Earth vitality: An integrated framework for tracking Earth sustainability

Chuanglin Fang , Zhitao Liu

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) : 96 -107.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) :96 -107. DOI: 10.1016/j.geosus.2023.11.002
Research Article
review-article

Earth vitality: An integrated framework for tracking Earth sustainability

Author information +
History +
PDF

Abstract

The Anthropocene era is characterized by the escalating impact of human activities on the environment, as well as the increasingly complex interactions among various components of the Earth system. These factors greatly affect the Earth’s evolutionary trajectory. Despite notable strides in sustainable development practices worldwide, it remains unclear to what extent we have achieved Earth sustainability. Consequently, there is a pressing need to enhance conceptual and methodological frameworks to measure sustainability progress accurately. To address this need, we developed an Earth Vitality Framework that aids in tracking the Earth sustainability progress by considering interactions between spheres, recognizing the equal relationship between humans and nature, and presenting a threshold scheme for all measures. We applied this framework at global and national scales to demonstrate its usefulness. Our findings reveal that the current Earth Vitality Index is 63.74, indicating that the Earth is in a “weak” vitality. Irrational social institutions, unsatisfactory life experiences and the poor state of the biosphere and hydrosphere have remarkably affected the Earth vitality. Additionally, inequality exists between high-income and low-income countries. Although most of the former exhibit poor human-nature interaction, all of them enjoy good human well-being, while the opposite is true for the latter. Finally, we summarize the challenges and possible options for enhancing the Earth vitality in terms of coping with spillover effects, tipping cascades, feedback, and heterogeneity.

Keywords

Multi-sphere / Human-nature interaction / Sustainability / Earth vitality framework

Cite this article

Download citation ▾
Chuanglin Fang, Zhitao Liu. Earth vitality: An integrated framework for tracking Earth sustainability. Geography and Sustainability, 2024, 5(1): 96-107 DOI:10.1016/j.geosus.2023.11.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Acknowledgements

We thank Jianguo Liu for constructive comments on an earlier version of this paper. This work was supported by Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 42121001) and Major Program of National Natural Science Foundation of China (Grant No. 41590840).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.11.002.

References

[1]

Alibakhshi, S, Naimi, B, Hovi, A, Crowther, T. W., Rautiainen, M., 2020. Quantitative analysis of the links between forest structure and land surface albedo on a global scale. Remote Sens. Environ., 246, 111854.

[2]

Allen, M. R., Frame, D. J., Huntingford, C, Jones, C. D., Lowe, J. A., Meinshausen, M, Meinshausen, N., 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242), 1163-1166.

[3]

Anderson, D. M., Glibert, P. M., Burkholder, J. M., 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4), 704-726.

[4]

Anderson, K., 2010. Globalization’s effects on world agricultural trade, 1960–2050. Philos. Trans. R Soc. B 365(1554), 3007-3021.

[5]

Atkinson, G, Hamilton, K, Ruta, G, Van Der Mensbrugghe, D., 2011. Trade in ‘virtual carbon’: empirical results and implications for policy. Glob. Environ. Chang., 21(2), 563-574.

[6]

Brundtland, G.H., 1987. Report of the World Commission on Environment and Development: Our Common Future. United Nations General Assembly, New York.

[7]

Butchart, S. H., Walpole, M, Collen, B, van Strien, A, Scharlemann, J. P., Almond, R. E., Baillie, J. E., Bomhard, B, Brown, C, Bruno, J, Carpenter, K. E., Carr, G. M., Chanson, J, Chenery, A. M., Csirke, J, Davidson, N. C., Dentener, F, Foster, M, Galli, A, Galloway, J. N., Genovesi, P, Gregory, R. D., Hockings, M, Kapos, V, Lamarque, J. F., Leverington, F, Loh, J, McGeoch, M. A., McRae, L, Minasyan, A, Hernandez Morcillo, M, Oldfield, T. E., Pauly, D, Quader, S, Revenga, C, Sauer, J. R., Skolnik, B, Spear, D, Stanwell-Smith, D, Stuart, S. N., Symes, A, Tierney, M, Tyrrell, T. D., Vie, J. C., Watson, R., 2010. Global biodiversity: indicators of recent declines. Science 328(5982), 1164-1168.

[8]

Chakravarty, D, Dasgupta, S, Roy, J., 2013. Rebound effect: how much to worry?. Curr. Opin. Environ. Sustain., 5(2), 216-228.

[9]

Charlson, R. J., Lovelock, J. E., Andreae, M. O., Warren, S. G., 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326(6114), 655-661.

[10]

Chen, J. L., Wilson, C. R., Tapley, B. D., 2006. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313(5795), 1958-1960.

[11]

Chen, J. L., Wilson, C. R., Tapley, B. D., 2013. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat. Geosci., 6(7), 549-552.

[12]

Costanza, R, d’Arge, R, de Groot, R, Farber, S, Grasso, M, Hannon, B, Limburg, K, Naeem, S, O’Neil, R. V., Paruelo, J, Raskin, R. G., Suttonl, P, Bel, M. V. D., 1997. The value of the world’s ecosystem services and natural capital. Nature 6630(387), 253-260.

[13]

Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S, Zhou, G, Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y, Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B, Emmett, B. A., Estiarte, M, Frey, S. D., Guo, J, Harte, J, Jiang, L, Johnson, B. R., Kroel-Dulay, G, Larsen, K. S., Laudon, H, Lavallee, J. M., Luo, Y, Lupascu, M, Ma, L. N., Marhan, S, Michelsen, A, Mohan, J, Niu, S, Pendall, E, Penuelas, J, Pfeifer-Meister, L, Poll, C, Reinsch, S, Reynolds, L. L., Schmidt, I. K., Sistla, S, Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., Bradford, M. A., 2016. Quantifying global soil carbon losses in response to warming. Nature 540(7631), 104-108.

[14]

Curson, A. R., Todd, J. D., Sullivan, M. J., Johnston, A. W., 2011. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol., 9(12), 849-859.

[15]

Dietz, R., Daly, H., O’Neill, D., 2013. Enough is Enough: Building a Sustainable Economy in a World of Finite Resources. Berrett-Koehler Publishers Inc., San Francisco.

[16]

Druckman, A, Chitnis, M, Sorrell, S, Jackson, T., 2011. Missing carbon reductions? Exploring rebound and backfire effects in UK households. Energy Policy 39(6), 3572-3581.

[17]

Eisenmenger, N, Pichler, M, Krenmayr, N, Noll, D, Plank, B, Schalmann, E, Wandl, M. T., Gingrich, S., 2020. The sustainable development goals prioritize economic growth over sustainable resource use: a critical reflection on the SDGs from a socio-ecological perspective. Sustain. Sci., 15(4), 1101-1110.

[18]

Greiner, R, Cacho, O., 2001. On the efficient use of a catchment's land and water resources: dryland salinization in Australia. Ecol. Econ., 38(3), 441-458.

[19]

Griggs, D, Stafford-Smith, M, Gaffney, O, Rockstrom, J, Ohman, M. C., Shyamsundar, P, Steffen, W, Glaser, G, Kanie, N, Noble, I., 2013. Policy: sustainable development goals for people and planet. Nature 495(7441), 305-307.

[20]

Hák, T, Janoušková, S, Moldan, B., 2016. Sustainable Development Goals: a need for relevant indicators. Ecol. Indic., 60, 565-573.

[21]

Hanjra, M. A., Qureshi, M. E., 2010. Global water crisis and future food security in an era of climate change. Food Policy 35(5), 365-377.

[22]

Hoekstra, A. Y., Hung, P. Q., 2005. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Chang., 15(1), 45-56.

[23]

Hoekstra, A. Y., Wiedmann, T. O., 2014. Humanity's unsustainable environmental footprint. Science 344(6188), 1114-1117.

[24]

Hubbell, S. P., He, F, Condit, R, Borda-de-Água, L, Kellner, J, Ter Steege, H., 2008. How many tree species are there in the Amazon and how many of them will go extinct?. Proc. Natl. Acad. Sci. U. S. A., 105(Suppl. 1), 11498-11504.

[25]

Jain, P, Jain, P., 2020. Are the sustainable development goals really sustainable? A policy perspective. Sustain. Dev., 28(6), 1642-1651.

[26]

Janoušková, S, Hák, T, Moldan, B., 2018. Global SDGs assessments: helping or confusing indicators?. Sustainability 10(5), 1540.

[27]

Jenkinson, D. S., Adams, D. E., Wild, A., 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351(6324), 304-306.

[28]

Joint Research Centre - European Commission, 2008. Handbook on Constructing CompositeIndicators: Methodology and User Guide. OECD publishing.

[29]

Karl, T. R., Trenberth, K. E., 2003. Modern global climate change. Science 302(5651), 1719-1723.

[30]

Khormali, F, Ajami, M. 2011. Pedogenetic investigation of soil degradation on a deforested loess hillslope of Golestan Province, Northern Iran. Geoderma, 167-168, pp.274-283.

[31]

Kiene, R. P., Linn, L. J., Bruton, J. A., 2000. New and important roles for DMSP in marine microbial communities. J. Sea Res., 43(3–4), 209-224.

[32]

Klir, J, Valach, M., 1967. Cybernetic Modelling. Iliffe Books Ltd., London

[33]

Klose, A. K., Wunderling, N, Winkelmann, R, Donges, J. F., 2021. What do we mean, ‘tipping cascade’?. Environ. Res. Lett., 16(12), 125011.

[34]

Le Blanc, D., 2015. Towards integration at last? The sustainable development goals as a network of targets. Sustain. Dev., 23(3), 176-187.

[35]

Lenton, T. M., 1998. Gaia and natural selection. Nature 394(6692), 439-447.

[36]

Lenton, T. M., Held, H, Kriegler, E, Hall, J. W., Lucht, W, Rahmstorf, S, Schellnhuber, H. J., 2008. Tipping elements in the Earth's climate system. Proc. Natl. Acad. Sci. U. S. A., 105(6), 1786-1793.

[37]

Lenton, T. M., Rockström, J, Gaffney, O, Rahmstorf, S, Richardson, K, Steffen, W, Schellnhuber, H. J., 2019. Climate tipping points—too risky to bet against. Nature 575(7784), 592-595.

[38]

Li, G, Fang, C, Li, Y, Wang, Z, Sun, S, He, S, Qi, W, Bao, C, Ma, H, Fan, Y, Feng, Y, Liu, X., 2022. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun., 13(1), 1628.

[39]

Li, M, Wiedmann, T, Fang, K, Hadjikakou, M., 2021. The role of planetary boundaries in assessing absolute environmental sustainability across scales. Environ. Int., 152, 106475.

[40]

Liu, J., 2017. Integration across a metacoupled world. Ecol. Soc., 22(4), 29.

[41]

Liu, J, Dietz, T, Carpenter, S. R., Alberti, M, Folke, C, Moran, E, Pell, A. N., Deadman, P, Kratz, T, Lubchenco, J, Ostrom, E, Ouyang, Z, Provencher, W, Redman, C. L., Schneider, S. H., Taylor, W. W., 2007. Complexity of coupled human and natural systems. Science 317(5844), 1513-1516.

[42]

Liu, J, Dietz, T, Carpenter, S. R., Folke, C, Alberti, M, Redman, C. L., Schneider, S. H., Ostrom, E, Pell, A. N., Lubchenco, J, Taylor, W. W., Ouyang, Z. Y., Deadman, P, Kratz, T, Provencher, W., 2007. Coupled human and natural systems. Ambio 36(8), 639-649.

[43]

Liu, J, Hull, V, Batistella, M, DeFries, R, Dietz, T, Fu, F, Hertel, T. W., Izaurralde, R. C., Lambin, E. F., Li, S, Martinelli, L. A., McConnell, W. J., Moran, E. F., Naylor, R, Ouyang, Z, Polenske, K. R., Reenberg, A, de Miranda Rocha, G, Simmons, C. S., Verburg, P. H., Vitousek, P. M., Zhang, F, Zhu, C., 2013. Framing sustainability in a telecoupled world. Ecol. Soc., 18(2), 26.

[44]

Liu, J, Hull, V, Godfray, H. C. J., Tilman, D, Gleick, P, Hoff, H, Pahl-Wostl, C, Xu, Z, Chung, M. G., Sun, J, Li, S., 2018. Nexus approaches to global sustainable development. Nat. Sustain., 1(9), 466-476.

[45]

Liu, J, Mooney, H, Hull, V, Davis, S. J., Gaskell, J, Hertel, T, Lubchenco, J, Seto, K. C., Gleick, P, Kremen, C, Li, S., 2015. Systems integration for global sustainability. Science 347(6225), 1258832.

[46]

Lovelock, J. E., Margulis, L., 1974. Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus 26(1–2), 2-10.

[47]

Luyssaert, S, Marie, G, Valade, A, Chen, Y. Y., Njakou Djomo, S, Ryder, J, Otto, J, Naudts, K, Lanso, A. S., Ghattas, J, McGrath, M. J., 2018. Trade-offs in using European forests to meet climate objectives. Nature 562(7726), 259-262.

[48]

MacDougall, A. H., Avis, C. A., Weaver, A. J., 2012. Significant contribution to climate warming from the permafrost carbon feedback. Nat. Geosci., 5(10), 719-721.

[49]

Meinshausen, M, Meinshausen, N, Hare, W, Raper, S. C., Frieler, K, Knutti, R, Frame, D. J., Allen, M. R., 2009. Greenhouse-gas emission targets for limiting global warming to 2 ℃. Nature 458(7242), 1158-1162.

[50]

Newbold, T, Hudson, L. N., Hill, S. L., Contu, S, Lysenko, I, Senior, R. A., Borger, L, Bennett, D. J., Choimes, A, Collen, B, Day, J, De Palma, A, Diaz, S, Echeverria-Londono, S, Edgar, M. J., Feldman, A, Garon, M, Harrison, M. L., Alhusseini, T, Ingram, D. J., Itescu, Y, Kattge, J, Kemp, V, Kirkpatrick, L, Kleyer, M, Correia, D. L., Martin, C. D., Meiri, S, Novosolov, M, Pan, Y, Phillips, H. R., Purves, D. W., Robinson, A, Simpson, J, Tuck, S. L., Weiher, E, White, H. J., Ewers, R. M., Mace, G. M., Scharlemann, J. P., Purvis, A., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520(7545), 45-50.

[51]

O'Neill, D. W., Fanning, A. L., Lamb, W. F., Steinberger, J. K., 2018. A good life for all within planetary boundaries. Nat. Sustain., 1(2), 88-95.

[52]

Ostrom, E., 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325(5939), 419-422.

[53]

Peters, K, Peters, L. E. R., 2021. Terra incognita: the contribution of disaster risk reduction in unpacking the sustainability–peace nexus. Sustain. Sci., 16(4), 1173-1184.

[54]

Princen, T., 2005. The Logic of Sufficiency. Mit Press

[55]

Qiu, J, Zipper, S. C., Motew, M, Booth, E. G., Kucharik, C. J., Loheide, S. P., 2019. Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nat. Sustain., 2(6), 475-483.

[56]

Raworth, K., 2017. Doughnut Economics: Seven Ways to Think Like a 21st-century Economist. Chelsea Green Publishing, London

[57]

Reynolds, J. F., Smith, D. M., Lambin, E. F., Turner II, B. L., Mortimore, M, Batterbury, S. P., Downing, T. E., Dowlatabadi, H, Fernandez, R. J., Herrick, J. E., Huber-Sannwald, E, Jiang, H, Leemans, R, Lynam, T, Maestre, F. T., Ayarza, M, Walker, B., 2007. Global desertification: building a science for dryland development. Science 316(5826), 847-851.

[58]

Rockstrom, J, Klum, M., 2015. Big World, Small Planet: Abundance Within Planetary Boundaries. Yale University Press, New Haven

[59]

Rockström, J, Steffen, W, Noone, K, Persson, Å, Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M, Folke, C, Schellnhuber, H. J., Nykvist, B, de Wit, C. A., Hughes, T, van der Leeuw, S, Rodhe, H, Sörlin, S, Snyder, P. K., Costanza, R, Svedin, U, Falkenmark, M, Karlberg, L, Corell, R. W., Fabry, V. J., Hansen, J, Walker, B, Liverman, D, Richardson, K, Crutzen, P, Foley, J. A., 2009. A safe operating space for humanity. Nature 461(7263), 472-475.

[60]

Sachs, J, Schmidt-Traub, G, Kroll, C, Durand-Delacre, D, Teksoz, K., 2016. An SDG Index and Dashboards – Global Report. Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN), New York

[61]

Sachs, J, Schmidt-Traub, G, Kroll, C, Lafortune, G, Fuller, G., 2018. SDG Index and Dashboards Report 2018. Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN), New York

[62]

Sala, S, Ciuffo, B, Nijkamp, P., 2015. A systemic framework for sustainability assessment. Ecol. Econ., 119, 314-325.

[63]

Schewe, J, Heinke, J, Gerten, D, Haddeland, I, Arnell, N. W., Clark, D. B., Dankers, R, Eisner, S, Fekete, B. M., Colón-González, F. J., Gosling, S. N., Kim, H, Liu, X, Masaki, Y, Portmann, F. T., Satoh, Y, Stacke, T, Tang, Q, Wada, Y, Wisser, D, Albrecht, T, Frieler, K, Piontek, F, Warszawski, L, Kabat, P., 2014. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. U. S. A., 111(9), 3245-3250.

[64]

Schmidt-Traub, G, Kroll, C, Teksoz, K, Durand-Delacre, D, Sachs, J. D., 2017. National baselines for the sustainable development goals assessed in the SDG index and dashboards. Nat. Geosci., 10(8), 547-555.

[65]

Seto, K. C., Reenberg, A, Boone, C. G., Fragkias, M, Haase, D, Langanke, T, Marcotullio, P, Munroe, D. K., Olah, B, Simon, D., 2012. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. U. S. A., 109(20), 7687.

[66]

Steffen, W., 2021. Introducing the Anthropocene: the human epoch: this article belongs to Ambio's 50th anniversary collection. Ambio 50(10), 1784-1787.

[67]

Steffen, W, Crutzen, J, McNeill, J. R., 2007. The Anthropocene: are humans now overwhelming the great forces of nature?. Ambio 36(8), 614-621.

[68]

Steffen, W, Richardson, K, Rockstrom, J, Cornell, S. E., Fetzer, I, Bennett, E. M., Biggs, R, Carpenter, S. R., de Vries, W, de Wit, C. A., Folke, C, Gerten, D, Heinke, J, Mace, G. M., Persson, L. M., Ramanathan, V, Reyers, B, Sorlin, S., 2015. Planetary boundaries: guiding human development on a changing planet. Science 347(6223), 1259855.

[69]

Steffen, W, Richardson, K, Rockström, J, Schellnhuber, H. J., Dube, O. P., Dutreuil, S, Lenton, T. M., Lubchenco, J., 2020. The emergence and evolution of earth system science. Nat. Rev. Earth Environ., 1(1), 54-63.

[70]

Steffen, W, Rockstrom, J, Richardson, K, Lenton, T. M., Folke, C, Liverman, D, Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M, Donges, J. F., Fetzer, I, Lade, S. J., Scheffer, M, Winkelmann, R, Schellnhuber, H. J., 2018. Trajectories of the earth system in the Anthropocene. Proc. Natl. Acad. Sci. U. S. A., 115(33), 8252-8259.

[71]

Terrer, C, Phillips, R. P., Hungate, B. A., Rosende, J, Pett-Ridge, J, Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E, Zhang, H, Evans, R. D., Carrillo, Y, Fisher, J. B., Van Sundert, K, Vicca, S, Jackson, R. B., 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591(7851), 599-603.

[72]

Thorne, K, MacDonald, G, Guntenspergen, G, Ambrose, R, Buffington, K, Dugger, B, Freeman, C, Janousek, C, Brown, L, Rosencranz, J., 2018. US Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv., 4(2), eaao3270.

[73]

Tilman, D, Cassman, K. G., Matson, P. A., Naylor, R, Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature 418(6898), 671-677.

[74]

Timmer, M. P., Erumban, A. A., Los, B, Stehrer, R, de Vries, G. J., 2014. Slicing up global value chains. J. Econ. Perspect., 28(2), 99-118.

[75]

Vanham, D, Leip, A, Galli, A, Kastner, T, Bruckner, M, Uwizeye, A, Van Dijk, K, Ercin, E, Dalin, C, Brandão, M., 2019. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci. Total Environ., 693, 133642.

[76]

Vernadsky, V. I., 1945. The biosphere and the noosphere. Am. Sci., 33(1), 1-12.

[77]

Wang, Q, Li, R., 2016. Journey to burning half of global coal: trajectory and drivers of China׳s coal use. Renew. Sust. Energ. Rev., 58, 341-346.

[78]

Wiedmann, T, Allen, C., 2021. City footprints and SDGs provide untapped potential for assessing city sustainability. Nat. Commun., 12(1), 3758.

[79]

Wu, S, Ben, P, Chen, D, Chen, J, Tong, G, Yuan, Y, Xu, B., 2018. Virtual land, water, and carbon flow in the inter-province trade of staple crops in China. Resour. Conserv. Recy., 136, 179-186.

[80]

Xu, Z, Chau, S. N., Chen, X, Zhang, J, Li, Y, Dietz, T, Wang, J, Winkler, J. A., Fan, F, Huang, B, Li, S, Wu, S, Herzberger, A, Tang, Y, Hong, D, Li, Y, Liu, J., 2020. Assessing progress towards sustainable development over space and time. Nature 577(7788), 74-78.

[81]

Zhang, Y, Wu, Z., 2022. Environmental performance and human development for sustainability: towards to a new environmental human index. Sci. Total Environ., 838, 156491.

[82]

Zhu, K, Zhang, J, Niu, S, Chu, C, Luo, Y., 2018. Limits to growth of forest biomass carbon sink under climate change. Nat. Commun., 9(1), 2709.

PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

/