Evolving patterns of agricultural production space in China: A network-based approach

Shuhui Yang , Zhongkai Li , Jianlin Zhou , Yancheng Gao , Xuefeng Cui

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) : 121 -134.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) :121 -134. DOI: 10.1016/j.geosus.2023.11.007
Research Article
review-article

Evolving patterns of agricultural production space in China: A network-based approach

Author information +
History +
PDF

Abstract

The agricultural production space, as where and how much each agricultural product grows, plays a vital role in meeting the increasing and diverse food demands. Previous studies on agricultural production patterns have predominantly centered on individual or specific crop types, using methods such as remote sensing or statistical metrological analysis. In this study, we characterize the agricultural production space (APS) by bipartite network connecting agricultural products and provinces, to reveal the relatedness between diverse agricultural products and the spatiotemporal characteristic of provincial production capabilities in China. The results show that core products are cereal, pork, melon, and pome fruit; meanwhile the milk, grape, and fiber crop show an upward trend in centrality, which is in line with diet structure changes in China over the past decades. The little changes in community components and structures of agricultural products and provinces reveal that agricultural production patterns in China are relatively stable. Additionally, identified provincial communities closely resemble China’s agricultural natural zones. Furthermore, the observed growth in production capabilities in North and Northeast China implies their potential focus areas for future agricultural production. Despite the superior production capabilities of southern provinces, recent years have witnessed a notable decline, warranting special attentions. The findings provide a comprehensive perspective for understanding the complex relationship of agricultural products’ relatedness, production capabilities and production patterns, which serve as a reference for the agricultural spatial optimization and agricultural sustainable development.

Keywords

Agricultural system / Complex network / Agricultural production space / Proximity matrix / Production capability

Cite this article

Download citation ▾
Shuhui Yang, Zhongkai Li, Jianlin Zhou, Yancheng Gao, Xuefeng Cui. Evolving patterns of agricultural production space in China: A network-based approach. Geography and Sustainability, 2024, 5(1): 121-134 DOI:10.1016/j.geosus.2023.11.007

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to Prof. Ying Fan, who generously provided constructive and scientific suggestions for the framework. This work was supported by the Institute of Atmospheric Environment, China Meteorological Administration, Shenyang (Grant No. 2021SYIAEKFMS27), Key Laboratory of Farm Building in Structure and Construction, Ministry of Agriculture and Rural Affairs, P. R. China (Grant No. 202003), and the National Foundation of China Scholarship Council (Grant No. 202206040102).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.11.007.

References

[1]

Agnolucci, P, Rapti, C, Alexander, P, De Lipsis, V, Holland, R. A., Eigenbrod, F, Ekins, P., 2020. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 1(9), 562-571.

[2]

Albert, R, A-Barabási, L., 2002. Statistical mechanics of complex networks. Rev. Mod. Phys., 74(1), 47-97.

[3]

Antle, J. M., Capalbo, S. M., Elliott, E. T., Paustian, K. H., 2004. Adaptation, spatial heterogeneity, and the vulnerability of agricultural systems to climate change and CO2 fertilization: an integrated assessment approach. Clim. Change 64(3), 289-315.

[4]

Arora, N. K., 2019. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain., 2(2), 95-96.

[5]

Börner, K, Klavans, R, Patek, M, Zoss, A. M., Biberstine, J. R., Light, R. P., Larivière, V, Boyack, K. W., 2012. Design and update of a classification system: the UCSD map of science. PLoS One 7(7), e39464.

[6]

Bahar, D, Hausmann, R, Hidalgo, C. A., 2014. Neighbors and the evolution of the comparative advantage of nations: evidence of international knowledge diffusion?. J. Int. Econ., 92(1), 111-123.

[7]

Bai, Y, Zhang, T, Zhai, Y, Shen, X, Ma, X, Zhang, R, Ji, C, Hong, J., 2021. Water footprint coupled economic impact assessment for maize production in China. Sci. Total Environ., 752, 141963.

[8]

Baldoni, E, Esposti, R., 2020. Agricultural productivity in space: an econometric assessment based on farm-level data. Am. J. Agric. Econ., 103(4), 1525-1544.

[9]

Balland, P-A, Rigby, D., 2017. The geography of complex knowledge. Econ. Geogr., 93(1), 1-23.

[10]

Barber, M. J., 2007. Modularity and community detection in bipartite networks. Phys. Rev. E 76(6), 066102.

[11]

Battiston, F, Nicosia, V, Latora, V., 2017. The new challenges of multiplex networks: measures and models. Eur. Phys. J. Spec. Top., 226(3), 401-416.

[12]

Beckett, S. J., 2016. Improved community detection in weighted bipartite networks. Royal Soc. Open Sci., 3(1), 140536.

[13]

Boschma, R., 2005. Proximity and innovation: a critical assessment. Reg. Stud., 39(1), 61-74.

[14]

Branco, J. E. H., Bartholomeu, D. B., Junior, P. N. A., Caixeta Filho, J. V., 2021. Mutual analyses of agriculture land use and transportation networks: the future location of soybean and corn production in Brazil. Agric. Syst., 194, 103264.

[15]

Campi, M, Dueñas, M, Fagiolo, G., 2020. How do countries specialize in agricultural production? A complex network analysis of the global agricultural product space. Environ. Res. Lett., 15(12), 124006.

[16]

Campi, M, Dueñas, M, Fagiolo, G., 2021. Specialization in food production affects global food security and food systems sustainability. World Dev., 141, 105411.

[17]

Chen, H, Meng, F, Yu, Z, Tan, Y., 2022. Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China. Land Use Policy 115, 106007.

[18]

Chen, Z, Sarkar, A, Rahman, A, Li, X, Xia, X., 2022. Exploring the drivers of green agricultural development (GAD) in China: a spatial association network structure approaches. Land Use Policy 112, 105827.

[19]

Lu, C. X., Liu, A. M., Xiao, Y, Liu, X. J., Xie, G. D., Cheng, S. K., 2020. Changes in China's grain production pattern and the effects of urbanization and dietary structure. J. Resour. Ecol., 11(4), 358-365.

[20]

Cristelli, M, Tacchella, A, Pietronero, L., 2015. The heterogeneous dynamics of economic complexity. PLoS One 10(2), e0117174.

[21]

Cucuringu, M, Rombach, P, Lee, S. H., Porter, M. A., 2016. Detection of core–periphery structure in networks using spectral methods and geodesic paths. Eur. J. Appl. Math., 27(6), 846-887.

[22]

Cui, Z, Zhang, H, Chen, X, Zhang, C, Ma, W, Huang, C, Zhang, W, Mi, G, Miao, Y, Li, X., 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555(7696), 363-366.

[23]

Davis, K. F., Rulli, M. C., Seveso, A, D'Odorico, P., 2017. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci., 10(12), 919-924.

[24]

Dong, W. L., Wang, X. B., Yang, J., 2015. Future perspective of China's feed demand and supply during its fast transition period of food consumption. J. Integr. Agric., 14(6), 1092-1100.

[25]

Dormann, C. F., Strauss, R., 2014. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol., 5(1), 90-98.

[26]

Duan, J, Liu, Y. J., Yang, J, Tang, C. J., Shi, Z. H., 2020. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. J. Hydrol., 582, 124290.

[27]

Duan, J, Ren, C, Wang, S, Zhang, X, Reis, S, Xu, J, Gu, B., 2021. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2(12), 1014-1022.

[28]

Emran, M. S., Shilpi, F., 2012. The extent of the market and stages of agricultural specialization. Can. J. Econ., 45(3), 1125-1153.

[29]

Esfahlani, F. Z., Jo, Y, Puxeddu, M. G., Merritt, H, Tanner, J. C., Greenwell, S, Patel, R, Faskowitz, J, Betzel, R. F., 2021. Modularity maximization as a flexible and generic framework for brain network exploratory analysis. NeuroImage 244, 118607.

[30]

Gallagher, R. J., Young, J. G., Welles, B. F., 2021. A clarified typology of core-periphery structure in networks. Sci. Adv., 7(12), eabc9800.

[31]

Gao, D, Wang, S, Wei, F, Wu, X, Zhou, S, Wang, L, Li, Z, Chen, P, Fu, B., 2022. The vulnerability of ecosystem structure in the semi-arid area revealed by the functional trait networks. Ecol. Indic., 139, 108894.

[32]

Gao, J, Zhou, T., 2018. Quantifying China's regional economic complexity. Physica A 492, 1591-1603.

[33]

Geng, B, Zheng, X, Fu, M., 2017. Scenario analysis of sustainable intensive land use based on SD model. Sustain. Cities Soc., 29, 193-202.

[34]

Gu, L, Gong, Z, Du, Y., 2021. Evolution characteristics and simulation prediction of forest and grass landscape fragmentation based on the “Grain for Green” projects on the Loess Plateau, P.R. China. Ecol. Indic., 131, 108240.

[35]

Guga, S, Xu, J, Riao, D, Han, A, Zhang, J., 2021. Combining MaxEnt model and landscape pattern theory for analyzing interdecadal variation of sugarcane climate suitability in Guangxi, China. Ecol. Indic., 131, 108152.

[36]

Guimera, R, Sales-Pardo, M, Amaral, L. A. N., 2007. Module identification in bipartite and directed networks. Phys. Rev. E 76(3), 036102.

[37]

Gumbau Albert, M., 2017. Entrepreneurship, innovation and regional performance: application for the Spanish regions. Entrepreneurship Reg. Dev., 29(3–4), 271-291.

[38]

Guo, B, He, D, Jin, G., 2023. Agricultural production efficiency estimation and spatiotemporal convergence characteristic analysis in the Yangtze River Economic Belt: a semi-parametric metafrontier approach. Land Degrad. Dev., 34(15), 4635-4648.

[39]

Guo, B. S., He, D. W., Zhao, X. D., Zhang, Z. Y., Dong, Y., 2020. Analysis on the spatiotemporal patterns and driving mechanisms of China's agricultural production efficiency from 2000 to 2015. Phys. Chem. Earth 120, 102909.

[40]

He, M, Guo, Z, Lu, Z, Wei, S, Wang, Z., 2020. High milk consumption is associated with carotid atherosclerosis in middle and old-aged Chinese. Int. J. Cardiol. Hypertens., 5, 100031.

[41]

He, X. Q., Weisser, W, Zou, Y, Fan, S. G., Crowther, T. W., Wanger, T. C., 2022. Integrating agricultural diversification in China's major policies. Trends Ecol. Evol., 37(10), 819-822.

[42]

Hidalgo, C. A., 2021. Economic complexity theory and applications. Nat. Rev. Phys., 3(2), 92-113.

[43]

Hidalgo, C. A., Hausmann, R., 2009. The building blocks of economic complexity. Proc. Natl. Acad. Sci. U.S.A., 106(26), 10570-10575.

[44]

Hidalgo, C. A., Klinger, B, A-Barabási, L, Hausmann, R., 2007. The product space conditions the development of nations. Science 317(5837), 482-487.

[45]

Hu, Y, Zeng, H, Tian, F, Zhang, M, Wu, B, Gilliams, S, Li, S, Li, Y, Lu, Y, Yang, H., 2022. An interannual transfer learning approach for crop classification in the Hetao Irrigation District, China. Remote Sens., 14(5), 1208.

[46]

Huang, Y, Tian, X., 2019. Food accessibility, diversity of agricultural production and dietary pattern in rural China. Food Policy 84, 92-102.

[47]

Jin, G, Shi, X, He, D, Guo, B, Li, Z, Shi, X., 2020. Designing a spatial pattern to rebalance the orientation of development and protection in Wuhan. J. Geogr. Sci., 30, 569-582.

[48]

Jones, J. W., Antle, J. M., Basso, B, Boote, K. J., Conant, R. T., Foster, I, Godfray, H. C. J., Herrero, M, Howitt, R. E., Janssen, S, Keating, B. A., Munoz-Carpena, R, Porter, C. H., Rosenzweig, C, Wheeler, T. R., 2017. Brief history of agricultural systems modeling. Agric. Syst., 155, 240-254.

[49]

Kojaku, S, Masuda, N., 2017. Finding multiple core-periphery pairs in networks. Phys. Rev. E 96(5), 052313.

[50]

Lacasa, L, Luque, B, Ballesteros, F, Luque, J, Nuño, J. C., 2008. From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. U.S.A., 105(13), 4972-4975.

[51]

Lambiotte, R, Rosvall, M, Scholtes, I., 2019. From networks to optimal higher-order models of complex systems. Nat. Phys., 15(4), 313-320.

[52]

Leskovec, J, Lang, K. J., Dasgupta, A, Mahoney, M. W., 2009. Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math., 6(1), 29-123.

[53]

Li, K, Liang, S, Liang, Y, Feng, C, Qi, J, Xu, L, Yang, Z., 2021. Mapping spatial supply chain paths for embodied water flows driven by food demand in China. Sci. Total Environ., 786, 147480.

[54]

Li, T, Long, H, Zhang, Y, Tu, S, Ge, D, Li, Y, Hu, B., 2017. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy 60, 26-36.

[55]

Li, W, Chen, J, Zhang, Z., 2020. Forest quality-based assessment of the returning farmland to forest program at the community level in SW China. For. Ecol. Manag., 461, 117938.

[56]

Li, Z, Sun, X, Huang, Z, Zhang, X, Wang, Z, Li, S, Zheng, W, Zhai, B., 2020. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: a case study in Ningxia, China. Sci. Total Environ., 735, 139370.

[57]

Lin, X, Song, B, Adil, M. F., Lal, M. K., Jia, Q, Wang, Q, Song, X., 2023. Response of the rhizospheric soil microbial community of sugar beet to nitrogen application: a case of black soil in Northeast China. Appl. Soil Ecol., 191, 105050.

[58]

Liu, H, Sun, Z, Luo, X, Dong, X, Wu, M., 2020. A spatial-temporal analysis of the effects of households’ land-use behaviors on soil available potassium in cropland: a case study from urban peripheral region in Northeast China. Land 9(5), 160.

[59]

Liu, H, Wang, H, Zhang, Y, Yuan, J, Peng, Y, Li, X, Shi, Y, He, K, Zhang, Q., 2018. Risk assessment, spatial distribution, and source apportionment of heavy metals in Chinese surface soils from a typically tobacco cultivated area. Environ. Sci. Pollut. Res., 25(17), 16852-16863.

[60]

Liu, Q, Niu, J, Wood, J. D., Kang, S., 2022. Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River basin, Northwest China. Agric. Water Manage., 264, 107479.

[61]

Liu, Y, Liu, X, Liu, Z., 2022. Effects of climate change on paddy expansion and potential adaption strategies for sustainable agriculture development across Northeast China. Appl. Geogr., 141, 102667.

[62]

Liu, Y, Zhou, Y., 2021. Reflections on China's food security and land use policy under rapid urbanization. Land Use Policy 109, 105699.

[63]

Liu, Z, Ying, H, Chen, M, Bai, J, Xue, Y, Yin, Y, Batchelor, W. D., Yang, Y, Bai, Z, Du, M, Guo, Y, Zhang, Q, Cui, Z, Zhang, F, Dou, Z., 2021. Optimization of China's maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2(6), 426-433.

[64]

Lu, S. S., Liu, Y. S., Long, H. L., Guan, X. H., 2013. Agricultural production structure optimization: a case study of major grain producing areas, China. J. Integr. Agric., 12(1), 184-197.

[65]

Lu, Y, Zhang, Y, Hong, Y, He, L, Chen, Y., 2022. Experiences and lessons from agri-food system transformation for sustainable food security: a review of China's practices. Foods 11(2), 137.

[66]

Luo, D, Pang, X, Xu, X, Bi, S, Zhang, W, Wu, J., 2018. Identification of cooked off-flavor components and analysis of their formation mechanisms in melon juice during thermal processing. J. Agric. Food Chem., 66(22), 5612-5620.

[67]

Ma, A, Lu, X, Gray, C, Raybould, A, Tamaddoni-Nezhad, A, Woodward, G, Bohan, D. A., 2019. Ecological networks reveal resilience of agro-ecosystems to changes in farming management. Nat. Ecol. Evol., 3(2), 260-264.

[68]

Ma, A, Mondragón, R. J., 2015. Rich-cores in networks. PLoS One 10(3), e0119678.

[69]

Ma, C, Xiang, B. B., Chen, H. S., Small, M, Zhang, H. F., 2018. Detection of core-periphery structure in networks based on 3-tuple motifs. Chaos 28(5), 053121.

[70]

Ma, L, Long, H, Tang, L, Tu, S, Zhang, Y, Qu, Y., 2021. Analysis of the spatial variations of determinants of agricultural production efficiency in China. Comput. Electron. Agric., 180, 105890.

[71]

Maja, M. M., Ayano, S. F., 2021. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst. Environ., 5(2), 271-283.

[72]

Malliaros, F. D., Giatsidis, C, Papadopoulos, A. N., Vazirgiannis, M., 2020. The core decomposition of networks: theory, algorithms and applications. VLDB J., 29(1), 61-92.

[73]

Mariani, M. S., Ren, Z. M., Bascompte, J, Tessone, C. J., 2019. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep., 813, 1-90.

[74]

Medennikov, V. I., Butrova, E. V., Kokuytseva, T. V. 2020. Approaches to the analysis and assessment of environmental risks in agriculture identified through the monitoring and processing of remote sensing data. A.V. Bogoviz, Y.V. Ragulina (Eds.), Industry Competitiveness: Digitalization, Management, and Integration, Springer International Publishing, Cham, pp.19-27.

[75]

Peixoto, T. P. 2019. Bayesian stochastic blockmodeling. P. Doreian, V. Batagelj, A. Ferligoj (Eds.), Advances in Network Clustering and Blockmodeling, John Wiley & Sons Ltd, pp.289-332.

[76]

Pickson, R. B., Gui, P, Chen, A, Boateng, E., 2022. Empirical analysis of rice and maize production under climate change in China. Environ. Sci. Pollut. Res., 29(46), 70242-70261.

[77]

Qi, H, Shen, C, Chen, G, Zhang, J, Chen, F, Li, H, Zhang, C., 2023. Rapid and non-destructive determination of soluble solid content of crown pear by visible/near-infrared spectroscopy with deep learning regression. J. Food Compos. Anal., 123, 105585.

[78]

Qi, X, Wang, R. Y., Li, J, Zhang, T, Liu, L, He, Y., 2018. Ensuring food security with lower environmental costs under intensive agricultural land use patterns: a case study from China. J. Environ. Manage., 213, 329-340.

[79]

Qu, L, Li, Y, Chen, Z, Huang, Y., 2022. Exploring the spatiotemporal variation characteristics and influencing factors of gully agricultural production transformation in the Chinese Loess Plateau: a case study of loess hilly and gully region in Yan'an City. Land Use Policy 123, 106369.

[80]

Ranum, P, Peña-Rosas, J. P., Garcia-Casal, M. N., 2014. Global maize production, utilization, and consumption. Ann. N.Y. Acad. Sci., 1312(1), 105-112.

[81]

Ren, S, Guo, B, Wu, X, Zhang, L, Ji, M, Wang, J., 2021. Winter wheat planted area monitoring and yield modeling using MODIS data in the Huang-Huai-Hai Plain, China. Comput. Electron. Agric., 182, 106049.

[82]

Rombach, P, Porter, M. A., Fowler, J. H., Mucha, P. J., 2017. Core-periphery structure in networks (revisited). SIAM Rev., 59(3), 619-646.

[83]

Rossa, F. D., Dercole, F, Piccardi, C., 2013. Profiling core-periphery network structure by random walkers. Sci. Rep., 3(1), 1-8.

[84]

Sciarra, C, Chiarotti, G, Ridolfi, L, Laio, F., 2020. Reconciling contrasting views on economic complexity. Nat. Commun., 11(1), 1-10.

[85]

Seghezzo, L, Huaranca, L. L., Vega, M. L., Jeckeln, G. V., Avalos, M. A., Iribarnegaray, M. A., Volante, J. N., Serrano, F. H. M., Mastrangelo, M, Sun, Z, Müller, D., 2020. Sustainable farmers, deficient State? Self-reported agricultural sustainability in the Argentine Chaco region. Int. J. Agric. Sustain., 18(6), 473-491.

[86]

Sommer, J, Zhang, Y, Shandra, J., 2023. Ecologically unequal exchange, repression, and forest loss: how China’s demand for agricultural products impacts the natural environment. Environ. Dev., 46, 100866.

[87]

Song, H, Li, J, Jin, Z., 2022. Nonlinear dynamic modelling and analysis of African swine fever with culling in China. Commun. Nonlinear Sci. Numer. Simul., 117, 106915.

[88]

Sun, X. F., Ren, P, Van Epp, M., 2019. Chinese Views of African Forests: Evidence and Perception of China-Africa links that Impact the Governance of Forests and livelihoods. Natural Resource Issues No. 29. International Institute for Environment and Development, London

[89]

Torreggiani, S, Mangioni, G, Puma, M. J., Fagiolo, G., 2018. Identifying the community structure of the food-trade international multi-network. Environ. Res. Lett., 13(5), 054026.

[90]

Tudisco, F, Higham, D. J., 2019. A nonlinear spectral method for core–periphery detection in networks. SIAM J. Math. Data Sci., 1(2), 269-292.

[91]

van Ittersum, M. K., Ewert, F, Heckelei, T, Wery, J, Alkan Olsson, J, Andersen, E, Bezlepkina, I, Brouwer, F, Donatelli, M, Flichman, G, Olsson, L, Rizzoli, A. E., van der Wal, T, Wien, J. E., Wolf, J., 2008. Integrated assessment of agricultural systems – a component-based framework for the European Union (SEAMLESS). Agric. Syst., 96(1), 150-165.

[92]

Wang, J, Zhang, L, He, X, Zhang, Y, Wan, Y, Duan, S, Xu, C, Mao, X, Chen, X, Shi, X., 2020. Environmental mitigation potential by improved nutrient managements in pear (Pyrus pyrifolia L.) orchards based on life cycle assessment: a case study in the North China Plain. J. Clean. Prod., 262, 121273.

[93]

Wang, Y, Gao, F, Gao, G, Zhao, J, Wang, X, Zhang, R., 2019. Production and cultivated area variation in cereal, rice, wheat and maize in China (1998–2016). Agronomy 9(5), 222.

[94]

Wang, Y, Wild, O, Ashworth, K, Chen, X, Wu, Q, Qi, Y, Wang, Z., 2022. Reductions in crop yields across China from elevated ozone. Environ. Pollut., 292, 118218.

[95]

Xian, Y, Cai, G, Lin, J, Chen, Y, Wang, X., 2023. Comparison of crop productivity, economic benefit and environmental footprints among diversified multi-cropping systems in South China. Sci. Total Environ., 874, 162407.

[96]

Xin, F, Xiao, X, Dong, J, Zhang, G, Zhang, Y, Wu, X, Li, X, Zou, Z, Ma, J, Du, G., 2020. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ., 711, 135183.

[97]

Xin, L., 2021. Dietary structure upgrade of China's residents, international trade and food security. J. Nat. Resour., 36, 1469-1480.

[98]

Yan, P, Wu, L, Wang, D, Fu, J, Shen, C, Li, X, Zhang, L, Zhang, L, Fan, L, Wenyan, H., 2020. Soil acidification in Chinese tea plantations. Sci. Total Environ., 715, 136963.

[99]

Yan, Y, Jeong, S, C-Park, E, Mueller, N. D., Piao, S, Park, H, Joo, J, Chen, X, Wang, X, Liu, J., 2021. Effects of extreme temperature on China's tea production. Environ. Res. Lett., 16(4), 044040.

[100]

Yang, J., Leskovec, J., 2012. Structure and overlaps of communities in networks. arXiv preprint, arXiv:1205.6228.

[101]

Yang, S, Cui, X., 2023. Large-scale production: a possible way to the balance between feed grain security and meat security in China. J. Agric. Food Res., 14, 100745.

[102]

Yao, N, Li, Y, Liu, Q, Zhang, S, Chen, X, Ji, Y, Liu, F, Pulatov, A, Feng, P., 2022. Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes. Agric. Water Manage., 266, 107566.

[103]

Ye, S, Ren, S, Song, C, Cheng, C, Shen, S, Yang, J, Zhu, D., 2022. Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ., 326, 107757.

[104]

Ye, Z, Qiu, X, Chen, J, Cammarano, D, Ge, Z, Ruane, A. C., Liu, L, Tang, L, Cao, W, Liu, B., 2020. Impacts of 1.5 °C and 2.0 °C global warming above pre-industrial on potential winter wheat production of China. Eur. J. Agron., 120, 126149.

[105]

Yu, Q, Xiang, M, Sun, Z, Wu, W., 2021. The complexity of measuring cropland use intensity: an empirical study. Agric. Syst., 192, 103180.

[106]

Yu, X, Tao, X, Liao, J, Liu, S, Xu, L, Yuan, S, Zhang, Z, Wang, F, Deng, N, Huang, J., 2022. Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crop Res., 275, 108372.

[107]

Zaccaria, A, Cristelli, M, Tacchella, A, Pietronero, L., 2014. How the taxonomy of products drives the economic development of countries. PLoS One 9(12), e113770.

[108]

Zhang, H, Zhuo, L, Xie, D, Liu, Y, Gao, J, Wang, W, Li, M, Wu, A, Wu, P., 2022. Water footprints and efficiencies of ruminant animals and products in China over 2008–2017. J. Clean. Prod., 379, 134624.

[109]

Zhang, L, Zhang, Z, Tao, F, Luo, Y, Zhang, J, Cao, J., 2022. Adapting to climate change precisely through cultivars renewal for rice production across China: when, where, and what cultivars will be required?. Agric. For. Meteorol., 316, 108856.

[110]

Zhang, Z, Zhao, J, Hou, L, Xu, X, Zhu, Y, Zhai, B, Liu, Z., 2023. Comparative assessment of environmental impacts, mitigation potentials, and economic benefits of rain-fed and irrigated apple production systems on China's Loess Plateau. Sci. Total Environ., 869, 161791.

[111]

Zhao, H, Chang, J, Havlík, P, van Dijk, M, Valin, H, Janssens, C, Ma, L, Bai, Z, Herrero, M, Smith, P., 2021. China's future food demand and its implications for trade and environment. Nat. Sustain., 4(12), 1042-1051.

[112]

Zhao, L. Y., Liu, D, Yu, D. M., Zhang, J, Wang, J. Z., Zhao, W. H., 2018. Challenges brought about by rapid changes in Chinese diets: comparison with developed countries and implications for further improvement. Biomed. Environ. Sci., 31(10), 781-786.

[113]

Zou, L, Liu, Y, Wang, Y, Hu, X., 2020. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manage., 263, 110400.

PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

/