Response of soil nutrients to terracing and environmental factors in the Loess Plateau of China

Die Chen , Wei Wei , Liding Chen , Bojun Ma , Hao Li

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 230 -240.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :230 -240. DOI: 10.1016/j.geosus.2024.01.006
Research Article
review-article

Response of soil nutrients to terracing and environmental factors in the Loess Plateau of China

Author information +
History +
PDF

Abstract

Terracing is a widely adopted agricultural practice in mountainous regions around the world that aims to conserve soil and water resources. Soil nutrients play a crucial role in determining soil quality, particularly in landscapes prone to drought. They are influenced by factors such as land-use type, slope aspect, and altitude. In this study, we sought to examine the impact of terracing on soil nutrients (soil organic content (SOC), total nitrogen (TN), nitrate-nitrogen (NO3-N), ammonium nitrogen (NH4+-N), total phosphorus (TP), available phosphorus (AP), total potassium (TK), and available potassium (AK)) and how they vary with environmental factors in the Chinese Loess Plateau. During the growing season, we collected 540 soil samples from the 0 to 100 cm soil layer across five major land-use types, different slope aspects, and varying altitudes. Additionally, a meta-analysis of literature data further corroborated the effective accumulation of soil nutrients through terracing in the Loess Plateau. Our findings are as follows: (1) Terraced fields, regardless of land-use type, showed a significant improvement in SOC and TN content. (2) Soil nutrient contents within terraced fields were predominantly higher on sunny slopes. (3) Terraces at lower altitudes are characterized by elevated SOC concentrations. (4) A meta-analysis of literature data pertaining to terracing and soil nutrients in this region confirmed the effective accumulation of soil nutrients through terracing. The elucidated outcomes of this study offer a profound theoretical underpinning for the accurate planning and management of terraces, the scientific utilization of land resources, and the enhancement of land productivity.

Keywords

Terrace / Soil nutrients / Land-use / Slope aspect / Altitude / Loess Plateau

Cite this article

Download citation ▾
Die Chen, Wei Wei, Liding Chen, Bojun Ma, Hao Li. Response of soil nutrients to terracing and environmental factors in the Loess Plateau of China. Geography and Sustainability, 2024, 5(2): 230-240 DOI:10.1016/j.geosus.2024.01.006

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grants No. 42201100, U21A2011, 41991233), the Central Public-Interest Scientific Institution Basal Research Fund (Grant No. CKSF2023301), and the Knowledge Innovation Program of Wuhan -Basic Research (Grant No. 2022020801010236).

References

[1]

Ajami, M, Heidari, A, Khormali, F, Gorji, M, Ayoubi, S., 2016. Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, northern Iran. Geoderma 281, 1-10.

[2]

Bruins, H. J., 2012. Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J. Arid Environ., 86, 28-42.

[3]

Cao, S, Hu, H, Zhang, H, Zhou, C. F., Liu, B., 2019. Causes and countermeasures of plantation soil available phosphorus deficiency in southern China. World For. Res., 32(3), 78-84.

[4]

Cates, A. M., Ruark, M. D., Hedtcke, J. L., Posner, J. L., 2016. Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter. Soil Tillage Res., 155, 371-380.

[5]

Chen, D, Wei, W, Chen, L. D., 2017. Effects of terracing practices on water erosion control in China: a meta analysis. Earth Sci. Rev., 173, 109-121.

[6]

Chen, D, Wei, W, Daryanto, S, Tarolli, P., 2020. Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China. Sci. Total Environ., 721, 137751.

[7]

Chen, D, Wei, W, Chen, L. D., 2021. Effects of terracing on soil properties in three key mountainous regions of China. Geogr. Sustain., 2(3), 195-206.

[8]

Cichota, R, Hurtado, A. L. B., de Jong van Lier, Q., 2006. Spatio-temporal variability of soil water tension in a tropical soil in Brazil. Geoderma 133(3), 231-243.

[9]

Cui, R. P., Ma, C. X., 2016. Effect and practice of terraces construction in Gansu. Soil Water Conserv. Chin., 10, 10-12.

[10]

David, S, Raussen, T., 2003. The agronomic and economic potential of tree fallows on scoured terrace benches in the humid highlands of Southwestern Uganda. Agric. Ecosyst. Environ., 95(1), 359-369.

[11]

Deak, B, Tolgyesi, C, Kelemen, A, Batori, Z, Galle, R, Bragina, T. M., Yerkin, A. I., Valko, O., 2017. The effects of micro-habitats and grazing intensity on the vegetation of burial mounds in the Kazakh steppes. Plant Ecol. Divers., 10(5–6), 509-520.

[12]

Delgado-Baquerizo, M, Maestre, F. T., Gallardol, A, Bowker, M. A., Wallenstein, M. D., Quero, J. L., Ochoa, V, Gozalo, B, Garcia-Gomez, M, Soliveres, S, Garcia-Palacios, P, Berdugo, M, Valencia, E, Escolar, C, Arredondol, T, Barraza-Zepeda, C, Bran, D, Carreiral, J. A., Chaiebll, M, Conceicao, A. A., Derak, M, Eldridge, D. L., Escudero, A, Espinosa, C. I., Gaitan, J, Gatica, M. G., Gomez-Gonzalez, S, Guzman, E, Gutierrez, J. R., Florentino, A, Hepper, E, Hernandez, R. M., Huber-Sannwald, E, Jankju, M, Liu, J. S., Mau, R. L., Miriti, M, Monerris, J, Naseri, K, Noumi, Z, Polo, V, Prina, A, Pucheta, E, Ramirez, E, Ramirez-Collantes, D. A., Romao, R, Tighe, M, Torres, D, Torres-Diaz, C, Ungar, E. D., Val, J, Wamiti, W, Wang, D. L., Zaady, E., 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502(7473), 672.

[13]

Deng, C. X., Zhang, G. Y., Liu, Y. J., Nie, X. D., Li, Z. W., Liu, J. Y., Zhu, D. M., 2021. Advantages and disadvantages of terracing: a comprehensive review. Int. Soil Water Conserv. Res., 9(3), 344-359.

[14]

Drinkwater, L. E., Snapp, S. S., 2007. Nutrients in agroecosystems: rethinking the management paradigm. Adv. Agron., 92, 163-186.

[15]

FAO, 2021. Standard Operating Procedure for Soil Available Phosphorus - Olsen method. FAO, Rome.

[16]

Feng, T. J., Wei, W, Chen, L. D., Keesstra, S. D., Yang, Y., 2018. Effects of land preparation and plantings of vegetation on soil moisture in a hilly loess catchment in China. Land Degrad. Dev., 29(5), 1427-1441.

[17]

Ferro-Vázquez, C, Lang, C, Kaal, J, Stump, D., 2017. When is a terrace not a terrace? The importance of understanding landscape evolution in studies of terraced agriculture. J. Environ. Manag., 202, 500-513.

[18]

Fu, B. J., Liu, Y, Lu, Y. H., He, C. S., Zeng, Y, Wu, B. F., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex., 8(4), 284-293.

[19]

Fu, B. J., Meng, Q. H., Qiu, Y, Zhao, W. W., Zhang, Q. J., Davidson, D. A., 2004. Effects of land use on soil erosion and nitrogen loss in the hilly area of the Loess Plateau, China. Land Degrad. Dev., 15(1), 87-96.

[20]

Fukamachi, K., 2017. Sustainability of terraced paddy fields in traditional satoyama landscapes of Japan. J. Environ. Manag., 202, 543-549.

[21]

Gao, H. D., Li, Z. B., Jia, L. L., Li, P, Xu, G. C., Ren, Z. P., Pang, G. W., Zhao, B. H., 2016. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree. J. Geogr. Sci., 26(4), 457-472.

[22]

Gilliam, F. S., Galloway, J. E., Sarmiento, J. S., 2015. Variation with slope aspect in effects of temperature on nitrogen mineralization and nitrification in mineral soil of mixed hardwood forests. Can. J. For. Res., 45(7), 958-962.

[23]

Gong, Z. T., Chen, H. Z., Luo, G. B., 2000. Effect of anthropogeinc porcesses on soil environment quality and its controls. Soil Environ. Sci., 9(1), 7-10.

[24]

Griffiths, R. P., Madritch, M. D., Swanson, A. K., 2009. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. For. Ecol. Manag., 257(1), 1-7.

[25]

Hou, G. R., Bi, H. X., Huo, Y. M., Wei, X. Y., Zhu, Y. J., Wang, X. X., Liao, W. C., 2020. Determining the optimal vegetation coverage for controlling soil erosion in Cynodon dactylon grassland in North China. J. Clean. Prod., 244, 118771.

[26]

Hribar, M. S., Gersic, M, Pipan, P, Repolusk, P, Tiran, J, Topole, M, Ciglic, R., 2017. Cultivated terraces in Slovenian landscapes. Acta Geogr. Slov., 57(2), 83-97.

[27]

Jakrawatana, N, Ngammuangtueng, P, Gheewala, S. H., 2017. Linking substance flow analysis and soil and water assessment tool for nutrient management. J. Clean. Prod., 142, 1158-1168.

[28]

Jiang, H. M., Jiang, J. P., Jia, Y, Li, F. M., Xu, J. Z., 2006. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem., 38(8), 2350-2358.

[29]

Jing, Z. R., Wang, J. M., Zhu, Y. C., Feng, Y., 2018. Effects of land subsidence resulted from coal mining on soil nutrient distributions in a loess area of China. J. Clean. Prod., 177, 350-361.

[30]

Jónsdóttir, S, Gísladóttir, G., 2023. Land use planning, sustainable food production and rural development: a literature analysis. Geogr. Sustain., 4(4), 391-403.

[31]

Karchegani, P. M., Ayoubi, S, Mosaddeghi, M. R., Honarjoo, N., 2012. Soil organic carbon pools in particle-size fractions as affected by slope gradient and land use change in hilly regions, western Iran. J. Mt. Sci., 9(1), 87-95.

[32]

Kocyigit, R, Demirci, S., 2012. Long-term changes of aggregate-associated and labile soil organic carbon and nitrogen after conversion from forest to grassland and cropland in northern Turkey. Land Degrad. Dev., 23(5), 475-482.

[33]

Kottek, M, Grieser, J, Beck, C, Rudolf, B, Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15(3), 259-263.

[34]

Lenka, N. K., Sudhishri, S, Dass, A, Choudhury, P. R., Lenka, S, Patnaik, U. S., 2013. Soil carbon sequestration as affected by slope aspect under restoration treatments of a degraded alfisol in the Indian sub-tropics. Geoderma 204, 102-110.

[35]

Li, D, Wang, Z. F., Zheng, J. B., Gao, M., 2009. Contents of soil organic matter, nitrogen, phosphorus and potassium under different land-use patterns in purple hill area. J. Soil Sci., 40, 310-314.

[36]

Li, Y. Y., 2006. Review of study on phosphorus transport on slope land. Res. Soil Water Conserv., 5, 1-4.

[37]

Li, Z. W., Liu, C, Dong, Y. T., Chang, X. F., Nie, X. D., Liu, L, Xiao, H. B., Lu, Y. M., Zeng, G. M., 2017. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the loess hilly-gully region of China. Soil Till. Res., 166, 1-9.

[38]

Liu, C, Li, Z. W., Dong, Y. T., Nie, X. D., Liu, L, Xiao, H. B., Zeng, G. M., 2017. Do land use change and check-dam construction affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China?. Ecol. Eng., 101, 220-226.

[39]

Liu, C. A., Li, F. R., Zhou, L. M., Zhang, R. H., Lin, S. L., Wang, L. J., Siddique, K. H. M., Li, F. M., 2013. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag., 117, 123-132.

[40]

Lozano-Garcia, B, Parras-Alcantara, L, Brevik, E. C., 2016. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ., 544, 963-970.

[41]

Luo, L. H., Li, F. Y., Dai, Z. Y., Yang, X, Liu, W, Fang, X., 2020. Terrace extraction based on remote sensing images and digital elevation model in the Loess Plateau, China. Earth Sci. Inform., 13(2), 433-446.

[42]

Martins, M. A. S., Oliveira, B. R. F., Machado, A. I., Jacob Keizer, J., 2023. Immediate changes in soil chemical and biological fertility and short-term changes in soil biological activity following bench terrace construction for eucalypt reforestation. Catena 233, 107462.

[43]

Mesfin, S, Taye, G, Desta, Y, Sibhatu, B, Muruts, H, Mohammedbrhan, M., 2018. Shortterm effects of bench terraces on selected soil physical and chemical properties: landscape improvement for hillside farming in semi-arid areas of northern Ethiopia. Environ. Earth Sci., 77(11), 399.

[44]

Novara, A, Gristina, L, La Mantia, T, Rühl, J. 2013. Carbon dynamics of soil organic matter in bulk soil and aggregate fraction during secondary succession in a Mediterranean environment. Geoderma, 193–194, pp.213-221.

[45]

Olsen, S. R., Watanabe, F. S., Cosper, H. R., Larson, W. E., Nelson, L. B., 1954. Residual phosphorus availability in long-time rotations on calcareous soils. Soil Sci., 78, 141-151.

[46]

Portela, E. A. C., 1993. Potassium supplying capacity of northeastern Portuguese soils. Plant Soil 154(1), 13-20.

[47]

Ramos, M. C., Benito, C, Martinez-Casasnovas, J. A., 2015. Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agric. Ecosyst. Environ., 213, 194-208.

[48]

Shi, P, Feng, Z. H., Gao, H. D., Li, P, Zhang, X. M., Zhu, T. T., Li, Z. B., Xu, G. C., Ren, Z. P., Xiao, L., 2020. Has “Grain for Green” threaten food security on the Loess Plateau of China?. Ecosyst. Health Sustain., 6(1), 1709560.

[49]

Shi, P, Zhang, Y, Li, P, Li, Z, Yu, K, Ren, Z, Xu, G, Cheng, S, Wang, F, Ma, Y., 2019. Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau, China. Sci. Total Environ., 652, 505-512.

[50]

Shi, P, Zhang, Y, Zhang, Y, Yu, Y, Li, P, Li, Z. B., Xiao, L, Xu, G. C., Zhu, T. T., 2020. Land-use types and slope topography affect the soil labile carbon fractions in the loess hilly-gully area of Shaanxi, China. Arch. Agron. Soil Sci., 66(5), 638-650.

[51]

Shi, W. H., Huang, M. B., 2021. Predictions of soil and nutrient losses using a modified SWAT model in a large hilly-gully watershed of the Chinese Loess Plateau. Int. Soil Water Conserv. Res., 9(2), 291-304.

[52]

Shimoda, S, Koyanagi, T. F., 2017. Land use alters the plant-derived carbon and nitrogen pools in terraced rice paddies in a mountain village. Sustainability 9(11), 1973.

[53]

Sigua, G. C., Coleman, S. W., 2010. Spatial distribution of soil carbon in pastures with cow-calf operation: effects of slope aspect and slope position. J. Soils Sediments 10(2), 240-247.

[54]

Smith, J. L., Halvorson, J. J., Bolton, H., 2002. Soil properties and microbial activity across a 500m elevation gradient in a semi-arid environment. Soil Biol. Biochem., 34(11), 1749-1757.

[55]

Stavi, I, Ragolsky, G, Shem-Tov, R, Shlomi, Y, Ackermann, O, Rueff, H, Lekach, J., 2018. Ancient through mid-twentieth century runoff harvesting agriculture in the hyper-arid Arava Valley of Israel. Catena 162, 80-87.

[56]

Stavi, I, Shem-Tov, R, Ragolsky, G, Lekach, J., 2017. Ancient to recent-past runoff harvesting agriculture in recharge playas of the hyper-arid southern Israel. Water 9(12), 991.

[57]

Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1996. Methods of Soil Analysis. Part 3-Chemical Methods. Soil Science Society America, Inc. & American Society of Agronomy, Madison.

[58]

Stanturf, J. A. 2021. Landscape degradation and restoration. J.A. Stanturf, M.A. Callaham Jr. (Eds.), Soils and Landscape Restoration, Academic Press, pp.125-159.

[59]

Storer, D. A., 1984. A simple high sample volume ashing procedure for determination of soil organic matter. Commun. Soil Sci. Plant Anal., 15(7), 759-772.

[60]

Su, Z. A., Xiong, D. H., Deng, W, Dong, Y. F., Ma, J, Padma, C. P., Gurung, B. S., 2016. Cs-137 tracing dynamics of soil erosion, organic carbon, and total nitrogen in terraced fieldsand forestland in the Middle Mountains of Nepal. J. Mt. Sci., 13(10), 1829-1839.

[61]

Subhatu, A, Lemann, T, Hurni, K, Portner, B, Kassawmar, T, Zeleke, G, Hurni, H., 2017. Deposition of eroded soil on terraced croplands in Minchet catchment, Ethiopian highlands. Int. Soil Water Conserv. Res., 5(3), 212-220.

[62]

Subhatu, A, Speranza, C. I., Zeleke, G, Roth, V, Lemann, T, Herweg, K, Hurni, H., 2018. Interrelationships between terrace development, topography, soil erosion, and soil dislocation by tillage in Minchet Catchment, Ethiopian Highlands. Land Degrad. Dev., 29(10), 3584-3594.

[63]

Tamrat, W. Z., Rose, J, Grauby, O, Doelsch, E, Levard, C, Chaurand, P, Basile-Doelsch, I., 2018. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products. Geochim. Cosmochim. Acta 229, 53-64.

[64]

Tamrat, W. Z., Rose, J, Grauby, O, Doelsch, E, Levard, C, Chaurand, P, Basile-Doelsch, I., 2019. Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands. Geochim. Cosmochim. Acta 260, 15-28.

[65]

Tarolli, P, Preti, F, Romano, N., 2014. Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6, 10-25.

[66]

Tarolli, P, Straffelini, E., 2020. Agriculture in hilly and mountainous landscapes: threats, monitoring and sustainable management. Geogr. Sustain., 1(1), 70-76.

[67]

Tyler, G., 2002. Phosphorus fractions in grassland soils. Chemosphere 48(3), 343-349.

[68]

Van Oost, K, Quine, T. A., Govers, G, De Gryze, S, Six, J, Harden, J. W., Ritchie, J. C., McCarty, G. W., Heckrath, G, Kosmas, C, Giraldez, J. V., da Silva, J. R. M., Merckx, R., 2007. The impact of agricultural soil erosion on the global carbon cycle. Science 318(5850), 626-629.

[69]

Wang, S, Fu, B. J., Gao, G. Y., Yao, X. L., Zhou, J., 2012. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. Earth Syst. Sci., 16(8), 2883-2892.

[70]

Wang, S. F., Wang, X. K., Ouyang, Z. Y., 2012. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. J. Environ. Sci., 24(3), 387-395.

[71]

Wang, L. Q., Yi, C. L., Xu, X. K., Schutt, B, Liu, K. X., Zhou, L. P., 2009. Soil properties in two soil profiles from terraces of the Nam Co Lake in Tibet, China. J. Mt. Sci., 6(4), 354-361.

[72]

Wei, W, Chen, L. D., Fu, B. J., Chen, J., 2010. Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China. Catena 81(1), 24-31.

[73]

Wei, W, Chen, D, Wang, L. X., Daryanto, S, Chen, L. D., Yu, Y, Lu, Y. L., Sun, G, Feng, T. J., 2016. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth Sci. Rev., 159, 388-403.

[74]

Wei, W, Feng, X. R., Yang, L, Chen, L. D., Feng, T. J., Chen, D., 2019. The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China. Sci.Total Environ., 647, 1323-1332.

[75]

Wei, W, Pan, D. L., Yang, Y., 2021. Effects of terracing measures on water retention of pinus Tabulaeformis forest in the dryland loess hilly region of China. Agric. For. Meteorol., 308–309, Article 108544

[76]

Wen, X, Deng, X., 2020. Current soil erosion assessment in the Loess Plateau of China: a mini-review. J. Clean. Prod., 276, 123091.

[77]

Witzgall, K, Vidal, A, Schubert, D. I., Höschen, C, Schweizer, S. A., Buegger, F, Pouteau, V, Chenu, C, Mueller, C. W., 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun., 12(1), 4115.

[78]

Xie, H. H., Li, C, Qian, Y., 2019. Spatial variability and altitudinal gradient distribution pattern of soil nutrients in Wumeng mountainous region, Yunnan. Chin. Agric. Sci. Bull., 35(8), 52-59.

[79]

Xiong, M. Q., Sun, R. H., Chen, L. D., 2019. Global analysis of support practices in USLE-based soil erosion modeling. Prog. Phys. Geogr., 43(3), 391-409.

[80]

Xue, Z. J., An, S. S., 2018. Changes in soil organic carbon and total nitrogen at a small watershed scale as the result of land use conversion on the Loess Plateau. Sustainability 10(12), 4757.

[81]

Yadav, G. S., Das, A, Babu, S, Mohapatra, K. P., Lal, R, Rajkhowa, D., 2021. Potential of conservation tillage and altered land configuration to improve soil properties, carbon sequestration and productivity of maize based cropping system in eastern Himalayas, India. Int. Soil Water Conserv. Res., 9(2), 279-290.

[82]

Yang, W. Z., Wei, C, Lian, B, Dai, C. Y., Chen, N. L., 2011. Soil fertility characteristics under different land-use patterns in Shiyanghe Basin. J. Gansu Agric. Univ., 46, 112-117.

[83]

Yao, X, Yu, K. Y., Wang, G. Y., Deng, Y. B., Lai, Z. J., Chen, Y, Jiang, Y. S., Liu, J., 2019. Effects of soil erosion and reforestation on soil respiration, organic carbon and nitrogen stocks in an eroded area of southern China. Sci. Total Environ., 683, 98-108.

[84]

Yerokun, O. A., 2008. Chemical characteristics of phosphorus in some representative benchmark soils of Zambia. Geoderma 147(1–2), 63-68.

[85]

Yu, Y, Hua, T, Chen, L, Zhang, Z, Pereira, P., 2024. Divergent changes in vegetation greenness, productivity, and rainfall use efficiency are characteristic of ecological restoration towards high-quality development in the Yellow River Basin, China. Engineering, 34 (3), pp. 111-121. doi: 10.1016/j.eng.2023.07.012.

[86]

Yu, Y, Wei, W, Chen, L, Feng, T, Daryanto, S., 2019. Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Sci. Total Environ., 652, 755-764.

[87]

Yu, Y, Zhao, W. W., Martinez-Murillo, J. F., Pereira, P., 2020. Loess Plateau: from degradation to restoration. Sci. Total Environ., 738, 140206.

[88]

Zeng, R. B., Wei, Y. J., Huang, J. J., Chen, X, Cai, C. F., 2021. Soil organic carbon stock and fractional distribution across central-south China. Int. Soil Water Conserv. Res., 9(4), 620-630.

[89]

Zhang, X. P., Zhang, F. F., Wang, D. X., Fan, J. X., Hu, Y. N., Kang, H. B., Chang, M. J., Pang, Y, Yang, Y, Feng, Y., 2018. Effects of vegetation, terrain and soil layer depth on eight soil chemical properties and soil fertility based on hybrid methods at urban forest scale in a typical loess hilly region of China. PLoS One 13(10), e0205661.

[90]

Zhao, B. H., Li, Z. B., Li, P, Xu, G. C., Gao, H. D., Cheng, Y. T., Chang, E. H., Yuan, S. L., Zhang, Y, Feng, Z. H., 2017. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma 296, 10-17.

[91]

Zhao, G. J., Mu, X. M., Wen, Z. M., Wang, F, Gao, P., 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev., 24(5), 499-510.

[92]

Zhao, N, Li, X. G., 2017. Effects of aspect-vegetation complex on soil nitrogen mineralization and microbial activity on the Tibetan Plateau. Catena 155, 1-9.

[93]

Zhao, Y, Wang, P, Li, J, Chen, Y, Ying, X, Liu, S., 2009. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. Eur. J. Agron., 31(1), 36-42.

[94]

Zhou, J, Bing, H, Wu, Y, Sun, H, Wang, J., 2018. Weathering of primary mineral phosphate in the early stages of ecosystem development in the Hailuogou Glacier foreland chronosequence. Eur. J. Soil Sci., 69(3), 450-461.

[95]

Zhou, L. M., Jin, S. L., Liu, C. A., Xiong, Y. C., Si, J. T., Li, X. G., Gan, Y. T., Li, F. M., 2012. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: opportunities and challenges in a semiarid agroecosystem. Field Crops Res., 126, 181-188.

[96]

Zhu, H. H., Wu, J. S., Guo, S. L., Huang, D. Y., Zhu, Q. H., Ge, T. D., Lei, T. W., 2014. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau. Catena 120, 64-72.

PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

/