Establishing the relationship between land use land cover, normalized difference vegetation index and land surface temperature: A case of Lower Son River Basin, India

Shipra Singh , Pankaj Kumar , Rakhi Parijat , Barbaros Gonengcil , Abhinav Rai

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) : 265 -275.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (2) :265 -275. DOI: 10.1016/j.geosus.2023.11.006
Research Article
review-article

Establishing the relationship between land use land cover, normalized difference vegetation index and land surface temperature: A case of Lower Son River Basin, India

Author information +
History +
PDF

Abstract

The study explores the intricate interplay between land use land cover (LULC), normalized difference vegetation index (NDVI), and land surface temperature (LST) within the Lower Son River Basin in India from 1991 to 2020. The region’s ecological balance has been increasingly strained due to rapid urbanization and changing land use patterns. Through a combination of Landsat TM & OLI/TIRS satellite imageries and geospatial analysis techniques, this study unveils the intricate connection between land use and land cover changes, vegetation, and land surface temperature variations. The study area is classified into three altitudinal zones (Zone I: 39–300 m, Zone II: 301–600 m and Zone III: 601–1,247 m) to examine the changes in depth. The area has seen significant changes in LULC, vegetation and LST in all the three altitudinal zones. The findings hold significant implications for sustainable land management and environmental conservation strategies in the Lower Son River Basin. As per the result, 103,438 ha of vegetation was converted into agriculture land and 82,572 ha of agricultural land was transformed into settlements from 1991 to 2020. This trend shows human pressure on the land resource in the study area. Minor increase in water body is seen which is attributed to commissioning of Bansagar dam. Zone I has seen highest settlement growth while Zone III experienced severe deforestation of around 15%. Zone II and III needs attention for holistic sustenance. Analysis of LST shows that it has increased by 0.82 °C from 1991 to 2020 which is a red flag. The study underscores the critical importance of balanced land use practices to preserve ecological integrity and mitigate the adverse effects of urbanization and climate change.

Keywords

Lower Son River Basin / LULC / LST / NDVI / Correlation

Cite this article

Download citation ▾
Shipra Singh, Pankaj Kumar, Rakhi Parijat, Barbaros Gonengcil, Abhinav Rai. Establishing the relationship between land use land cover, normalized difference vegetation index and land surface temperature: A case of Lower Son River Basin, India. Geography and Sustainability, 2024, 5(2): 265-275 DOI:10.1016/j.geosus.2023.11.006

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found in the online version, at doi:10.1016/j.geosus.2023.11.006.

References

[1]

Abebe, G, Getachew, D, Ewunetu, A., 2022. Analysing land use/land cover changes and its dynamics using remote sensing and GIS in Gubalafito district, Northeastern Ethiopia. SN Appl. Sci., 4(1), 30.

[2]

Adab, H, Amirahmadi, A, Atabati, A., 2014. Relating vegetation cover with land surface temperature and surface albedo in warm period of year using MODIS imagery in North of Iran. Phys. Geogr. Res., 46(4), 419-434.

[3]

Avdan, U, Jovanovska, G., 2016. Automated mapping of land surface temperature using Landsat 8 satellite data. J. Sens., 2016, 1480307.

[4]

Demuth, S, Radojevic, B., 2011. Global change and its impact on water resources: the role of UNESCO’s international hydrological programme. Water Resour. Manag., 1(1), 7-15.

[5]

Deng, Y, Wang, S, Bai, X, Tian, Y, Wu, L, Xiao, J, Chen, F, Qian, Q., 2018. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep., 8 (1), p. 641. doi: 10.1038/s41598-017-19088-x.

[6]

Duan, S. B., Li, Z. L., Tang, B. H., Wu, H, Tang, R, Bi, Y, Zhou, G., 2014. Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data. Remote Sens., 6 (4), pp. 3247-3262. doi: 10.3390/rs6043247.

[7]

Foody, G. M., Campbell, N. A., Trodd, N. M., Wood, T. F., 1992. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens., 58(9), 1335-1341.

[8]

Gogoi, P. P., Vinoj, V, Swain, D, Roberts, G, Dash, J, Tripathy, S., 2019. Land use and land cover change effect on surface temperature over Eastern India. Sci. Rep., 9, 8859.

[9]

Goward, S. N., Xue, Y. K., Czajkowski, K. P., 2002. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sens. Environ., 79 (2–3), pp. 225-242. doi: 10.1016/S0034-4257(01)00275-9.

[10]

Grigsby, S. P., Hulley, G. C., Roberts, D. A., Scheele, C, Ustin, S. L., Alsina, M. M., 2015. Improved surface temperature estimates with MASTER/AVIRIS sensor fusion. Remote Sens. Environ., 167, pp. 53-63. doi: 10.1016/j.rse.2015.05.019.

[11]

Guha, S., Govil, H., Diwan, P., 2020. Monitoring LST-NDVI relationship using premonsoon Landsat datasets. Adv. Meteor. 2020, 539684. doi: 10.1155/2020/4539684

[12]

Gutman, G, Ignatov, A., 1998. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19 (8), pp. 1533-1543. doi: 10.1080/014311698215333.

[13]

Huang, J, Zhan, J, Yan, H, Wu, F, Deng, X., 2013. Evaluation of the impacts of land use on water quality: a case study in the Chaohu Lake basin. Sci. World J., 2013, 329187.

[14]

IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the IPCC Fourth Assessment Report, Summary for Policymakers. Cambridge University Press, Cambridge, UK and New York, NY, USA.

[15]

Jain, M, Dimri, A. P., Niyogi, D., 2017. Land-air interactions over urban-rural transects using satellite observations: analysis over Delhi, India from 1991–2016. Remote Sens., 9(12), 1283.

[16]

Jeevalakshmi, D, Narayana Reddy, S, Manikiam, B., 2017. Land surface temperature retrieval from Landsat data using emissivity estimation. Int. J. Appl. Eng. Res., 12(20), 9679-9687.

[17]

Jensen, J., 2007. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed. Prentice-Hall, Inc., Upper Saddle River, New Jersey

[18]

Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D, Mattar, C, Cristóbal, J., 2014. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett., 11(10), 1840-1843.

[19]

Jimenez-Munoz, J. C., Sobrino, J. A., 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos., 108 (D22), p. 4688. doi: 10.1029/2003JD003480.

[20]

Kumar, P, Husain, A, Singh, R. B., Kumar, M., 2018. Impact of land cover change on land surface temperature: a case study of Spiti Valley. J. Mt. Sci., 15 (8), pp. 1658-1670. doi: 10.1007/s11629-018-4902-9.

[21]

Kumari, S, Singh, A. K., Lal, S. P., 2022. Rice varietal preference of farmers in rice bowl region of Bihar: a polychotomous logistic regression analysis. Indian J. Ext. Educ., 58(1), 48-53.

[22]

Lee, T. W., Lewicki, M. S., 2002. Unsupervised image classification, segmentation, and enhancement using ICA mixture models. IEEE Trans. Image Process., 11(3), 270-279.

[23]

Liang, S. L., 2005. Quantitative Remote Sensing of Land Surfaces. John Wiley & Sons, Inc

[24]

Lillesand, T. M., Kiefer, R. W., Chipman, J. W., 2008. Remote Sensing and Image Interpretation. John Wiley & Sons, Inc., New York

[25]

Liu, S, Zhuang, Q, He, Y, Noormets, A, Chen, J, Gu, L., 2016. Evaluating atmospheric CO2 effects on gross primary productivity and net ecosystem exchanges of terrestrial ecosystems in the conterminous United States using the AmeriFlux data and an artificial neural network approach. Agric. For. Meteorol., 220, 38-49.

[26]

Lu, D, Weng, Q., 2006. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sens. Environ., 104(2), 157-167.

[27]

Mallick, J, Kant, Y, Bharath, B. D., 2008. Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J. Ind. Geophys. Union 12(3), 131-140.

[28]

Maselli, F, Conese, C, Petkov, L., 1994. Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications. ISPRS J. Photogramm. Remote Sens., 49(2), 13-20.

[29]

Nwilo, P. C., Olayinka, D. N., Atagbaza, A. O., Adzandeh, A. E., 2012. Determination of land surface temperature (LST) and potential urban heat island effect in parts of Lagos state using satellite imageries. FUTY J. Environ., 7 (1), pp. 19-33. doi: 10.4314/fje.v7i1.2.

[30]

Oguz, H., 2013. LST calculator: a program for retrieving land surface temperature from Landsat TM/ETM+ imagery. Environ. Eng. Manag. J., 12(3), 549-555.

[31]

Prasad, T. L., Sreenivasulu, G., 2014. Land use/land cover analysis using remote sensing and GIS: a case study on Pulivendula Taluk, Kadapa District, Andhra Pradesh, India. Int. J. Sci. Res. Pub., 4(6), 1-5.

[32]

Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E, Sinervo, B., 2019. Impacts of forestation and deforestation on local temperature across the globe. PLoS One, 14 (3), Article e0213368. doi: 10.1371/journal.pone.0213368.

[33]

Price, D. T., Alfaro, R. I., Brown, K. J., Flannigan, M. D., Fleming, R. A., Hogg, E. H., Girardin, M. P., Lakusta, T, Johnston, M, McKenney, D. W., Pedlar, J. H., Stratton, T, Sturrock, R. N., Thompson, I. D., Trofymow, J. A., Venier, L. A., 2013. Anticipating the consequences of climate change for Canada's boreal forest ecosystems. Environ. Rev., 21, pp. 322-365. doi: 10.1139/er-2013-0042.

[34]

Qiu, J, Yang, J, Wang, Y, Su, H., 2018. A comparison of NDVI and EVI in the DisTrad model for thermal sub-pixel mapping in densely vegetated areas: a case study in Southern China. Int. J. Remote Sens., 39 (8), pp. 2105-2118. doi: 10.1080/01431161.2017.1420929.

[35]

Rahaman, S, Kumar, P, Chen, R, Meadows, M. E., Singh, R. B., 2020. Remote sensing assessment of the impact of land use and land cover change on the environment of Barddhaman district, West Bengal, India. Front. Environ. Sci., 8, p. 127. doi: 10.3389/fenvs.2020.00127.

[36]

Ren, H, Ye, X, Liu, R, Dong, J, Qin, Q., 2018. Improving land surface temperature and emissivity retrieval from the Chinese Gaofen-5 Satellite using a hybrid algorithm. IEEE Trans. Geosci. Remote Sens., 56, pp. 1080-1090. doi: 10.1109/TGRS.2017.2758804.

[37]

Rothery, D. A., 1989. A re-interpretation of Landsat TM data on Chernobyl. Int. J. Remote Sens., 10(8), 1423-1427.

[38]

Rouse Jr, J. W., Haas, R. H., Schell, J. A., Deering, D. W.Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the Earth Resources Technology Satellite Symposium, Vol. 1, NASA, Washingtong D.C. 1973; 309-317.

[39]

Roy, P. S., Roy, A., 2010. Land use and land cover change in India: a remote sensing & GIS perspective. J. Indian Inst. Sci., 90(4), 489-502.

[40]

Schultz, N. M., Lawrence, P. J., Lee, X., 2017. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci., 122, pp. 903-917. doi: 10.1002/2016jg003653.

[41]

Scott, C. E., Monks, S. A., Spracklen, D. V., Arnold, S. R., Forster, P. M., Rap, A, Äijälä, M, Artaxo, P, Carslaw, K. S., Chipperfield, M. P., Ehn, M, Gilardoni, S, Heikkinen, L, Kulmala, M, Petäjä, T, Reddington, C. L. S., Rizzo, L. V., Swietlicki, E, Vignati, E, Wilson, C., 2018. Impact on short-lived climate forcers increases projected warming due to deforestation. Nat. Commun., 9 (1), p. 157. doi: 10.1038/s41467-017-02412-4.

[42]

Smith, R. C. G., Choudhury, B. J., 1990. On the correlation of indices of vegetation and surface temperature over South-eastern Australia. Int. J. Remote Sens., 11 (11), pp. 2113-2120. doi: 10.1080/01431169008955164.

[43]

Sobrino, J. A., Raissouni, N, Lit, L. Z., 2001. A comparative study of land surface emissivity retrieval from NOAA Data. Remote Sens. Environ., 75(2), 256-266.

[44]

Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A, Vermote, E. F., Townshend, J. R., 2018. Global land change from 1982 to 2016. Nature, 560 (2018), pp. 639-643. doi: 10.1038/s41586-018-0411-9.

[45]

Stoy, P. C., 2018. Deforestation intensifies hot days. Nat. Clim. Change, 8 (5), pp. 366-368. doi: 10.1111/gcb.15279.

[46]

Strahler, A. H., 1980. The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens. Environ., 10(2), 135-163.

[47]

Swann, A. L. S., Fung, I. Y., Chiang, J. C. H., 2012. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. U.S.A., 109 (3), pp. 712-716. doi: 10.1073/pnas.1116706108.

[48]

Tan, J, Zheng, Y, Tang, X, Guo, C, Li, L, Song, G, Zhen, X, Yuan, D, Kalkstein, A. J., Li, F, Chen, H., 2010. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol., 54, pp. 75-84. doi: 10.1007/s00484-009-0256-x.

[49]

Tarawally, M, Xu, W. B., Hou, W. M., Terence, D. M., 2018. Comparative analysis of responses of land surface temperature to long-term land use/cover changes between a coastal and inland city: a case of Freetown and Bo town in Sierra Leone. Remote Sens., 10, p. 112. doi: 10.3390/rs10010112.

[50]

Tim, U. S., Jolly, R., 1994. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model. J. Environ. Qual., 23(1), 25-35.

[51]

Tomlinson, C. J., Chapman, L, Thornes, J. E., Baker, C., 2011. Remote sensing land surface temperature for meteorology and climatology: a review. Meteorol. Appl., 18(3), 296-306.

[52]

Unger, N., 2014. Human land-use-driven reduction of forest volatiles cools global climate. Nat. Clim. Change, 4 (10), pp. 907-910. doi: 10.1038/nclimate2347.

[53]

Walker, W. S., Gorelik, S. R., Baccini, A, Aragon-Osejo, J. L., Josse, C, Meyer, C, Macedo, M. N., Augusto, C, Rios, S, Katan, T, de Souza, A. A., Cuellar, S, Llanos, A, Zager, I, Mirabal, G. D., Solvik, K. K., Farina, M. K., Moutinho, P, Schwartzman, S., 2020. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. U.S.A., 117 (6), pp. 3015-3025. doi: 10.1073/pnas.1913321117.

[54]

Wang, Y. C., Hu, B. K. H., Myint, S. W., Feng, C. C., Chow, W. T. L., Passy, P. F., 2018. Patterns of land change and their potential impacts on land surface temperature change in Yangon. Myanmar. Sci. Total Environ., 643, 738-750.

[55]

Williams, C. A., Gu, H, Jiao, T., 2021. Climate impacts of U.S. forest loss span net warming to net cooling. Sci. Adv., 7 (7), p. eaax8859. doi: 10.1126/sciadv.aax8859.

[56]

Winkler, K, Fuchs, R, Rounsevell, M, Herol, M., 2021. Global land use changes are four times greater than previously estimated. Nat. Commun., 12 (1), p. 2501. doi: 10.1038/s41467-021-22702-2.

[57]

Xiao, R, Ouyang, Z. Y., Zheng, H, Li, W. F., Schienke, E. W., Wang, X. K., 2007. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci., 19(2), 250-256.

[58]

Yu, Y. Y., Privette, J. L., Pinheiro, A. C., 2005. Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data. IEEE Trans. Geosci. Remote Sens., 43 (10), pp. 2340-2350. doi: 10.1109/TGRS.2005.856114.

[59]

Zaharaddeen, I, Ibrahim, I. B., Zachariah, A., 2016. Estimation of land surface temperature of Kaduna metropolis, Nigeria using Landsat images. Sci. World J., 11(3), 36-42.

[60]

Zawadzki, J, Cieszewski, C. J., Zasada, M, Lowe, R. C., 2005. Applying geostatistics for investigations of forest ecosystems using remote sensing imagery. Silva Fenn. Monogr., 39(4), 599-617.

[61]

Zhang, J, Wang, Y, Li, Y., 2006. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band 6. Comput. Geosci., 32(10), 1796-1805.

[62]

Zheng, X, Li, Z. L., Nerry, F, Zhang, X., 2019. A new thermal infrared channel configuration for accurate land surface temperature retrieval from satellite data. Remote Sens. Environ., 231, 111216.

PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

/