Karaburun Peninsulas, Turkey. Clean Technol. Environ. Policy 25(1), 51-68.

[2]

Armstrong, A, Waldron, S, Whitaker, J, Ostle, N. J., 2014. Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground-level microclimate. Glob. Change Biol., 20(6), 1699-1706.

[3]

Avila, S., 2018. Environmental justice and the expanding geography of wind power conflicts. Sustain. Sci., 13(3), 599-616.

[4]

Ayodele, T. R., Ogunjuyigbe, A, Odigie, O, Munda, J. L., 2018. A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: the case study of Nigeria. Appl. Energy 228, 1853-1869.

[5]

Baidya Roy, S, Traiteur, J. J., 2010. Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. U.S.A., 107(42), 17899-17904.

[6]

Bell, D, Gray, T, Haggett, C., 2005. The ‘social gap’ in wind farm siting decisions: explanations and policy responses. Environ. Polit., 14(4), 460-477.

[7]

Bergström, L, Sundqvist, F, Bergström, U., 2013. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Mar. Ecol. Prog. Ser., 485, 199-210.

[8]

Bonnier, A, Finné, M, Weiberg, E., 2019. Examining land-use through GIS-based kernel density estimation: a re-evaluation of legacy data from the berbati-limnes survey. J. Field Archaeol., 44(2), 70-83.

[9]

Brodrick, P, Anderegg, L, Asner, G., 2019. Forest drought resistance at large geographic scales. Geophys. Res. Lett., 46(5), 2752-2760.

[10]

C2ES, 2020. Renewable Energy. https://www.c2es.org/content/renewable-energy/, Technology Solutions.

[11]

Chang, R, Zhu, R, Guo, P., 2016. A case study of land-surface-temperature impact from large-scale deployment of wind farms in China from Guazhou. Remote Sens., 8(10), 790.

[12]

Dai, Y, Xue, L., 2015. China's policy initiatives for the development of wind energy technology. Clim. Policy 15(1), 30-57.

[13]

Dai, J, Yang, X, Wen, L., 2018. Development of wind power industry in China: a comprehensive assessment. Renew. Sust. Energ. Rev., 97, 156-164.

[14]

Deng, Y, Yu, Z, Liu, S., 2011. A review on scale and siting of wind farms in China. Wind Energy 14(3), 463-470.

[15]

Dhunny, A. Z., Allam, Z, Lobine, D, Lollchund, M. R., 2019. Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective. Energy 185, 1282-1297.

[16]

Diffendorfer, J. E., Dorning, M. A., Keen, J. R., Kramer, L. A., Taylor, R. V., 2019. Geographic context affects the landscape change and fragmentation caused by wind energy facilities. Peer. J., 7, e7129.

[17]

Dong, Y, Wang, J, Jiang, H, Shi, X., 2013. Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China. Appl. Energy 109, 239-253.

[18]

Doran, J, Shaw, W, Hubbe, J., 1995. Boundary layer characteristics over areas of inhomogeneous surface fluxes. J. Appl. Meteorol. Climatol., 34(2), 559-571.

[19]

Drewitt, A. L., Langston, R. H., 2006. Assessing the impacts of wind farms on birds. Ibis 148, 29-42.

[20]

Fagúndez, J., 2009. Effects of wind farm construction and operation on mire and wet heath vegetation in the Monte Maior SCI, north-west Spain. Mires Peat 4, 2.

[21]

Fitch, A. C., Olson, J. B., Lundquist, J. K., 2013. Parameterization of wind farms in climate models. J. Clim., 26(17), 6439-6458.

[22]

Fox, A, Desholm, M, Kahlert, J, Christensen, T. K., Krag Petersen, I., 2006. Information needs to support environmental impact assessment of the effects of European marine offshore wind farms on birds. Ibis 148, 129-144.

[23]

Global Wind Report 2022. https://gwec.net/global-wind-report-2022/ (accessed 7 December 2022).

[24]

Guo, X, Zhang, X, Du, S, Li, C, Siu, Y. L., Rong, Y, Yang, H., 2020. The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. J. Clean. Prod., 254, 120075.

[25]

Haines, A, Smith, K. R., Anderson, D, Epstein, P. R., McMichael, A. J., Roberts, I, Wilkinson, P, Woodcock, J, Woods, J., 2007. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change. Lancet 370(9594), 1264-1281.

[26]

Harris, R. A., Zhou, L, Xia, G., 2014. Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sens., 6(12), 12234-12246.

[27]

Howland, M. F., Lele, S. K., Dabiri, J. O., 2019. Wind farm power optimization through wake steering. Proc. Natl. Acad. Sci. U.S.A., 116(29), 14495-14500.

[28]

Hurtado, J. P., Fernández, J, Parrondo, J. L., Blanco, E., 2004. Spanish method of visual impact evaluation in wind farms. Renew. Sust. Energ. Rev., 8(5), 483-491.

[29]

Institute of, Geographic, Sciences and, Natural, Resourcesesearch, R, Chinese, Academy ofciences, S., 2007. Inner Mongolian Plateau. http://www.igsnrr.cas.cn/cbkx/kpyd/zgdl/cndm/202009/t20200910_5692371.html (accessed 6 December 2022).

[30]

Inner, Mongolia, Autonomous, Region, Bureau oftatistics, S., 2022. Statistical bulletin of Inner Mongolia Autonomous Region’s national economic and social development in 2021. https://www.nmg.gov.cn/. (accessed 6 December 2022).

[31]

Jami, A. A., Walsh, P. R., 2017. From consultation to collaboration: a participatory framework for positive community engagement with wind energy projects in Ontario. Energy Res. Soc. Sci., 27, 14-24.

[32]

Jones, N. F., Pejchar, L, Kiesecker, J. M., 2015. The energy footprint: how oil, natural gas, and wind energy affect land for biodiversity and the flow of ecosystem services. Bioscience 65(3), 290-301.

[33]

Kati, V, Kassara, C, Vrontisi, Z, Moustakas, A., 2021. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci. Total Environ., 768, 144471.

[34]

Keith, D. W., DeCarolis, J. F., Denkenberger, D. C., Lenschow, D. H., Malyshev, S. L., Pacala, S, Rasch, P. J., 2004. The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. U.S.A., 101(46), 16115-16120.

[35]

Kemp, L, Xu, C, Depledge, J, Ebi, K. L., Gibbins, G, Kohler, T. A., Rockström, J, Scheffer, M, Schellnhuber, H. J., Steffen, W., 2022. Climate Endgame: exploring catastrophic climate change scenarios. Proc. Natl. Acad. Sci. U.S.A., 119(34), e2108146119.

[36]

Kirk-Davidoff, D. B., Keith, D. W., 2008. On the climate impact of surface roughness anomalies. J. Atmos. Sci., 65(7), 2215-2234.

[37]

Lashof, D. A., Ahuja, D. R., 1990. Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266), 529-531.

[38]

Leung, D. Y., Yang, Y., 2012. Wind energy development and its environmental impact: a review. Renew. Sust. Energ. Rev., 16(1), 1031-1039.

[39]

Li, Y, Kalnay, E, Motesharrei, S, Rivas, J, Kucharski, F, Kirk-Davidoff, D, Bach, E, Zeng, N., 2018. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361(6406), 1019-1022.

[40]

Liu, P, Liu, L, Xu, X, Zhao, Y, Niu, J, Zhang, Q., 2021. Carbon footprint and carbon emission intensity of grassland wind farms in Inner Mongolia. J. Clean. Prod., 313, 127878.

[41]

Liu, Y, Dang, B, Xu, Y, Weng, F., 2021. An observational study on the local climate effect of the Shangyi wind farm in Hebei Province. Adv. Atmos. Sci., 38(11), 1905-1919.

[42]

Liu, L, Xu, X, Wu, J, Jarvie, S, Li, F, Han, P, Zhang, Q., 2022. Comprehensive evaluation and scenario simulation of carrying capacity of water resources in Mu Us sandy land. China. Water Supply 22(9), 7256-7271.

[43]

Liu, T, Chen, Z, Xu, J., 2022. Empirical evidence based effectiveness assessment of policy regimes for wind in China. Renew. Sust. Energ. Rev., 164, 112535.

[44]

Luo, L, Zhuang, Y, Duan, Q, Dong, L, Yu, Y, Liu, Y, Chen, K, Gao, X., 2021. Local climatic and environmental effects of an onshore wind farm in North China. Agric. For. Meteorol., 308, 108607.

[45]

Moradi, S, Yousefi, H, Noorollahi, Y, Rosso, D., 2020. Multi-criteria decision support system for wind farm site selection and sensitivity analysis: case study of Alborz Province, Iran. Energy Strateg. Rev., 29, 100478.

[46]

Moravec, D, Bartak, V, Pus, V, Wild, J., 2018. Wind turbine impact on near-ground air temperature. Renew. Energ., 123, 627-633.

[47]

Qin, Y, Li, Y, Xu, R, Hou, C, Armstrong, A, Bach, E, Wang, Y, Fu, B., 2022. Impacts of 319 wind farms on surface temperature and vegetation in the United States. Environ. Res. Lett., 17(2), 024026.

[48]

Rajewski, D. A., Takle, E. S., Lundquist, J. K., Oncley, S, Prueger, J. H., Horst, T. W., Rhodes, M. E., Pfeiffer, R, Hatfield, J. L., Spoth, K. K., 2013. Crop wind energy experiment (CWEX): observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Am. Meteorol. Soc., 94, 655-672.

[49]

Saidur, R, Rahim, N. A., Islam, M. R., Solangi, K. H., 2011. Environmental impact of wind energy. Renew. Sust. Energ. Rev., 15(5), 2423-2430.

[50]

Sawant, M, Thakare, S, Rao, A. P., Feijóo-Lorenzo, A. E., Bokde, N. D., 2021. A review on state-of-the-art reviews in wind-turbine and wind-farm related topics. Energies 14(8), 2041.

[51]

Schumaker, N. H., 1996. Using landscape indices to predict habitat connectivity. Ecology 77, 1210-1225.

[52]

Sibille, Ad. C. T, Cloquell-Ballester, V-.A, V-Cloquell-Ballester, A, Darton, R., 2009. Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms. Renew. Sust. Energ. Rev., 13(1), 40-66.

[53]

Slawsky, L. M., Zhou, L, Roy, S. B., Xia, G, Vuille, M, Harris, R. A., 2015. Observed thermal impacts of wind farms over Northern Illinois. Sensors 15(7), 14981-15005.

[54]

Steffen, W, Rockström, J, Richardson, K, Lenton, T. M., Folke, C, Liverman, D, Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., 2018. Trajectories of the earth system in the Anthropocene. Proc. Natl. Acad. Sci. U.S.A., 115(33), 8252-8259.

[55]

Su, N, Jarvie, S, Yan, Y, Gong, X, Li, F, Han, P, Zhang, Q., 2022. Landscape context determines soil fungal diversity in a fragmented habitat. Catena 213, 106163.

[56]

Tang, B, Wu, D, Zhao, X, Zhou, T, Zhao, W, Wei, H., 2017. The observed impacts of wind farms on local vegetation growth in northern China. Remote Sens., 9(4), 332.

[57]

Turney, D, Fthenakis, V., 2011. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sust. Energ. Rev., 15(6), 3261-3270.

[58]

Van der Horst, D, Toke, D., 2010. Exploring the landscape of wind farm developments; local area characteristics and planning process outcomes in rural England. Land Use Policy 27(2), 214-221.

[59]

Van Haaren, R, Fthenakis, V., 2011. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): evaluating the case for New York State. Renew. Sust. Energ. Rev., 15(7), 3332-3340.

[60]

Wu, J, Wang, J, Chi, D., 2013. Wind energy potential assessment for the site of Inner Mongolia in China. Renew. Sust. Energ. Rev., 21, 215-228.

[61]

Xia, C, Song, Z., 2009. Wind energy in China: current scenario and future perspectives. Renew. Sust. Energ. Rev., 13(8), 1966-1974.

[62]

Xia, G, Zhou, L., 2017. Detecting wind farm impacts on local vegetation growth in Texas and Illinois using MODIS vegetation greenness measurements. Remote Sens., 9(7), 698.

[63]

Xia, G, Zhou, L, Freedman, J. M., Roy, S. B., Harris, R. A., Cervarich, M. C., 2016. A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Clim. Dyn., 46(7–8), 2179-2196.

[64]

Xu, K, He, L, Hu, H, Liu, S, Du, Y, Wang, Z, Li, Y, Li, L, Khan, A, Wang, G., 2019. Positive ecological effects of wind farms on vegetation in China's Gobi desert. Sci. Rep., 9(1), 1-11.

[65]

Yuan, J, Bian, Z, Yan, Q, Gu, Z, Yu, H., 2020. An approach to the temporal and spatial characteristics of vegetation in the growing season in Western China. Remote Sens., 12(6), 945.

[66]

Zeng, B, Zeng, M, Xue, S, Cheng, M, Wang, Y, Feng, J., 2014. Overall review of wind power development in Inner Mongolia: status quo, barriers and solutions. Renew. Sust. Energ. Rev., 29, 614-624.

[67]

Zhang, Q, Buyantuev, A, Fang, X, Han, P, Li, A, Li, F. Y., Liang, C, Liu, Q, Ma, Q, Niu, J., 2020. Ecology and sustainability of the Inner Mongolian Grassland: looking back and moving forward. Landsc. Ecol., 35, 2413-2432.

[68]

Zhang, S, Wei, J, Chen, X, Zhao, Y., 2020. China in global wind power development: role, status and impact. Renew. Sust. Energ. Rev., 127, 109881.

[69]

Zhang, X, Xu, L, Chen, Y, Liu, T., 2020. Emergy-based ecological footprint analysis of a wind farm in China. Ecol. Indic., 111, 106018.

[70]

Zhou, L, Tian, Y, Roy, S. B., Thorncroft, C, Bosart, L. F., Hu, Y., 2012. Impacts of wind farms on land surface temperature. Nat. Clim. Chang., 2(7), 539-543.

[71]

Zhou, L, Tian, Y, Roy, S. B., Dai, Y, Chen, H., 2013. Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Clim. Dyn., 41, 307-326.

[72]

Zimmerling, J, Pomeroy, A, d'Entremont, M, Francis, C., 2013. Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments. Avian Conserv. Ecol., 8(2), 1-13.

PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

/