Modeling glacio-hydrological processes in the Himalayas: A review and future perspectives

Lei Wang , Hu Liu , Ranjeet Bhlon , Deliang Chen , Junshui Long , Tenzing C. Sherpa

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 179 -192.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :179 -192. DOI: 10.1016/j.geosus.2024.01.001
Review Article
review-article

Modeling glacio-hydrological processes in the Himalayas: A review and future perspectives

Author information +
History +
PDF

Abstract

The Himalayas and their surrounding areas boast vast glaciers rivaling those in polar regions, supplying vital meltwater to the Indus, Ganges, and Brahmaputra rivers, supporting over a billion downstream inhabitants for drinking, power, and agriculture. With changing runoff patterns due to accelerated glacial melt, understanding and projecting glacio-hydrological processes in these basins is imperative. This review assesses the evolution, applications, and key challenges in diverse glacio-hydrology models across the Himalayas, varying in complexities like ablation algorithms, glacier dynamics, ice avalanches, and permafrost. Previous findings indicate higher glacial melt contributions to annual runoff in the Indus compared to the Ganges and Brahmaputra, with anticipated peak melting in the latter basins — having less glacier cover — before the mid-21st century, contrasting with the delayed peak expected in the Indus Basin due to its larger glacier area. Different modeling studies still have large uncertainties in the simulated runoff components in the Himalayan basins; and the projections of future glacier melt peak time vary at different Himalaya sub-basins under different Coupled Model Intercomparison Project (CMIP) scenarios. We also find that the lack of reliable meteorological forcing data (particularly the precipitation errors) is a major source of uncertainty for glacio-hydrological modeling in the Himalayan basins. Furthermore, permafrost degradation compounds these challenges, complicating assessments of future freshwater availability. Urgent measures include establishing comprehensive in situ observations, innovating remote-sensing technologies (especially for permafrost ice monitoring), and advancing glacio-hydrology models to integrate glacier, snow, and permafrost processes. These endeavors are crucial for informed policymaking and sustainable resource management in this pivotal, glacier-dependent ecosystem.

Keywords

Glacio-hydrology / Modeling / Himalayas / Glacier, snow, and permafrost / Sustainable development

Cite this article

Download citation ▾
Lei Wang, Hu Liu, Ranjeet Bhlon, Deliang Chen, Junshui Long, Tenzing C. Sherpa. Modeling glacio-hydrological processes in the Himalayas: A review and future perspectives. Geography and Sustainability, 2024, 5(2): 179-192 DOI:10.1016/j.geosus.2024.01.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants No. 92047301 and 41988101), and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0206).

References

[1]

Azam, M. F., Kargel, J. S., Shea, J. M., Santosh, N, Haritashya, U. K., Srivastava, S, Maussion, F, Qazi, N, Chevallier, P, Dimri, A. P., Kulkarni, A. V., Cogley, J. G., Bahuguna, I., 2021. Glaciohydrology of the Himalaya-Karakoram. Science 373(6557), eabf3668.

[2]

Armstrong, R. L., Rittger, K, Brodzik, M. J., Racoviteanu, A, Barrett, A. P., Khalsa, S. J. S., Raup, B, Hill, A. F., Khan, A. L., Wilson, A. M., Kayastha, R. B., Fetterer, F, Armstrong, B., 2019. Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow. Reg. Environ. Change, 19 (5), pp. 1249-1261. doi: 10.1007/s10113-018-1429-0.

[3]

Bajracharya, B, Uddin, K, Chettri, N, Shrestha, B, Siddiqui, S. A., 2010. Understanding land cover change using a harmonized classification system in the Himalaya. Mt. Res. Dev., 30 (2), pp. 143-156. doi: 10.1659/MRD-JOURNAL-D-09-00044.1.

[4]

Bajracharya, S. R., Shrestha, B., 2011. The Status of Glaciers in the Hindu Kush-Himalayan Region. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu

[5]

Bandyopadhyay, D, Singh, G, Kulkarni, A. V., 2019. Spatial distribution of decadal ice-thickness change and glacier stored water loss in the Upper Ganga basin, India during 2000–2014. Sci. Rep., 9, p. 16730. doi: 10.1038/s41598-019-53055-y.

[6]

Beaudoing, H, Rodell, M., 2020. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 x 0.25 Degree V2.1. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, Maryland, USA . doi: 10.5067/E7TYRXPJKWOQ.

[7]

Benn, D. I., Owen, L. A., 1998. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. J. Geol. Soc., 155 (2), pp. 353-363. doi: 10.1144/gsjgs.155.2.0353.

[8]

Bhatta, B, Shrestha, S, Shrestha, P. K., Talchabhadel, R., 2019. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena, 181, Article 104082. doi: 10.1016/j.catena.2019.104082.

[9]

Biemans, H, Siderius, C, Lutz, A. F., Nepal, S, Ahmad, B, Hassan, T, von Bloh, W, Wijngaard, R. R., Wester, P, Shrestha, A. B., Immerzeel, W. W., 2019. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain., 2 (7), pp. 594-601. doi: 10.1038/s41893-019-0305-3.

[10]

Böhner, J., 2006. General climatic controls and topoclimatic variations in Central and High Asia. Boreas, 35 (2), pp. 279-295. doi: 10.1080/03009480500456073.

[11]

Bolch, T, Kulkarni, A, Kääb, A, Huggel, C, Paul, F, Cogley, J. G., Frey, H, Kargel, J. S., Fujita, K, Scheel, M, Bajracharya, S, Stoffel, M., 2012. The state and fate of Himalayan glaciers. Science, 336 (2012), pp. 310-314. doi: 10.1126/science.1215828.

[12]

Bolch, T, Shea, J. M., Liu, S. Y., Azam, F. M., Gao, Y, Gruber, S, Immerzeel, W. W., Kulkarni, A, Li, H. L., Tahir, A. A., Zhang, G. Q., Zhang, Y. S. 2019. Status and change of the cryosphere in the extended Hindu Kush Himalaya region. P. Wester, A. Mishira, A. Mukherji, A.B. Shrestha (Eds.), The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, Springer, Cham, pp.209-255.

[13]

Bookhagen, B, Burbank, D. W., 2010. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf., 115 (3), p. F03019. doi: 10.1029/2009JF001426.

[14]

Center for International Earth Science Information Network - CIESIN - Columbia University, 2017. Global Population Count Grid Time Series Estimates. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, New York [Dataset] doi: 10.7927/H4CC0XNV.

[15]

Chand, M. B., Bhattarai, B. C., Pradhananga, N. S., Baral, P., 2021. Trend analysis of temperature data for Narayani River Basin, Nepal. Sci, 3 (1), p. 1. doi: 10.3390/sci3010001.

[16]

Chaturvedi, R. K., Kulkarni, A, Karyakarte, Y, Joshi, J, Bala, G., 2014. Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Clim. Change, 123 (2), pp. 315-328. doi: 10.1007/s10584-013-1052-5.

[17]

Chelamallu, H. P., Venkataraman, G, Murti, M. V. R., Arora, M, Singh, G., 2014. Comparison of SRM and SNOWMOD models using modis snow cover data for Bhagirathi river basin in the Himalayas. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, pp. 4010-4013. doi: 10.1109/IGARSS.2014.6947365.

[18]

Chen, X, Long, D, Hong, Y, Zeng, C, Yan, D. H., 2017. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: how snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?. Water Resour. Res., 53 (3), pp. 2431-2466. doi: 10.1002/2016wr019656.

[19]

Cogley, J. G., 2011. Present and future states of Himalaya and Karakoram glaciers. Ann. Glaciol., 52 (59), pp. 69-73. doi: 10.3189/172756411799096277.

[20]

Collier, E, Immerzeel, W. W., 2015. High-resolution modeling of atmospheric dynamics in the Nepalese Himalaya. J. Geophy. Res. Atmos., 120 (19), pp. 9882-9896. doi: 10.1002/2015JD023266.

[21]

Cui, T, Li, Y, Yang, L, Nan, Y, Li, K, Tudaji, M, Hu, H, Long, D, Shahid, M, Mubeen, A, He, Z, Yong, B, Lu, H, Li, C, Ni, G, Hu, C, Tian, F., 2023. Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels. Nat. Commun., 14, p. 1176. doi: 10.1038/s41467-023-36804-6.

[22]

Dahal, P, Shrestha, M. L., Panthi, J, Pradhananga, D., 2020. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environ. Res., 185, Article 109430. doi: 10.1016/j.envres.2020.109430.

[23]

Devkota, L. P., Gyawali, D. R., 2015. Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal. J. Hydrol. Reg. Stud., 4, pp. 502-515. doi: 10.1016/j.ejrh.2015.06.023.

[24]

Dhami, B, Himanshu, S. K., Pandey, A, Gautam, A. K., 2018. Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal. Environ. Earth Sci., 77 (1), p. 21. doi: 10.1007/s12665-017-7210-8.

[25]

Duncan, J. M. A., Biggs, E. M., 2012. Assessing the accuracy and applied use of satellite-derived precipitation estimates over Nepal. Appl. Geogr., 34, pp. 626-638. doi: 10.1016/j.apgeog.2012.04.001.

[26]

Dyurgerov, M. D., Meier, M. F., 2005. Glaciers and the Changing Earth System: A 2004 Snapshot. Institute of Arctic and Alpine Research, University of Colorado, Colorado, USA

[27]

Engelhardt, M, Ramanathan, A, Eidhammer, T, Kumar, P, Landgren, O, Mandal, A, Rasmussen, R., 2017. Modelling 60 years of glacier mass balance and runoff for Chhota Shigri Glacier, Western Himalaya, Northern India. J. Glaciol., 63 (240), pp. 618-628. doi: 10.1017/jog.2017.29.

[28]

Farhan, S. B., Zhang, Y. S., Ma, Y. Z., Guo, Y. H., Ma, N., 2015. Hydrological regimes under the conjunction of westerly and monsoon climates: a case investigation in the Astore Basin, Northwestern Himalaya. Clim. Dyn., 44, pp. 3015-3032. doi: 10.1007/s00382-014-2409-9.

[29]

Farinotti, D, Immerzeel, W. W., de Kok, R. J., Quincey, D. J., Dehecq, A., 2020. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci., 13 (1), pp. 8-16. doi: 10.1038/s41561-019-0513-5.

[30]

Fujita, K, Nuimura, T., 2011. Spatially heterogeneous wastage of Himalayan glaciers. Proc. Natl. Acad. Sci. U.S.A., 108 (34), pp. 14011-14014. doi: 10.1073/pnas.1106242108.

[31]

Garen, D. C., Marks, D., 2005. Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results. J. Hydrol., 315 (1–4), pp. 126-153. doi: 10.1016/j.jhydrol.2005.03.026.

[32]

Global Modeling and Assimilation Office (GMAO), 2015. MERRA-2 tavg1_2d_slv_Nx: 2d, 1- Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA [Dataset] doi: 10.5067/VJAFPLI1CSIV.

[33]

Gupta, A, Kayastha, R. B., Ramanathan, A, Dimri, A. P., 2019. Comparison of hydrological regime of glacierized Marshyangdi and Tamor river basins of Nepal. Environ. Earth Sci., 78 (14), p. 427. doi: 10.1007/s12665-019-8443-5.

[34]

Hegdahl, T. J., Tallaksen, L. M., Engeland, K, Burkhart, J. F., Xu, C. Y., 2016. Discharge sensitivity to snowmelt parameterization: a case study for Upper Beas basin in Himachal Pradesh, India. Hydrol. Res., 47 (4), pp. 683-700. doi: 10.2166/nh.2016.047.

[35]

Hewitt, K., 2005. The Karakoram anomaly? Glacier expantion and the ‘Elevation effect,’ Karakoram Himalaya. Mt. Res. Dev., 25 (4), pp. 332-340. doi: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2.

[36]

Hewitt, K., 2007. Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol., 53 (181), pp. 181-188. doi: 10.3189/172756507782202829.

[37]

Hewitt, K., 2011. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin. Mt. Res. Dev., 31 (3), pp. 188-200. doi: 10.1659/MRD-JOURNAL-D-11-00020.1.

[38]

Hock, R., 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282 (1–4), pp. 104-115. doi: 10.1016/S0022-1694(03)00257-9.

[39]

Huss, M, Hock, R., 2018. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang., 8 (2), pp. 135-140. doi: 10.1038/s41558-017-0049-x.

[40]

Immerzeel, W. W., Van Beek, L. P. H., Bierkens, M. F. P., 2010. Immerzeel, L.P.H. Van Beek, M.F.P. Bierkens. Climate change will affect the Asian water towers. Science, 328 (2010), pp. 1382-1385. doi: 10.1126/science.1183188.

[41]

Immerzeel, W. W., Pellicciotti, F, Shrestha, A. B., 2012. Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt. Res. Dev., 32 (1), pp. 30-38. doi: 10.1659/MRD-JOURNAL-D-11-00097.1.

[42]

Immerzeel, W. W., Pellicciotti, F, Bierkens, M. F. P., 2013. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci., 6 (9), pp. 742-745. doi: 10.1038/ngeo1896.

[43]

Immerzeel, W. W., Wanders, N, Lutz, A. F., Shea, J. M., Bierkens, M. F. P., 2015. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci., 19 (11), pp. 4673-4687. doi: 10.5194/hess-19-4673-2015.

[44]

Jiang, Y, Yang, K, Qi, Y, Zhou, X, He, J, Lu, H, Li, X, Chen, Y, Li, X, Zhou, B, Mamtimin, A, Shao, C, Ma, X, Tian, J, Zhou, J., 2023. TPHiPr: a long-term (1979–2020) high-accuracy precipitation dataset (1/30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth Syst. Sci. Data, 15 (2), pp. 621-638. doi: 10.5194/essd-15-621-2023.

[45]

Kääb, A, Berthier, E, Nuth, C, Gardelle, J, Arnaud, Y., 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488 (2012), pp. 495-498. doi: 10.1038/nature11324.

[46]

Kaser, G., Großhauser, M., Marzeion, B., 2010. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. U.S.A. 107 (47), 20223– 20227. doi: 10.1073/pnas.1008162107.

[47]

Kayastha, R. B., Steiner, N, Kayastha, R, Mishra, S. K., McDonald, K., 2020. Comparative study of hydrology and icemelt in three Nepal River basins using the glacio-hydrological degree-day model (GDM) and observations from the advanced scatterometer (ASCAT). Front. Earth Sci., 7, p. 354. doi: 10.3389/feart.2019.00354.

[48]

Khadka, D, Babel, M. S., Shrestha, S, Tripathi, N. K., 2014. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J. Hydrol., 511, pp. 49-60. doi: 10.1016/j.jhydrol.2014.01.005.

[49]

Khanal, S, Lutz, A. F., Kraaijenbrink, P. D. A., van den Hurk, B, Yao, T, Immerzeel, W. W., 2021. Variable 21st century climate change response for rivers in high mountain Asia at seasonal to decadal time scales. Water Resour. Res., 57 (5), Article e2020WR029266. doi: 10.1029/2020wr029266.

[50]

Khatiwada, K. R., Panthi, J, Shrestha, M. L., Nepal, S., 2016. Hydro-climatic variability in the Karnali river basin of Nepal Himalaya. Climate, 4 (2), p. 17. doi: 10.3390/cli4020017.

[51]

Li, D, Lu, X, Overeem, I, Walling, D. E., Syvitski, J, Kettner, A. J., Bookhagen, B, Zhou, Y, Zhang, T., 2021. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia. Science, 374 (2021), pp. 599-603. doi: 10.1126/science.abi9649.

[52]

Li, L, Gochis, D. J., Sobolowski, S, Mesquita, M. D. S., 2017. Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model. J. Geophys. Res., 122 (9), pp. 4786-4807. doi: 10.1002/2016JD026279.

[53]

Lutz, A. F., Immerzeel, W. W., 2016. Reference Climate Dataset for the Indus, Ganges, and Brahmaputra River Basins. HI-AWARE Working Paper 2. Himalayan Adaptation, Water and Resilience (HI-AWARE), Kathmandu, Nepal

[54]

Lutz, A.F., Immerzeel, W.W., Shrestha, A.B., Bierkens, M.F.P., 2014a. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 4 (7), 587–592. doi: 10.1038/nclimate2237.

[55]

Lutz, A.F., Immerzeel, W.W., Kraaijenbrink, P.D.A., 2014b. Gridded Meteorological Datasets and Hydrological Modelling in the Upper Indus Basin. Final Report. International Centre for Integrated Mountain Development (ICIMOD), Wageningen.

[56]

Maurer, J. M., Schaefer, J. M., Rupper, S, Corley, A., 2019. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv., 5 (6), p. eaav7266. doi: 10.1126/sciadv.aav7266.

[57]

Maussion, F, Scherer, D, Mölg, T, Collier, E, Curio, J, Finkelnburg, R., 2014. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Clim., 27 (5), pp. 1910-1927. doi: 10.1175/JCLI-D-13-00282.1.

[58]

Mimeau, L, Esteves, M, Zin, I, Jacobi, H. W., Brun, F, Wagnon, P, Koirala, D, Arnaud, Y., 2019. Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues. Hydrol. Earth Syst. Sci., 23 (9), pp. 3969-3996. doi: 10.5194/hess-23-3969-2019.

[59]

Mishra, S. K., Rupper, S, Kapnick, S, Casey, K, Chan, H. G., Ciraci’, E, Haritashya, U, Hayse, J, Kargel, J. S., Kayastha, R. B., Krakauer, N. Y., Kumar, S. V., Lammers, R. B., Maggioni, V, Margulis, S. A., Olson, M, Osmanoglu, B, Qian, Y, McLarty, S, Rittger, K, Rounce, D. R., Shean, D, Velicogna, I, Veselka, T. D., Arendt, A., 2021. Grand challenges of hydrologic modeling for food-energy-water nexus security in high mountain Asia. Front. Water, 3, Article 728156. doi: 10.3389/frwa.2021.728156.

[60]

Moors, E. J., Groot, A, Biemans, H, van Scheltinga, C. T., Siderius, C, Stoffel, M, Huggel, C, Wiltshire, A, Mathison, C, Ridley, J, Jacob, D, Kumar, P, Bhadwal, S, Gosain, A, Collins, D. N., 2011. Adaptation to changing water resources in the Ganges basin, northern India. Environ. Sci. Policy, 14 (7), pp. 758-769. doi: 10.1016/j.envsci.2011.03.005.

[61]

Moulin, L., Gaume, E., Obled, C., 2009. Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrol. Earth Syst. Sci. 13 (2), 99–114. doi: 10.5194/hess-13-99-2009.

[62]

Muñoz-Sabater, J, Dutra, E, Agustí-Panareda, A, Albergel, C, Arduini, G, Balsamo, G, Boussetta, S, Choulga, M, Harrigan, S, Hersbach, H, Martens, B, Miralles, D. G., Piles, M, Rodríguez-Fernández, N. J., Zsoter, E, Buontempo, C, Thépaut, J. N., 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349-4383.

[63]

Naeem, U. A., Hashmi, H. N., Shakir, A. S., 2013. Flow trends in river Chitral due to different scenarios of glaciated extent. KSCE J. Civil Eng., 17 (1), pp. 244-251. doi: 10.1007/s12205-013-1978-1.

[64]

Nazeer, A, Maskey, S, Skaugen, T, McClain, E. M., 2022. Simulating the hydrological regime of the snow fed and glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff model. Sci. Total Environ., 802, Article 149872. doi: 10.1016/j.scitotenv.2021.149872.

[65]

Nepal, S., 2016. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro-Environ. Res., 10, pp. 76-89. doi: 10.1016/j.jher.2015.12.001.

[66]

Nie, Y, Pritchard, H. D., Liu, Q, Hennig, T, Wang, W, Wang, X, Liu, S, Nepal, S, Samyn, D, Hewitt, K, Chen, X., 2021. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ., 2 (2), pp. 91-106. doi: 10.1038/s43017-020-00124-w.

[67]

Norris, J, Carvalho, L. M. V., Jones, C, Cannon, F., 2015. WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. J. Geophys. Res., 120 (8), pp. 3114-3138. doi: 10.1002/2014JD022592.

[68]

Oerlemans, J, Hoogendoorn, N. C., 1989. Mass-balance gradients and climatic change. J. Glaciol., 35 (121), pp. 399-405. doi: 10.1017/S0022143000009333.

[69]

Oerlemans, J., 1994. Quantifying global warming from the retreat of glaciers. Science, 264 (1994), pp. 243-245. doi: 10.1126/science.264.5156.243.

[70]

Panthi, J, Dahal, P, Shrestha, M. L., Aryal, S, Krakauer, N. Y., Pradhanang, S. M., Lakhankar, T, Jha, A. K., Sharma, M, Karki, R., 2015. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate, 3 (1), pp. 210-226. doi: 10.3390/cli3010210.

[71]

Pellicciotti, F, Buergi, C, Immerzeel, W. W., Konz, M, Shrestha, A. B., 2012. Challenges and uncertainties in hydrological modeling of remote hindu Kush-Karakoram-Himalayan (HKH) basins: suggestions for calibration strategies. Mt. Res. Dev., 32 (1), pp. 39-50. doi: 10.1659/MRD-JOURNAL-D-11-00092.1.

[72]

Pritchard, H. D., 2019. Asia's shrinking glaciers protect large populations from drought stress. Nature, 569 (2019), pp. 649-654. doi: 10.1038/s41586-019-1240-1.

[73]

Priya, P., Krishnan, R., Mujumdar, M., 2020. Uncertainties in river discharge simulations of the upper Indus basin in the Western Himalayas. J. Earth Syst. Sci. 129 (1), 150. doi: 10.1007/s12040-020-01409-w.

[74]

Qi, J, Wang, L, Zhou, J, Song, L, Li, X, Zeng, T., 2019. Coupled snow and frozen ground physics improves cold region hydrological simulations: an evaluation at the upper Yangtze River Basin (Tibetan Plateau). J. Geophys. Res. Atmos., 124 (23), pp. 12985-13004. doi: 10.1029/2019JD031622.

[75]

Racoviteanu, A. E., Armstrong, R, Williams, M. W., 2013. Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resour. Res., 49 (9), pp. 5117-5133. doi: 10.1002/wrcr.20370.

[76]

Ragettli, S, Pellicciotti, F., 2012. Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resour. Res., 48 (3), p. W03509. doi: 10.1029/2011WR010559.

[77]

Ragettli, S, Pellicciotti, F, Bordoy, R, Immerzeel, W. W., 2013. Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resour. Res., 49 (9), pp. 6048-6066. doi: 10.1002/wrcr.20450.

[78]

Ragettli, S, Pellicciotti, F, Immerzeel, W. W., Miles, E. S., Petersen, L, Heynen, M, Shea, J. M., Stumm, D, Joshi, S, Shrestha, A., 2015. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv. Water Resour., 78, pp. 94-111. doi: 10.1016/j.advwatres.2015.01.013.

[79]

Ragettli, S., Immerzeel, W.W., Pellicciotti, F., 2016a. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. U.S.A. 113 (33), 9222–9227. doi: 10.1073/pnas.1606526113.

[80]

Ragettli, S., Bolch, T., Pellicciotti, F., 2016b. Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal. Cryosphere 10 (5), 2075–2097. doi: 10.5194/tc-10-2075-2016.

[81]

Rees, H. G., Collins, D. N., 2006. Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol. Process., 20 (10), pp. 2157-2169. doi: 10.1002/hyp.6209.

[82]

Ren, Z, Su, F. G., Xu, B. Q., Xie, Y, Kan, B. Y., 2018. A coupled glacier-hydrology model and its application in Eastern Pamir. J. Geophys. Res. Atmos., 123 (24), pp. 13692-13713. doi: 10.1029/2018jd028572.

[83]

RGIonsortium, C.GLIMS: global land ice measurements from space.A dataset of global glacier outlines version 6.0 technical report. https://doi.org/10.7265/N5-RG, I-60. [Dataset]

[84]

Shrestha, A. B., Wake, C. P., Mayewski, P. A., Dibb, J. E., 1999. Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J. Clim., 12 (9), pp. 2775-2786. doi: 10.1175/1520-0442(1999)012<2775:MTTITH>2.0.CO;2.

[85]

Scott, C. A., Zhang, F, Mukherji, A, Immerzeel, W, Mustafa, D, Bharati, L. 2019. Water in the Hindu Kush Himalaya. P. Wester, A. Mishira, A. Mukherji, A.B. Shrestha (Eds.), The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, Springer, Cham, pp.257-300.

[86]

Shrestha, M. L., 2000. Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern Oscillation Index. Meteorol. Atmos. Phys., 75 (1–2), pp. 21-28. doi: 10.1007/s007030070012.

[87]

Shrestha, M, Wang, L, Koike, T., 2010. Investigating the applicability of WEB-DHM to the Himalayan river basin of Nepal. Annu. J. Hydraul. Eng. JSCE 54, 55-60.

[88]

Shrestha, M, Wang, L, Koike, T, Xue, Y, Hirabayashi, Y., 2012. Modeling the spatial distribution of snow cover in the Dudhkoshi Region of the Nepal Himalayas. J. Hydrometeorol., 13 (1), pp. 204-222. doi: 10.1175/JHM-D-10-05027.1.

[89]

Shrestha, M, Wang, L, Koike, T, Tsutsui, H, Xue, Y, Hirabayashi, Y., 2014. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data. Hydrol. Earth Syst. Sci., 18 (2), pp. 747-761. doi: 10.5194/hess-18-747-2014.

[90]

Shrestha, M, Koike, T, Hirabayashi, Y, Xue, Y, Wang, L, Rasul, G, Ahmad, B., 2015. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. J. Geophys. Res. Atmos., 120, pp. 495-516. doi: 10.1002/2014JD022666.

[91]

Shrestha, S, Nepal, S., 2019. Water balance assessment under different glacier coverage scenarios in the Hunza Basin. Water, 11 (6) . doi: 10.3390/w11061124.

[92]

Singh, P, Kumar, V, Thomas, T, Arora, M., 2008. Basin-wide assessment of temperature trends in northwest and central India. Hydrol. Sci. J., 53 (2), pp. 421-433. doi: 10.1623/hysj.53.2.421.

[93]

Singh, S, Kumar, R, Bhardwaj, A, Sam, L, Shekhar, M, Singh, A, Kumar, R, Gupta, A., 2016. Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdiscip. Rev. Clim. Change, 7 (3), pp. 393-410. doi: 10.1002/wcc.393.

[94]

Singh, V, Jain, S. K., Goyal, M. K., 2021. An assessment of snow-glacier melt runoff under climate change scenarios in the Himalayan basin. Stoch. Environ. Res. Risk Assess., 35, pp. 2067-2092. doi: 10.1007/s00477-021-01987-1.

[95]

Soncini, A, Bocchiola, D, Confortola, G, Bianchi, A, Rosso, R, Mayer, C, Lambrecht, A, Palazzi, E, Smiraglia, C, Diolaiuti, G., 2015. Future hydrological regimes in the Upper Indus Basin: a case study from a high-altitude glacierized catchment. J. Hydrometeorol., 16 (1), pp. 306-326. doi: 10.1175/jhm-D-14-0043.1.

[96]

Song, L, Wang, L, Li, X, Zhou, J, Luo, D, Jin, H, Qi, J, Zeng, T, Yin, Y., 2020. Improving permafrost physics in a distributed cryosphere-hydrology model and its evaluations at the Upper Yellow River Basin. J. Geophys. Res. Atmos., 125 (18), Article e2020JD032916. doi: 10.1029/2020JD032916.

[97]

Steiner, J. F., Pellicciotti, F, Buri, P, Miles, E. S., Immerzeel, W. W., Reid, T. D., 2015. Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya. J. Glaciol., 61 (229), pp. 889-907. doi: 10.3189/2015JoG14J194.

[98]

Su, F, Pritchard, H. D., Yao, T, Huang, J, Ou, T, Meng, F, Sun, H, Li, Y, Xu, B, Zhu, M, Chen, D., 2022. Contrasting fate of western Third Pole’s water resources under 21st century climate change. Earths Future, 10 (9), Article e2022EF002776. doi: 10.1029/2022EF002776.

[99]

Tatem, A., 2017. WorldPop: open data for spatial demography. Sci. Data 4, 170004.

[100]

Terink, W, Lutz, A. F., Simons, G. W. H., Immerzeel, W. W., Droogers, P., 2015. SPHY v2.0: spatial processes in hydrology. Geosci. Model Dev., 8 (7), pp. 2009-2034. doi: 10.5194/gmd-8-2009-2015.

[101]

Thayyen, R. J., Gergan, J. T., 2010. Role of glaciers in watershed hydrology: a preliminary study of a “himalayan catchment”. Cryosphere, 4 (1), pp. 115-128. doi: 10.5194/tc-4-115-2010.

[102]

Tropical Rainfall Measuring Mission (TRMM), 2011. TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 Degree x 0.25 Degree V7. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD [Dataset].

[103]

Viviroli, D, Archer, D. R., Buytaert, W, Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y, Koboltschnig, G, Litaor, M. I., Lopez-Moreno, J. I., Lorentz, S, Schadler, B, Schreier, H, Schwaiger, K, Vuille, M, Woods, R., 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci., 15 (2), pp. 471-504. doi: 10.5194/hess-15-471-2011.

[104]

Wang, L., Koike, T., Yang, K., Jackson, T.J., Bindlish, R., Yang, D., 2009a. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains experiments (SGP97 and SGP99). J. Geophys. Res. Atmos. 114 (D8), 1– 15. doi: 10.1029/2008JD010800.

[105]

Wang, L., Koike, T., Yang, K., Yeh, P.J.F., 2009b. Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin. J. Hydrol. 377 (1–2), 21–34. doi: 10.1016/j.jhydrol.2009.08.005.

[106]

Wang, L, Koike, T, Ikeda, M, Dang, N. T., Nyunt, C. T., Saavedra, O, Lan, C. N., Tran, V. S., Tamagawa, K, Ohta, T., 2014. Optimizing multidam releases in large river basins by combining distributed hydrological inflow predictions with rolling-horizon decision making. J. Water Resour. Plan. Manag., 140(10), 0733-9496.

[107]

Wang, L, Sun, L, Shrestha, M, Li, X, Liu, W, Zhou, J, Yang, K, Lu, H, Chen, D., 2016. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate. J. Geophys. Res., 121 (20), pp. 12005-12030. doi: 10.1002/2016JD025506.

[108]

Wang, L, Zhou, J, Qi, J, Sun, L. T., Yang, K, Tian, L. D., Lin, Y. L., Liu, W. B., Shrestha, M, Xue, Y. K., Koike, T, Ma, Y. M., Li, X. P., Chen, Y. Y., Chen, D. L., Piao, S. L., Lu, H., 2017. Development of a land surface model with coupled snow and frozen soil physics. Water Resour. Res., 5 (3), pp. 5085-5103. doi: 10.1002/2017WR020451.

[109]

Wang, T, Yang, D, Yang, Y, Zheng, G, Jin, H, Li, X, Yao, T, Cheng, G., 2023. Pervasive permafrost thaw exacerbates future risk of water shortage across the Tibetan Plateau. Earths Future 11, e2022EF003463.

[110]

Wang, T, Yang, D, Yang, Y, Zheng, G, Jin, H, Li, X, Yao, T, Cheng, G., 2023. Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate. Sci. Bull., 68(11), 1105-1108.

[111]

Wang, X, Meng, X, Long, Y., 2022. Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Sci. Data 9, 563.

[112]

Wang, X, Tolksdorf, V, Otto, M, Scherer, D., 2021. WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: towards a new version of the High Asia Refined analysis. Int. J. Climatol., 41, 743-762.

[113]

Wang, Y, Wang, L, Zhou, J, Yao, T, Yang, W, Zhong, X, Liu, R, Hu, Z, Luo, L, Ye, Q, Chen, N, Ding, H., 2021. Vanishing glaciers at southeast Tibetan Plateau have not offset the declining runoff at Yarlung Zangbo. Geophys. Res. Lett., 48 (21), Article e2021GL094651. doi: 10.1029/2021GL094651.

[114]

Weedon, G. P., Gomes, S, Viterbo, P, Shuttleworth, W. J., Blyth, E, Osterle, H, Adam, J. C., Bellouin, N, Boucher, O, Best, M., 2011. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol., 12 (5), pp. 823-848. doi: 10.1175/2011JHM1369.1.

[115]

Weedon, G. P., Balsamo, G, Bellouin, N, Gomes, S, Best, M. J., Viterbo, P., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50 (9), pp. 7505-7514. doi: 10.1002/2014WR015638.

[116]

Winiger, M, Gumpert, M, Yamout, H., 2005. 19 (12), pp. 2329-2338. doi: 10.1002/hyp.5887.

[117]

World Commission on Dams, 2000. Dams and development: a new framework for decision-making. Environ. Manage. Health 12 (4), 444–445. doi: 10.1108/emh.2001.12.4.444.2.

[118]

Xu, J, Grumbine, R. E., 2014. Building ecosystem resilience for climate change adaptation in the Asian highlands. Wiley Interdiscip. Rev. Clim. Change, 5 (6), pp. 709-718. doi: 10.1002/wcc.302.

[119]

Xue, Y, Sellers, P. J., Zeng, F, Schlosser, C. A., 1997. Comments on “Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models”. J. Clim., 10 (2), pp. 374-376. doi: 10.1175/1520-0442(1997)010<0374:COUOMS>2.0.CO;2.

[120]

Yang, S, Zhang, Z, Kousky, V. E., Higgins, R. W., Yoo, S. H., Liang, J, Fan, Y., 2008. Simulations and seasonal prediction of the Asian summer monsoon in the NCEP climate forecast system. J. Clim., 21 (15), pp. 3755-3775. doi: 10.1175/2008JCLI1961.1.

[121]

Yao, T. D., Thompson, L, Yang, W, Yu, W. S., Gao, Y, Guo, X. J., Yang, X. X., Duan, K. Q., Zhao, H. B., Xu, B. Q., Pu, J. C., Lu, A. X., Xiang, Y, Kattel, D. B., Joswiak, D., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang., 2 (9), pp. 663-667. doi: 10.1038/nclimate1580.

[122]

Yao, T, Bolch, T, Chen, D, Gao, J, Immerzeel, W, Piao, S, Su, F, Thompson, L, Wada, Y, Wang, L, Wang, T, Wu, G, Xu, B, Yang, W, Zhang, G, Zhao, P., 2022. The imbalance of the Asian water tower. Nat. Rev. Earth Environ., 3, pp. 618-632. doi: 10.1038/s43017-022-00299-4.

[123]

Yatagai, A, Kamiguchi, K, Arakawa, O, Hamada, A, Yasutomi, N, Kitoh, A., 2012. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc., 93 (9), pp. 1401-1415. doi: 10.1175/BAMS-D-11-00122.1.

[124]

Zhang, L, Su, F, Yang, D, Hao, Z, Tong, K., 2013. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos., 118 (15), pp. 8500-8518. doi: 10.1002/jgrd.50665.

[125]

Zhang, Y. L., Li, X, Cheng, G. D., Jin, H. J., Yang, D. W., Flerchinger, G. N., Chang, X. L., Wang, X, Liang, J., 2018. Influences of topographic shadows on the thermal and hydrological processes in a cold region mountainous watershed in northwest China. J. Adv. Model. Earth Syst., 10, pp. 1439-1457. doi: 10.1029/2017MS001264.

[126]

Zhang, Y, Xu, C, Hao, Z, Zhang, L, Ju, Q, Lai, X., 2020. Variation of melt water and rainfall runoff and their impacts on streamflow changes during recent decades in two Tibetan Plateau basins. Water, 12 (11), p. 3112. doi: 10.3390/w12113112.

[127]

Zhao, G, Gao, H, Naz, B, Kao, S, Voisin, N., 2016. Integrating a reservoir regulation scheme into a spatially distributed hydrological model. Adv. Water Resour., 98, pp. 16-31. doi: 10.1016/j.advwatres.2016.10.014.

[128]

Zhou, J, Wang, L, Zhang, Y, Guo, Y, Li, X, Liu, W., 2015. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res., 51 (10), pp. 8060-8086. doi: 10.1002/2014WR015846.

[129]

Zhao, Q. D., Ding, Y. J., Wang, J, Gao, H. K., Zhang, S. Q., Zhao, C. C., Xu, J. L., Han, H. D., Shangguan, D. H., 2019. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow. J. Hydrol., 573, pp. 60-81. doi: 10.1016/j.jhydrol.2019.03.043.

PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

/