Climate change drives flooding risk increases in the Yellow River Basin1

Hengxing Lan , Zheng Zhao , Langping Li , Junhua Li , Bojie Fu , Naiman Tian , Ruixun Lai , Sha Zhou , Yanbo Zhu , Fanyu Zhang , Jianbing Peng , John J. Clague

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 193 -199.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :193 -199. DOI: 10.1016/j.geosus.2024.01.004
Short Communication
review-article

Climate change drives flooding risk increases in the Yellow River Basin1

Author information +
History +
PDF

Abstract

The Yellow River Basin (YRB) has experienced severe floods and continuous riverbed elevation throughout history. Global climate change has been suggested to be driving a worldwide increase in flooding risk. However, owing to insufficient evidence, the quantitative correlation between flooding and climate change remains ill-defined. We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements. Variations in yearly maximum flood discharge show distinct periods: a dramatic decreasing period from 1843 to 1950, and an oscillating gentle decreasing from 1950 to 2021, with the latter period also showing increasing more extreme floods. A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods: an oscillating gentle decreasing period from 1950 to 2000, and a clear recent increasing period from 2000 to 2021. We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an ∼44.4 billion US dollars loss of floods in the YRB in 2100.

Keywords

Flooding risk / Risk management / Climate change / Flood discharge / Extreme precipitation

Cite this article

Download citation ▾
Hengxing Lan, Zheng Zhao, Langping Li, Junhua Li, Bojie Fu, Naiman Tian, Ruixun Lai, Sha Zhou, Yanbo Zhu, Fanyu Zhang, Jianbing Peng, John J. Clague. Climate change drives flooding risk increases in the Yellow River Basin1. Geography and Sustainability, 2024, 5(2): 193-199 DOI:10.1016/j.geosus.2024.01.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants No. 42041006, 41790443 and 41927806).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.01.004.

References

[1]

Blöschl, G, Hall, J, Parajka, J, Perdigão, R. A. P., Merz, B, Arheimer, B, Aronica, G, Bilibashi, A, Bonacci, O, Borga, M, Castellarin, A, Chirico, G. B., Claps, P, Fiala, K, Frolova, N, Gorbachova, L, Gül, A, Hannaford, J, Harrigan, S, Kireeva, M, Kiss, A, Kjeldsen, T. R., Kohnova, T, Koskela, J. J., Ledvinka, O, Macdonald, N, Mavrova-Guirguinova, M, Mediero, L, Merz, R, Molnar, P, Montanari, A, Murphy, C, Osuch, M, Ovcharuk, V, Radevski, I, Rogger, M, Salinas, J, Sauquet, E, Szolgay, J, Viglione, A, Volpi, E, Wilson, D, Zaimi, K., 2017. Changing climate shifts timing of European floods. Science 357(6351), 588-590.

[2]

Blöschl, G, Hall, J, Viglione, A, Perdigão, R. A., Parajka, J, Merz, B, Lun, D, Arheimer, B, Aronica, G, Bilibashi, A, Boháč, M, Bonacci, O, Borga, M, Castellarin, A, Chirico, G. B., Claps, P, Frolova, N, Ganora, D, Gorbachova, L, Gül, A, Hannaford, J, Harrigan, S, Kireeva, M, Kiss, A, Kjeldsen, T. R., Kohnová, S, Koskela, J. J., Ledvinka, O, Macdonald, N, Mavrova-Guirguinova, M, Mediero, L, Merz, R, Molnar, P, Montanari, A, Conor, M, Osuch, M, Ovcharuk, V, Radevski, I, Salinas, J. L., Sauquet, E, Szolgay, J, Volpi, E, Wilson, D, Zaimi, K. Ž ivkovi ć, N., 2019. Changing climate both increases and decreases European river floods.. Nature 573 (7772), 108–111.

[3]

Do, H. X., Westra, S, Leonard, M., 2017. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol., 552, 28-43.

[4]

Ezer, T, Atkinson, L. P., 2014. Accelerated flooding along the US east coast: on the impact of sea-level rise, tides, storms, the gulf stream, and the north Atlantic oscillations. Earths Future 2(8), 362-382.

[5]

Fowler, H. J., Lenderink, G, Prein, A. F., Westra, S, Allan, R. P., Ban, N, Barbero, R, Berg, P, Blenkinsop, S, Do, H. X., Guerreiro, S, Haerter, J. O., Kendon, E. J., Lewis, E, Schaer, C, Sharma, A, Villarini, G, Wasko, C, Zhang, X., 2021. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth. Environ., 2(2), 107-122.

[6]

Gu, L, Chen, J, Yin, J, Slater, L. J., Wang, H. M., Guo, Q, Feng, M. Y., Qin, H, Zhao, T., 2022. Global increases in compound flood-hot extreme hazards under climate warming. Geophys. Res. Lett., 49(8), e2022GL097726.

[7]

Guha-Sapir, D, Hoyois, P, Wallemacq, P, Below, R. 2017. Annual disaster statistical review 2016: the numbers and trends. Centre Res. Epidemiol. Disasters, pp.1-91.

[8]

Guppy, H. B., 1880. The Yang-Tse, the Yellow River, and the Pei-Ho. Nature 22, 486-488.

[9]

Hirabayashi, Y, Tanoue, M, Sasaki, O, Zhou, X, Yamazaki, D., 2021. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep., 11(1), 3740.

[10]

Hummel, M. A., Griffin, R, Arkema, K, Guerry, A. D., 2021. Economic evaluation of sea-level rise adaptation strongly influenced by hydrodynamic feedbacks. Proc. Natl. Acad. Sci. U.S.A., 118(29), e2025961118.

[11]

Hyndman, R. J., Fan, Y., 1996. Sample quantiles in statistical packages. Am. Stat., 50(4), 361-365.

[12]

Lan, H, Peng, J, Zhu, Y, Li, L, Pan, B, Huang, Q, Li, J, Zhang, Q., 2022. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin. Sci. China Ses. D-Earth. Sci., 65(2), 234-256.

[13]

Maraun, D., 2013. When will trends in European mean and heavy daily precipitation emerge?. Environ. Res. Lett., 8(1), 014004.

[14]

Munoz, S. E., Giosan, L, Therrell, M. D., Remo, J. W., Shen, Z, Sullivan, R. M., Wiman, C, O’Donnell, M, Donnelly, J. P., 2018. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 556(7699), 95-98.

[15]

Musselman, K. N., Lehner, F, Ikeda, K, Clark, M. P., Prein, A. F., Liu, C, Barlage, M, Rasmussen, R., 2018. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8(9), 808-812.

[16]

Ning, Q. 1990. Fluvial processes in the lower Yellow River after Levee breaching at Tongwaxiang in 1855. L.M. Brush, M.G. Wolman, B.W. Huang (Eds.), Taming the Yellow River: Silt and Floods, Springer Dordrecht, pp.261-274.

[17]

Sharma, A, Wasko, C, Lettenmaier, D. P., 2018. If precipitation extremes are increasing, why aren't floods?. Water. Resour. Res., 54(11), 8545-8551.

[18]

Sivapalan, M, Blöschl, G, Merz, R, Gutknecht, D., 2005. Linking flood frequency to long-term water balance: incorporating effects of seasonality. Water Resour. Res., 41(6), W06012.

[19]

Srivastava, A, Grotjahn, R, Ullrich, P. A., 2020. Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather Clim. Extremes 29, 100268.

[20]

Sweet, W. V., Park, J., 2014. From the extreme to the mean: acceleration and tipping points of coastal inundation from sea level rise. Earths Future 2(12), 579-600.

[21]

Tellman, B, Sullivan, J. A., Kuhn, C, Kettner, A. J., Doyle, C. S., Brakenridge, G. R., Erickson, T. A., Slayback, D. A., 2021. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596(7870), 80-86.

[22]

Tian, S, Wang, W, Xie, B, Zhang, M., 2016. Fluvial processes of the downstream reaches of the reservoirs in the lower Yellow River. J. Geogr. Sci., 26(9), 1321-1336.

[23]

Vormoor, K, Lawrence, D, Schlichting, L, Wilson, D, Wong, W. K., 2016. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol., 538, 33-48.

[24]

Wahl, T, Jain, S, Bender, J, Meyers, S. D., Luther, M. E., 2015. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang., 5(12), 1093-1097.

[25]

Wang, Y, Su, Y., 2011. The geo-pattern of course shifts of the lower Yellow River. J. Geogr. Sci., 21(6), 1019-1036.

[26]

Wasko, C, Sharma, A, Westra, S., 2016. Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett., 43(8), 4026-4032.

[27]

Wasko, C, Nathan, R, Peel, M. C., 2020. Changes in antecedent soil moisture modulate flood seasonality in a changing climate. Water. Resour. Res., 56 (3)

[28]

Winsemius, H. C., Aerts, J. C., Van Beek, L. P., Bierkens, M. F., Bouwman, A, Jongman, B, Kwadijk, J. C., Ligtvoet, W, Lucas, P. L., Van Vuuren, D. P., Ward, P. J., 2016. Global drivers of future river flood risk. Nat. Clim. Change 6(4), 381-385.

[29]

Wu, Q. L., Zhang, P. Z., Zhang, H. P., Ye, M. L., Zhang, Z. Q., 2009. A Palaeo-earthquake induced damming and bursting of Yellow River and the abnormal flood that destroyed Lajia relic. Sci. China Ses. D-Earth Sci., 39, 1148-1159.

[30]

Yang, X. Y., Xia, Z. K., Cui, Z. J., 2005. Holocene extreme floods and its sedimentary characteristic in the upper reaches of the Yellow River. Quaternary Sci., 25(1), 80-85.

PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

/