Scale dependence of forest fragmentation and its climate sensitivity in a semi-arid mountain: Comparing Landsat, Sentinel and Google Earth data

Yuyang Xie , Jitang Li , Tuya Wulan , Yu Zheng , Zehao Shen

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 200 -210.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :200 -210. DOI: 10.1016/j.geosus.2023.11.008
Research Article
review-article

Scale dependence of forest fragmentation and its climate sensitivity in a semi-arid mountain: Comparing Landsat, Sentinel and Google Earth data

Author information +
History +
PDF

Abstract

Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks, but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit. This study aimed to explore the scale-dependence of forest fragmentation intensity along a moisture gradient in Yinshan Mountain of North China, and to estimate environmental sensitivity of forest fragmentation in this semi-arid landscape. We developed an automatic classification algorithm using simple linear iterative clustering (SLIC) and Gaussian mixture model (GMM), and extracted tree canopy patches from Google Earth images (GEI), with an accuracy of 89.2% in the study area. Then we convert the tree canopy patches to forest category according to definition of forest that tree density greater than 10%, and compared it with forest categories from global land use datasets, FROM-GLC10 and GlobeLand30, with spatial resolutions of 10 m and 30 m, respectively. We found that the FROM-GLC10 and GlobeLand30 datasets underestimated the forest area in Yinshan Mountain by 16.88% and 21.06%, respectively; and the ratio of open forest (OF, 10% < tree coverage < 40%) to closed forest (CF, tree coverage > 40%) areas in the underestimated part was 2:1. The underestimations concentrated in warmer and drier areas occupied mostly by large coverage of OFs with severely fragmented canopies. Fragmentation intensity of canopies positively correlated with spring temperature while negatively correlated with summer precipitation and terrain slope. When summer precipitation was less than 300 mm or spring temperature higher than 4 °C, canopy fragmentation intensity rose drastically, while the forest area percentage kept stable. Our study suggested that the spatial configuration, e.g., sparseness, is more sensitive to drought stress than area percentage. This highlights the importance of data resolution and proper fragmentation measurements for forest patterns and environmental interpretation, which is the base of reliable ecosystem predictions with regard to the future climate scenarios.

Keywords

Tree canopy fragmentation / Forest coverage / Google Earth images / Spatial Scale effect / Semi-arid mountains

Cite this article

Download citation ▾
Yuyang Xie, Jitang Li, Tuya Wulan, Yu Zheng, Zehao Shen. Scale dependence of forest fragmentation and its climate sensitivity in a semi-arid mountain: Comparing Landsat, Sentinel and Google Earth data. Geography and Sustainability, 2024, 5(2): 200-210 DOI:10.1016/j.geosus.2023.11.008

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was sponsored by the Natural Science Foundation of China (Grant No. 41790425). Thanks to Yingfu Wang from Wuhan University for his help on the forest canopy identification algorithm code. The linguistic editing for the first draft was performed by International Science Editing (www.internationalscienceediting.com).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.11.008.

References

[1]

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., Hegewisch, K. C., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958 to 2015. Sci. Data 5, 170191.

[2]

Achanta, R, Shaji, A, Smith, K, Lucchi, A, Fua, P, Süsstrunk, S., 2012. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell., 34(11), 2274-2282.

[3]

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S., 2010. SLIC superpixels. EPFL technical report no. 149300.

[4]

Andrews, C. M., D'Amato, A. W., Fraver, S, Palik, B, Battaglia, M. A., Bradford, J. B., 2020. Low stand density moderates growth declines during hot droughts in semi-arid forests. J. Appl. Ecol., 57(6), 1089-1102.

[5]

Arroyo-Rodriguez, V, Saldana-Vazquez, R. A., Fahrig, L, Santos, B. A., 2017. Does forest fragmentation cause an increase in forest temperature?. Ecol. Res., 32(1), 81-88.

[6]

Barbier, N, Couteron, P, Proisy, C, Malhi, Y, J-Gastellu-Etchegorry, P., 2010. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests. Glob. Ecol. Biogeogr., 19(1), 72-84.

[7]

Bastin, J-F, Berrahmouni, N, Grainger, A, Maniatis, D, Mollicone, D, Moore, R, Patriarca, C, Picard, N, Sparrow, B, Abraham, E. M., Aloui, K, Atesoglu, A, Attorre, F, Bassullu, C, Bey, A, Garzuglia, M, Garcia-Montero, L. G., Groot, N, Guerin, G, Laestadius, L, Lowe, A. J., Mamane, B, Marchi, G, Patterson, P, Rezende, M, Ricci, S, Salcedo, I, AS-Diaz, P, Stolle, F, Surappaeva, V, Castro, R., 2017. The extent of forest in dryland biomes. Science 356(6338), 635-638.

[8]

Bennie, J, Hill, M. O., Baxter, R, Huntley, B., 2006. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J. Ecol., 94(2), 355-368.

[9]

Boardman, J., 2016. The value of Google Earth for erosion mapping. Catena 143, 123-127.

[10]

Bottero, A, D'Amato, A. W., Palik, B. J., Bradford, J. B., Fraver, S, Battaglia, M. A., Asherin, L. A., 2017. Density-dependent vulnerability of forest ecosystems to drought. J. Appl. Ecol., 54(6), 1605-1614.

[11]

Brandt, J, Stolle, F., 2020. A global method to identify trees outside of closed-canopy forests with medium-resolution satellite imagery. Int. J. Remote Sens., 42(5), 1713-1737.

[12]

Brandt, M, Rasmussen, K, Hiernaux, P, Herrmann, S, Tucker, C. J., Tong, X, Tian, F, Mertz, O, Kergoat, L, Mbow, C., 2018. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci., 11(5), 328-333.

[13]

Brandt, M, Tucker, C. J., Kariryaa, A, Rasmussen, K, Abel, C, Small, J, Chave, J, Rasmussen, L. V., Hiernaux, P, Diouf, A. A., Kergoat, L, Mertz, O, Igel, C, Gieseke, F, Schoning, J, Li, S, Melocik, K, Meyer, J, Sinno, S, Romero, E, Glennie, E, Montagu, A, Dendoncker, M, Fensholt, R., 2020. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587(7832), 78-82.

[14]

Chatterjee, S, Ghosh, S, Dawn, S, Hore, S, Dey, N., 2016. Forest type classification: a hybrid NN-GA model based approach. Third International Conference on Information System Design and Intelligent Applications, Visakhapatnam, India

[15]

Chen, C, Park, T, Wang, X, Piao, S, Xu, B, Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R, Tømmervik, H, Bala, G, Zhu, Z, Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2(2), 122-129.

[16]

Chen, J, Chen, J, Liao, A, Cao, X, Chen, L, Chen, X, He, C, Han, G, Peng, S, Lu, M., 2015. Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J. Photogramm. Remote Sens., 103, 7-27.

[17]

Cheng, K, Su, Y, Guan, H, Tao, S, Ren, Y, Hu, T, Ma, K, Tang, Y, Guo, Q., 2023. Mapping China's planted forests using high resolution imagery and massive amounts of crowdsourced samples. ISPRS J. Photogramm. Remote Sens., 196, 356-371.

[18]

Chrysafis, I, Mallinis, G, Gitas, I, Tsakiri-Strati, M., 2017. Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method. Remote Sens. Environ., 199, 154-166.

[19]

Daly, C, Smith, J. W., Smith, J. I., McKane, R. B., 2007. High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States. J. Appl. Meteorol. Climatol., 46(10), 1565-1586.

[20]

Ding, J, Eldridge, D. J., 2021. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena 201, 105233.

[21]

Duan, H, Yan, C, Tsunekawa, A, Song, X, Li, S, Xie, J., 2011. Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ. Earth Sci., 64(4), 1011-1020.

[22]

Endreny, T. A., Wood, E. F., 2001. Representing elevation uncertainty in runoff modelling and flowpath mapping. Hydrol. Processes 15(12), 2223-2236.

[23]

Eskandari, S, Jaafari, M. R., Oliva, P, Ghorbanzadeh, O, Blaschke, T., 2020. Mapping land cover and tree canopy cover in Zagros Forests of Iran: application of Sentinel-2, Google Earth, and field data. Remote Sens., 12(12), 1912.

[24]

Flores, B. M., Sá Dechoum, M, Schmidt, I. B., Hirota, M, Abrahão, A, Verona, L, Pecoral, L. L. F., Cure, M. B., Giles, A. L., Britto Costa, P, Pamplona, M. B., Mazzochini, G. G., Groenendijk, P, Minski, G. L., Wolfsdorf, G, Sampaio, A. B., Piccolo, F, Melo, L, Fiacador de Lima, R, Oliveira, R. S., Remy, C., 2020. Tropical riparian forests in danger from large savanna wildfires. J. Appl. Ecol., 58(2), 419-430.

[25]

Gong, P, Liu, H, Zhang, M, Li, C, Wang, J, Huang, H, Clinton, N, Ji, L, Li, W, Bai, Y, Chen, B, Xu, B, Zhu, Z, Yuan, C, Ping Suen, H, Guo, J, Xu, N, Li, W, Zhao, Y, Yang, J, Yu, C, Wang, X, Fu, H, Yu, L, Dronova, I, Hui, F, Cheng, X, Shi, X, Xiao, F, Liu, Q, Song, L., 2019. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull., 64(6), 370-373.

[26]

Hansen, M. C., Potapov, P. V., Moore, R, Hancher, M, Turubanova, S. A., Tyukavina, A, Thau, D, Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A, Egorov, A, Chini, L, Justice, C. O., Townshend, J. R. G., 2013. High-resolution global maps of 21st-century forest cover change. Science 342(6160), 850-853.

[27]

Hansen, M. C., Townshend, J. R. G., DeFries, R. S., Carroll, M., 2007. Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int. J. Remote Sens., 26(19), 4359-4380.

[28]

He, B, Chen, A, Wang, H, Wang, Q., 2015. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest Region in China. Remote Sens., 7(8), 9998-10016.

[29]

Hu, J, Yang, Z, Hou, C, Ouyang, W., 2023. Compound risk dynamics of drought by extreme precipitation and temperature events in a semi-arid watershed. Atmos. Res., 281, 106474.

[30]

Hu, Q, Willson, G. D., 2000. Effects of temperature anomalies on the palmer drought severity index in the Central United States. Int. J. Climatol., 20(15), 1899-1911.

[31]

Hu, Y, Li, H, Wu, D, Chen, W, Zhao, X, Hou, M, Li, A, Zhu, Y., 2021. LAI-indicated vegetation dynamic in ecologically fragile region: a case study in the Three-North Shelter Forest program region of China. Ecol. Indic., 120, 106932.

[32]

Jiao, C, Chen, C, McGarvey, R. G., Bohlman, S, Jiao, L, Zare, A., 2018. Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection. ISPRS J. Photogramm. Remote Sens., 146, 235-250.

[33]

Jose Del-Toro-Guerrero, F, Kretzschmar, T., 2020. Precipitation-temperature variability and drought episodes in northwest Baja California. Mexico J. Hydrol.-Reg. Stud., 27, 100653.

[34]

Kavzoglu, T, Tonbul, H., 2018. An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery. Int. J. Remote Sens., 39(18), 6020-6036.

[35]

Laurance, W. F., 2004. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. B Biol. Sci., 35(1443), 345-352.

[36]

Leinenkugel, P, Wolters, M. L., Oppelt, N, Kuenzer, C., 2015. Tree cover and forest cover dynamics in the Mekong Basin from 2001 to 2011. Remote Sens. Environ., 158, 376-392.

[37]

Li, W, Dong, R, Fu, H, Wang, J, Yu, L, Gong, P., 2020. Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sens. Environ., 237, 111563.

[38]

Li, X, Ling, F, Du, Y, Feng, Q, Zhang, Y., 2014. A spatial-temporal Hopfield neural network approach for super-resolution land cover mapping with multi-temporal different resolution remotely sensed images. ISPRS J. Photogramm. Remote Sens., 93, 76-87.

[39]

Liu, H., 2019. It is difficult for China’s greening through large-scale afforestation to cross the Hu Line. Sci. China-Earth Sci., 62(10), 1662-1664.

[40]

Liu, X., 2018. Spatial-temporal Patterns and Future Trends of Fractional Woody/Herbaceous Cover in East Asian Steppe. Peking University, Beijing.

[41]

Liu, X, Ma, Q, Wu, X, Hu, T, Liu, Z, Liu, L, Guo, Q, Su, Y., 2022. A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds. Remote Sens. Environ., 282, 113280.

[42]

Liu, Y, Liu, R., 2020. A simple approach for mapping forest cover from time series of satellite data. Remote Sens., 12(18), 2918.

[43]

Miao, Y, Dai, T, Yang, X, Song, J., 2021. Landscape fragmentation associated with the Qingzang Highway and its influencing factors—a comparison study on road sections and buffers. Geogr. Sustain., 2(1), 59-67.

[44]

Singh, M, Evans, D, Friess, D. A., Tan, B. S., Nin, C. S., 2015. Mapping above-ground biomass in a tropical forest in Cambodia using canopy textures derived from Google Earth. Remote Sens., 7(5), 5057-5076.

[45]

Park, H, Jeong, S. J., Ho, C. H., Kim, J, Brown, M. E., Schaepman, M. E., 2015. Nonlinear response of vegetation green-up to local temperature variations in temperate and boreal forests in the Northern Hemisphere. Remote Sens. Environ., 165, 100-108.

[46]

Gong, P, Wang, J, Yu, L, Zhao, Y, Zhao, Y, Liang, L, Niu, Z, Huang, X, Fu, H, Liu, S, Li, C, Li, X, Fu, W, Liu, C, Xu, Y, Wang, X, Cheng, Q, Hu, L, Yao, W, Zhang, H. K., Zhu, P, Zhao, Z, Zhang, H, Zheng, Y, Ji, L, Zhang, Y, Chen, H, Yan, A, Guo, J, Yu, L, Wang, L, Liu, X, Shi, T, Zhu, M, Chen, Y, Yang, G, Tang, P, Xu, B, Giri, C. P., Clinton, N. E., Zhu, Z, Chen, J, Chen, J., 2013. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens., 34(7), 2607-2654.

[47]

Peng, X, He, G, Wang, G, Long, T, Zhang, X, Yin, R., 2023. User-aware evaluation for medium-resolution forest-related datasets in China: reliability and spatial consistency. Remote Sens., 15(10), 2557.

[48]

Piao, S, Yin, G, Tan, J, Cheng, L, Huang, M, Li, Y, Liu, R, Mao, J, Myneni, R. B., Peng, S, Poulter, B, Shi, X, Xiao, Z, Zeng, N, Zeng, Z, Wang, Y., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol., 21(4), 1601-1609.

[49]

Ploton, P, Pélissier, R, Proisy, C, Flavenot, T, Barbier, N, Rai, S. N., Couteron, P., 2012. Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol. Appl., 22(3), 993-1003.

[50]

Plakman, V, Janssen, T, Brouwer, N, Veraverbeke, S., 2020. Mapping species at an individual-tree scale in a temperate forest, using Sentinel-2 images, airborne laser scanning data, and random forest classification. Remote Sens., 12(22), 3710.

[51]

Potere, D., 2008. Horizontal positional accuracy of Google Earth's high-resolution imagery archive. Sensors 8(12), 7973-7981.

[52]

Qiu, Y, Fu, B. J., Wang, J, Chen, L. D., 2001. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. J. Hydrol., 240(3–4), 243-263.

[53]

Schwank, M, Kontu, A, Mialon, A, Naderpour, R, Houtz, D, Lemmetyinen, J, Rautiainen, K, Li, Q. H., Richaume, P, Kerr, Y, Matzler, C., 2021. Temperature effects on L-band vegetation optical depth of a boreal forest. Remote Sens. Environ., 263, 112542.

[54]

Schwartz, N. B., Budsock, A. M., Uriarte, M., 2019. Fragmentation, forest structure, and topography modulate impacts of drought in a tropical forest landscape. Ecology 100(6), e02677.

[55]

Shetty, S, Umesh, P, Shetty, A., 2022. Dependability of rainfall to topography and micro-climate: an observation using geographically weighted regression. Theor. Appl. Climatol., 147(1–2), 217-237.

[56]

Shimada, M, Itoh, T, Motooka, T, Watanabe, M, Shiraishi, T, Thapa, R, Lucas, R., 2014. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ., 155, 13-31.

[57]

Li, M, Liu, A, Zou, C, Xu, W, Shimizu, H, Wang, K., 2012. An overview of the “Three-North” Shelterbelt project in China. For. Stud. China 14(1), 74-83.

[58]

Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Alexandra, T, Vermote, E, Townshend, J. R., 2018. Global land change from 1982 to 2016. Nature 560(7720), 639-643.

[59]

Su, H, Zhang, X, Luo, Y, Zhang, C, Zhou, X, Atkinson, P. M., 2022. Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery. ISPRS J. Photogramm. Remote Sens., 193, 137-149.

[60]

Su, Y, Guo, Q, Xue, B, Hu, T, Alvarez, O, Tao, S, Fang, J., 2016. Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ., 173, 187-199.

[61]

Taylor, J. R., Lovell, S. T., 2012. Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth. Landsc. Urban Plan., 108(1), 57-70.

[62]

Trabucco, A, Zomer, R. J., 2018. Global aridity index and potential evapotranspiration (ET0) climate database v2. Figshare Dataset . doi: 10.6084/m9.figshare.7504448.v3.

[63]

Venter, O, Sanderson, E. W., Magrach, A, Allan, J. R., Beher, J, Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P, Fekete, B. M., Levy, M. A., Watson, J. E. M., 2016. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067.

[64]

Wang, F, Pan, X, Gerlein-Safdi, C, Cao, X, Wang, S, Gu, L, Wang, D, Lu, Q., 2020. Vegetation restoration in Northern China: a contrasted picture. Land Degrad. Dev., 31(6), 669-676.

[65]

Wang, X, Song, J, Xiao, Z, Wang, J, Hu, F., 2022. Desertification in the Mu Us Sandy Land in China: response to climate change and human activity from 2000 to 2020. Geogr. Sustain., 3(2), 177-189.

[66]

Wang, Y. T., Xie, D. H., Hu, R. H., Yan, G. J. 2016. Spatial scale effect on vegetation phenological analysis using remote sensing data. 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2016), Beijing, pp.1329-1332.

[67]

Weng, Q. H., Lu, D. S., Schubring, J., 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ., 89(4), 467-483.

[68]

Western, A. W., Grayson, R. B., Bloschl, G, Willgoose, G. R., McMahon, T. A., 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res., 35(3), 797-810.

[69]

Wu, H, Li, Z. L., 2009. Scale issues in remote sensing: a review on analysis, processing and modeling. Sensors 9(3), 1768-1793.

[70]

Wu, X, Liu, H, Wang, Y, Deng, M., 2013. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China. Environ. Res. Lett., 8(2), 024016.

[71]

Wu, Z, Man, W, Ren, Y., 2022. Influence of tree coverage and micro-topography on the thermal environment within and beyond a green space. Agric. For. Meteorol., 316, 108846.

[72]

Xie, Y, Yang, T, Wang, X, Chen, X, Pang, S, Hu, J, Wang, A, Chen, L, Shen, Z., 2022. Applying a portable backpack lidar to measure and locate trees in a nature forest plot: accuracy and error analyses. Remote Sens., 14(8), 1806.

[73]

Xie, Y, Zhang, J, Chen, X, Pang, S, Zeng, H, Shen, Z., 2020. Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system. For. Ecosyst., 7(1), 33.

[74]

Xing, H, Niu, J, Liu, C, Chen, B, Yang, S, Hou, D, Zhu, L, Hao, W, Li, C., 2021. Consistency analysis and accuracy assessment of eight global forest datasets over Myanmar. Appl. Sci., 11(23), 11348.

[75]

Yang, H., 2017. China's Natural Forest Protection Program: progress and impacts. For. Chron., 93(2), 113-117.

[76]

Yang, Y, Wu, T, Wang, S, Li, H., 2020. Fractional evergreen forest cover mapping by MODIS time-series FEVC-CV methods at sub-pixel scales. ISPRS J. Photogramm. Remote Sens., 163, 272-283.

[77]

Yang, Z, Dong, J, Liu, J, Zhai, J, Kuang, W, Zhao, G, Shen, W, Zhou, Y, Qin, Y, Xiao, X., 2017. Accuracy assessment and inter-comparison of eight medium resolution forest products on the Loess Plateau, China. ISPRS Int. J. Geo-Inf., 6(5), 152.

[78]

Choi, Y, Nieto, A., 2011. Optimal haulage routing of off-road dump trucks in construction and mining sites using Google Earth and a modified least-cost path algorithm. Autom. Constr., 20(7), 982-997.

[79]

Zhang, J. Z., Gou, X. H., Alexander, M. R., Xia, J. Q., Wang, F, Zhang, F, Man, Z. H., Pederson, N., 2021. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena 196, 104936.

[80]

Zhang, X, Feng, X, Xiao, P, He, G, Zhu, L., 2015. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS J. Photogramm. Remote Sens., 102, 73-84.

[81]

Zhang, X, Liu, L, Chen, X, Gao, Y, Mi, J., 2021. GLC_FCS30: global land-cover product with fine classification system at 30m using time-series Landsat imagery. Earth Syst. Sci. Data 13(6), 2753-2776.

[82]

Zhang, X, Liu, L, Wu, C, Chen, X, Zhang, B., 2020. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth engine platform. Earth Syst. Sci. Data 12(3), 1625-1648.

[83]

Zhang, X, Wandell, B. A., 1997. A spatial extension of CIELAB for digital color-image reproduction. J. Soc. Inf. Disp., 5(1), 61-63.

[84]

Zhang, X. Y., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F, Reed, B. C., Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote Sens. Environ., 84(3), 471-475.

[85]

Zhao, J, Zhang, Q, Zhu, X, Shen, Z, Yu, H., 2020. Drought risk assessment in China: evaluation framework and influencing factors. Geogr. Sustain., 1(3), 220-228.

[86]

Zhou, N, Hu, X, Byskov, I, Naess, J. S., Wu, Q, Zhao, W, Cherubini, F., 2021. Overview of recent land cover changes, forest harvest areas, and soil erosion trends in Nordic countries. Geogr. Sustain., 2(3), 163-174.

PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

/