Exploring social-ecological system resilience in South China Karst: Quantification, interaction and policy implication

Tiantian Chen , Yuxi Wang , Li Peng

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 289 -301.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :289 -301. DOI: 10.1016/j.geosus.2024.01.003
Research Article
review-article

Exploring social-ecological system resilience in South China Karst: Quantification, interaction and policy implication

Author information +
History +
PDF

Abstract

China’s Grain to Green Program (GTGP), which is one of the largest payments for ecosystem services (PES) in the world, has made significant ecological improvements to the environment. However, current understanding of its outcomes on the social-ecological system (SES) remains limited. Therefore, taking the South China Karst as an example, a SES resilience evaluation index system was constructed followed by an exploratory spatial analysis, root mean square error, and Self-Organizing Feature Map to clarify the spatiotemporal changes and relationship of SES resilience, achieve the zoning of SES resilience and provide restoration measures. The results showed an upward trend in social resilience from 2000 to 2020, especially its subsystem of social development. Regional ecological resilience was stable, owing to a slightly declined ecosystem services and increased landscape pattern. Spatially, nearly half of the counties exhibited a distribution mismatch in SES resilience. There was an obvious inverted U-shaped relationship of SES resilience, indicating a clear threshold effect, and the constraint relationship of SES resilience eased over time, demonstrating the effectiveness of the ecological restoration program. GTGP played a positive role in reducing regional SES trade-off, but this positive effect was limited, reflecting the limitations of overemphasizing the conversion from farmland to forest and grassland. Regional SES resilience can be divided into four clusters, which were the key optimization zone for social system, the SES resilience safety zone, the key restoration zone for SES resilience, and the key optimization zone for ecological system. Adaptive adjustments for the GTGP in these zones should be taken to achieve maximum SES benefits in the future.

Keywords

SES resilience / Trade-off / Clustering / GTGP / South China Karst

Cite this article

Download citation ▾
Tiantian Chen, Yuxi Wang, Li Peng. Exploring social-ecological system resilience in South China Karst: Quantification, interaction and policy implication. Geography and Sustainability, 2024, 5(2): 289-301 DOI:10.1016/j.geosus.2024.01.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This article is funded by the National Key Research and Development Program of China (Grant No. 2022YFF1300701) and National Natural Science Foundation of China (Grant No. 42001090).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.01.003.

References

[1]

Ahern, J., 2011. From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc. Urban Plan., 100, 341-343.

[2]

Alix-Garcia, J. M., Sims, K. R. E., Orozco-Olvera, V. H., Costica, L. E., Fernández Medina, J. D., Romo Monroy, S., 2018. Payments for environmental services supported social capital while increasing land management. Proc. Natl. Acad. Sci. U.S.A., 115, 7016-7021.

[3]

Andrew, F. R., Rodriguez, L. C., Whitten, S. M., Williams, K, Nolles, K, Windle, J, Rolfe, J., 2011. Adapting auctions for the provision of ecosystem services at the landscape scale. Ecol. Econ., 70(9), 1621-1627.

[4]

Bi, Y. Z., Zheng, L, Wang, Y, Li, J. F., Yang, H, Zhang, B. W., 2023. Coupling relationship between urbanization and water-related ecosystem services in China’s Yangtze River Economic Belt and its socio-ecological driving forces: a county-level perspective. Ecol. Indic., 146, 14.

[5]

Bryan, B. A., Gao, L, Ye, Y, Sun, X, Connor, J. D., Crossman, N. D., Stafford-Smith, M, Wu, J, He, C, Yu, D, Liu, Z, Li, A, Huang, Q, Ren, H, Deng, X, Zheng, H, Niu, J, Han, G, Hou, X., 2018. China's response to a national land-system sustainability emergency. Nature 559, 193-204.

[6]

Call, M, Sellers, S., 2019. How does gendered vulnerability shape the adoption and impact of sustainable livelihood interventions in an era of global climate change?. Environ. Res. Lett., 14(8), 083005.

[7]

Calle, A., 2020. Can short-term payments for ecosystem services deliver long-term tree cover change?. Ecosyst. Serv., 42, 101084.

[8]

Cao, S, Zhong, B, Yue, H, Zeng, H, Zeng, J, Daily, G. C., 2009. Development and testing of a sustainable environmental restoration policy on eradicating the poverty trap in China's Changting County. Proc. Natl. Acad. Sci. U.S.A., 106, 10712-10716.

[9]

Chen, T. T., Wang, Q, Wang, Y. X., Peng, L., 2022. Processes and mechanisms of vegetation ecosystem responding to climate and ecological restoration in China. Front. Plant Sci., 13, 1062691.

[10]

Chen, T. T., Wang, Q, Wang, Y. X., Peng, L., 2023. Differentiation characteristics of karst vegetation resilience and its response to climate and ecological restoration projects. Land Degrad. Dev., 34(16), 5055-5070.

[11]

Chen, Y, Wang, K, Lin, Y, Shi, W, Song, Y, He, X., 2015. Balancing green and grain trade. Nat. Geosci., 8, 739-741.

[12]

China Statistical Yearbook, 2016. National Bureau of Statistics Data.

[13]

Chuang, W. C., Garmestani, A, Eason, T. N., Spanbauer, T. L., Fried-Petersen, H. B., Roberts, C. P., Sundstrom, S. M., Burnett, J. L., Angeler, J. L., Chaffin, B. C., Gundersen, L, Twidwell, D, Aellen, C. R., 2018. Enhancing quantitative approaches for assessing community resilience. J. Environ. Manag., 213, 353-362.

[14]

Cinner, J. E., Barnes, M. L., 2019. Social dimensions of resilience in social-ecological systems. One Earth 1(1), 51-56.

[15]

Fang, X. N., Li, J. W., Ma, Q., 2023. Integrating green infrastructure, ecosystem services and nature-based solutions for urban sustainability: a comprehensive literature review. Sustain. Cities Soc., 98, 13.

[16]

Fei, D. Q., Cheng, Q, Mao, X. F., Liu, F. G., Zhou, Q., 2017. Land use zoning using a coupled gridding- self-organizing feature maps method: a case study in China. J. Clean. Prod., 161(9), 1162-1170.

[17]

Feng, T, Chen, H. S., Polyakov, V. O., Wang, K. L., Zhang, X. B., Zhang, W., 2016. Soil erosion rates in two karst peak-cluster depression basins of northwest Guangxi, China: comparison of the RUSLE model with 137Cs measurements. Geomorphology 253, 217-224.

[18]

Foley, J. A., Ramankutty, N, Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M, Mueller, N. D., O'Connell, C, Ray, D. K., West, P. C., Balzer, C, Bennett, E. M., Carpenter, S. R., Hill, J, Monfreda, C, Polasky, S, Rockström, J, Sheehan, J, Siebert, S, Tilman, D, Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature 478(7369), 337-342.

[19]

Gao, J. X., Barzel, B, A-Barabasi, L., 2016. Universal resilience patterns in complex networks. Nature 530, 307-312.

[20]

Ge, Y, Hu, S, Song, Y. Z., Zheng, H, Liu, Y. S., Ye, X. Y., Ma, T, Liu, M. X., Zhou, C. H., 2023. Sustainable poverty reduction models for the coordinated development of the social economy and environment in China. Sci. Bull., 68(19), 2236-2246.

[21]

Gu, S, Li, H, Yi, S., 2010. Urbanization as an engine for expanding domestic demand and sustaining economic growth. Chin. J. Popul. Sci., 3, 2-10.

[22]

Hua, F, Wang, X, Zheng, X, Fisher, B, Wang, L, Zhu, J, Tang, Y, Yu, D. W., Wilcove, D. S., 2016. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun., 7, 12717.

[23]

Jia, L, Deng, Y. J., Hou, M. Y., Li, Y. Y., Ding, Z. M., Yao, S. B., 2022. Pathways from the payment for ecosystem services program to ecological and socio-economic outcomes. Ecol. Indic., 144, 109534.

[24]

Jones, K. W., Munoz Brenes, C. L., Shinbrot, X. A., López-Báez, W, Rivera-Castañeda, A., 2018. The influence of cash and technical assistance on household-level outcomes in payments for hydrological services programs in Chiapas, Mexico. Ecosyst. Serv., 31, 208-218.

[25]

Lam, N. S. N., Qiang, Y, Arenas, H, Brito, P, Liu, K-b., 2015. Mapping and assessing coastal resilience in the Caribbean region. Cartogr. Geogr. Inf. Sci., 42, 315-322.

[26]

Lamy, T, Liss, K. N., Gonzalez, A, Bennett, E. M., 2016. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett., 11(12), 9.

[27]

Li, J, Liang, J. X., Wu, Y, Yin, S. Q., Yang, Z, Hu, Z. Q., 2021. Quantitative evaluation of ecological cumulative effect in mining area using a pixel-based time series model of ecosystem service value. Ecol. Indic., 120, 14.

[28]

Li, L, Fan, Z. H., Xiong, K. N., Shen, H. T., Guo, Q. Q., Dan, W. H., Li, R., 2021. Current situation and prospects of the studies of ecological industries and ecological products in eco-fragile areas. Environ. Res., 201, 12.

[29]

Li, T, Dong, Y, Liu, Z., 2020. A review of social-ecological system resilience: mechanism, assessment and management. Sci. Total Environ., 723, 138113.

[30]

Liu, Q, Deng, D, Yao, B, Liao, Q., 2020. Analysis of the karst springs’ supply sources in rocky desertification area of Guanling-Huajiang, Guizhou, China. Carbonate Evaporite 35(3), 90.

[31]

Maclean, K, Cuthill, M, Ross, H., 2014. Six attributes of social resilience. J. Environ. Plan. Manag., 57, 144-156.

[32]

Mahoney, D. T., Fox, J. F., Al Aamery, N., 2018. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system. J. Hydrol., 561, 862-883.

[33]

Martin, B, Yue, Y. M., Pierre, W. J., Tong, X. W., Feng, T, Rudbeck, J. M., Xiao, X. M., Aleixandre, V, Arnaud, M, Amen, A. Y., Wang, K. L., Fensholt, R., 2018. Satellite-observed major greening and biomass increase in South China Karst during recent decade. Earths Future 7(6), 1017-1028.

[34]

Miao, P. P., Zhao, X. Q., Pu, J. W., Huang, P, Shi, X. Q., Gu, Z. X., 2022. Study on the evolution mechanism of ecosystem services in karst mountainous areas from the perspective of humanities. Int. J. Environ. Res. Public Health 19(20), 13628.

[35]

Naylor, L. A., Brady, U, Quinn, T, Brown, K, Anderies, J. M., 2019. A multiscale analysis of social-ecological system robustness and vulnerability in Cornwall, UK. Reg. Environ. Change 19(7), 1835-1848.

[36]

Osman, T., 2021. A framework for cities and environmental resilience assessment of local governments. Cities 118, 103372.

[37]

Paluch, J., 2021. The stochastic backward shifts model better corresponds to the fine-scale structural heterogeneity of old-growth Abies-Fagus-Picea forests than the ontogenic life cycle model. For. Ecol. Manag., 486, 118978.

[38]

Peng, J, Hu, T, Qiu, S. J., Hu, Y. N., Dong, J. Q., Lin, Y. F., 2023. Balancing the effects of forest conservation and restoration on south China karst greening. Earths Future 11(6), e2023EF003487.

[39]

Peng, J, Liu, Q. H., Blaschke, T, Zhang, Z. M., Liu, Y. X., Hu, Y. N., Wang, M, Xu, Z. H., Wu, J. S., 2020. Integrating land development size, pattern, and density to identify urban-rural fringe in a metropolitan region. Landsc. Ecol., 35(9), 2045-2059.

[40]

Peng, L, Chen, T, Deng, W, Liu, Y., 2022. Exploring ecosystem services trade-offs using the Bayesian belief network model for ecological restoration decision-making: a case study in Guizhou Province, China. Ecol. Indic., 135, 108569.

[41]

Peng, T, Deng, H. W., Yun, L, Jin, Z. Y., 2021. Assessment on water resources carrying capacity in karst areas by using an innovative DPESBRM concept model and cloud model. Sci. Total Environ., 767, 144353.

[42]

Peng, Y. T., Welden, N, Renaud, F. G., 2023. A framework for integrating ecosystem services indicators into vulnerability and risk assessments of deltaic social-ecological systems. J. Environ. Manage., 326, 116682.

[43]

Pu, J. W., Zhao, X. Q., Huang, P, Gu, Z. X., Shi, X. Q., Chen, Y. J., Shi, X. Y., Tao, J. Y., Xu, Y. F., Xiang, A. M., 2022. Ecological risk changes and their relationship with exposed surface fraction in the karst region of southern China from 1990 to 2020. J. Environ. Manage., 323, 13.

[44]

Qiu, S. J., Peng, J, Dong, J. Q., Wang, X. Y., Ding, Z. H., Zhang, H. B., Mao, Q, Liu, H. Y., Quine, T. A., Meersmans, J., 2020. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: a case study of Guizhou Province, China. Prog. Phys. Geog., 45 (1)

[45]

Ran, P. L., Hu, S. G., Frazier, A. E., Yang, S. F., Song, X. Y., Qu, S. J., 2023. The dynamic relationships between landscape structure and ecosystem services: an empirical analysis from the Wuhan metropolitan area, China. J. Environ. Manage., 325, 13.

[46]

Rescia, A. J., Ortega, M., 2017. Quantitative evaluation of the spatial resilience to the B. oleae pest in olive grove socio-ecological landscapes at different scales. Ecol. Indic., 84, 820-827.

[47]

Ruggiero, P. G., Metzger, J. P., Tambosi, L. R., Nichols, E., 2019. Payment for ecosystem services programs in the Brazilian Atlantic Forest: effective but not enough. Land Use Policy 82, 283-291.

[48]

Sachs, J. D., Reid, W. V., 2006. Environment - investments toward sustainable development. Science 312, 1002.

[49]

Sanabria-Fernandez, J. A., Lazzari, N, Becerro, M. A., 2019. Quantifying patterns of resilience: what matters is the intensity, not the relevance, of contributing factors. Ecol. Indic., 107, 105565.

[50]

Scheffer, M, Carpenter, S. R., Lenton, T. M., Bascompte, J, Brock, W, Dakos, V, Koppel, J. V. D., Leemput, I. A. V. D., Levin, S. A., Nes, E. H. V., 2012. Anticipating critical transitions. Science 338, 344-348.

[51]

Sheng, W. P., Zhen, L, Xie, G. D., Xiao, Y., 2017. Determining eco-compensation standards based on the ecosystem services value of the mountain ecological forests in Beijing, China. Ecosyst. Serv., 26, 422-430.

[52]

Simon, W, Gregory, S. C., John, A, John, A. D., 2023. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain., 6(11), 1331-1342.

[53]

Sundstrom, S. M., Eason, T, Nelson, R. J., Angeler, D. G., Barichievy, C, Garmestani, A. S., Greham, N. A. J., Granholm, D, Gunderson, L, Knutson, M., 2017. Detecting spatial regimes in ecosystems. Ecol. Lett., 20, 19-32.

[54]

Tallis, H, Kareiva, P, Marvier, M, Chang, A., 2008. An ecosystem services framework to support both practical conservation and economic development. Proc. Natl. Acad. Sci. U.S.A., 105, 9457-9464.

[55]

Tang, F, Fu, M. C., Wang, L, Zhang, P. T., 2020. Land-use change in Changli County, China: predicting its spatio-temporal evolution in habitat quality. Ecol. Indic., 117, 106719.

[56]

Tong, X. W., Brandt, M, Yue, Y. M., Ciais, P, Jepsen, M. R., Penuelas, J, Wigneron, J. P., Xiao, X. M., Song, X. P., Horion, S, Rasmussen, K, Saatchi, S, Fan, L, Wang, K. L., Zhang, B, Chen, Z. C., Wang, Y. H., Li, X. J., Fensholt, R., 2020. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun., 11, 129.

[57]

Tong, X. W., Brandt, M, Yue, Y. M., Horion, S, Wang, K. L., Keersmaecker, W. D., Tian, T, Schurgers, G, Xiao, X. M., Luo, T. Q., Chen, C, Myneni, R, Shi, Z, Chen, H. S., Fensholt, R., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain., 1(1), 44-50.

[58]

Vitali, V, Forrester, D. I., Bauhus, J., 2018. Know your neighbours: drought response of Norway spruce, silver fir and Douglas fir in mixed forests depends on species identity and diversity of tree neighbourhoods. Ecosystems 21, 1215-1229.

[59]

Wang, K. L., Zhang, C. H., Chen, H. S., Yue, Y. M., Zhang, W, Zhang, M. Y., Qi, X. K., Fu, Z. R., 2019. Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecol., 34, 2743-2763.

[60]

Wang, K. P., Gao, J. R., Liu, C. H., Zhang, Y. L., Wang, C. X., 2024. Understanding the effects of socio-ecological factors on trade-offs and synergies among ecosystem services to support urban sustainable management: a case study of Beijing, China. Sustain. Cities Soc., 100, 16.

[61]

Wang, L, Li, Y. H., Wang, Y. Q., Guo, J. L., Xia, Q. Q., Tu, Y. Y., Nie, P. P., 2021. Compensation benefits allocation and stability evaluation of cascade hydropower stations based on Variation Coefficient-Shapley Value Method. J. Hydrol., 599, 12.

[62]

Wang, N, Li, J, Zhou, Z., 2021. Landscape pattern optimization approach to protect rice terrace Agroecosystem: case of GIAHS site Jiache Valley, Guizhou, southwest China. Ecol Indic 129, 107958.

[63]

Wang, S, Liu, Q, Zhang, D., 2004. Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev., 15(2), 115-121.

[64]

Wang, X. F., Zhang, X. R., Feng, X. M., Liu, S. R., Yin, L. C., Chen, Y. Z., 2020. Trade-offs and synergies of ecosystem services in Karst Area of China driven by grain-for-green program. Chin. Geogr. Sci., 30(1), 101-114.

[65]

Wang, Y, Zhang, Q, Li, Q. R., Wang, J. Y., Sannigrahi, S, Bilsborrow, R, Bellingrath-Kimura, S. D., Li, J. F., Song, C. H., 2021. Role of social networks in building household livelihood resilience under payments for ecosystem services programs in a poor rural community in China. J. Rural Stud., 86, 208-225.

[66]

Wang, Y. X., Chen, T. T., Wang, Q, Peng, L., 2023. Time-lagged and cumulative effects of drought and anthropogenic activities on China's vegetation greening from 1990 to 2018. Int. J. Digit. Earth 16(1), 2233-2258.

[67]

Wang, Z. Z., Fu, B. J., Wu, X. T., Li, Y. J., Wang, S, Lu, N., 2023. Escaping social-ecological traps through ecological restoration and socioeconomic development in China's Loess Plateau. People Nat., 16(5), 1364-1379.

[68]

Wilt, G. E., Adams, E. E., Thomas, E, Ekperi, L, LeBlanc, T. T., Dunn, I, Molinari, N. A., Carbone, E. G., 2018. A space time analysis evaluating the impact of hurricane sandy on HIV testing rates. Int. J. Disaster Risk Reduct., 28, 839-844.

[69]

Wu, J. Y., Luo, J. G., Zhang, H, Qin, S, Yu, M. J., 2022. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ., 847, 157491.

[70]

Wu, X. T., Liu, J. G., Fu, B. J., Wang, S, Wei, Y. P., 2021. Integrating multiple influencing factors in evaluating the socioeconomic effects of payments for ecosystem services. Ecosyst. Serv., 51, 8.

[71]

Wu, X. T., Wang, S, Fu, B. J., Feng, X. M., Chen, Y. Z., 2019. Socio-ecological changes on the loess plateau of China after grain to green program. Sci. Total Environ., 678, 565-573.

[72]

Wu, X. T., Wei, Y. P., Fu, B. J., Wang, S, Zhao, Y, Moran, E. F., 2020. Evolution and effects of the social-ecological system over a millennium in China's Loess Plateau. Sci. Adv., 6(41), 10.

[73]

Xiao, K. C., Tang, J. J., Chen, H, Li, D. J., Liu, Y. X., 2020. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China. Sci. Total Environ., 208(15), 135201.

[74]

Xu, J, Wang, Q, Kong, M., 2018. Livelihood changes matter for the sustainability of ecological restoration: a case analysis of the Grain for Green Program in China's largest Giant Panda Reserve. Ecol. Evol., 8, 3842-3850.

[75]

Yang, Z. H., Li, B, Nan, B, Dai, X. H., Peng, C. C., Bi, X., 2023. A methodological framework for assessing pastoral socio-ecological system vulnerability: a case study of Altay Prefecture in Central Asia. Sci. Total Environ., 862, 160828.

[76]

Yin, J. B., Gentine, P, Slater, L, Gu, L, Hanasaki, N, Guo, S. L., Xiong, L. H., Schlenker, W., 2023. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain., 6, 259-272.

[77]

Yue, Y. M., Liao, C. J., Tong, X. W., Wu, Z. B., Fensholt, R, Prishchepov, A, Jepsen, M. R., Wang, K. L., Brandt, M., 2020. Large scale reforestation of farmlands on sloping hills in south China karst. Landscape Ecol., 35, 1445-1458.

[78]

Yue, Y. M., Wang, K. L., Zhang, B, Jiao, Q, Liu, B, Zhang, M., 2012. Remote sensing of fractional cover of vegetation and exposed bedrock for karst rocky desertification assessment. Procedia Environ. Sci., 13, 847-853.

[79]

Zhang, C, Li, Y. F., Zhu, X. D., 2016. A social-ecological resilience assessment and governance guide for urbanization processes in East China. Nat. Sustain., 8, 1101.

[80]

Zhang, J. Y., Dai, M. H., Wang, L. C., Su, W. C., 2016. Household livelihood change under the rocky desertification control project in karst areas, Southwest China. Land Use Policy 56, 8-15.

[81]

Zhang, S. H., Xiong, K. N., Deng, X. H., Kong, L. W., Min, X. Y., 2023. Impact of ecological restoration on ecosystem service trade-offs: insight from karst desertification control. Land Degrad. Dev., 24(9), 2693-2706.

[82]

Zhang, X. X., Brandt, M, Tong, X. W., Ciais, P, Yue, Y. M., Xiao, X. M., Zhang, W. M., Wang, K. L., Fensholt, R., 2022. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain., 5, 321-328.

[83]

Zheng, Z. P., Qi, S. Z., 2011. Potential flood hazard due to urban expansion in the karst mountainous region of North China. Reg. Environ. Change 11(3), 439-440.

[84]

Zhou, Y, Li, Y, Liu, Y., 2019. The nexus between regional eco-environmental degradation and rural impoverishment in China. Habitat Int., 96, 102086.

[85]

Zuo, L, Gao, J., 2022. Dynamic analysis of the determinants of trade-off and synergy between karst soil loss and water yield with integration of geomorphological differentiation. Ecol. Indic., 137, 108754.

[86]

Zurlini, G, Petrosillo, I, Jones, K. B., Zaccarelli, J., 2013. Highlighting order and disorder in social-ecological landscapes to foster adaptive capacity and sustainability. Landscape Ecol., 28(6), 1161-1173.

PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

/