Surface ozone in global cities: A synthesis of basic features, exposure risk, and leading meteorological driving factors

Jinmian Ni , Jiming Jin , Yanwen Wang , Bin Li , Qian Wu , Yanfei Chen , Shenwen Du , Yilin Li , Chao He

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) : 64 -76.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) :64 -76. DOI: 10.1016/j.geosus.2023.09.008
Research Article
review-article

Surface ozone in global cities: A synthesis of basic features, exposure risk, and leading meteorological driving factors

Author information +
History +
PDF

Abstract

Long-term exposure to high surface ozone (O3) concentrations, a complex oxidative atmospheric pollutant, can adversely impact human health. Based on O3 monitoring data from 261 cities worldwide in 2020, generalized additive model (GAM) and spatial data analysis (SDA) methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O3 concentration, exposure risk, and dominant meteorological factors. Results indicated that over 40% of the cities worldwide were exposed to harmful O3 concentration ranges (40–60 µg/m3), with most cities distributed in China and India. Moreover, significant seasonal variations in global O3 concentrations were observed, presenting as summer (45.6 µg/m3) > spring (47.3 µg/m3) > autumn (38.0 µg/m3) > winter (33.6 µg/m3). Exposure analysis revealed that approximately 12.2% of the population in 261 cities were exposed to an environment with high O3 concentrations (80–160 µg/m3), with about 36.32 million people in major countries. Thus, the persistent increase in high O3 levels worldwide is a critical factor contributing to threats to human health. Furthermore, GAM results indicated temperature, relative humidity, and wind speed as primary determinants of O3 variability. The synergy of meteorological factors is critical for understanding O3 changes. Our findings are important for enforcing robust air quality policies and mitigating public risk.

Keywords

Ozone pollution / Spatiotemporal variation / Exposure risk / GAM / Meteorological factors

Cite this article

Download citation ▾
Jinmian Ni, Jiming Jin, Yanwen Wang, Bin Li, Qian Wu, Yanfei Chen, Shenwen Du, Yilin Li, Chao He. Surface ozone in global cities: A synthesis of basic features, exposure risk, and leading meteorological driving factors. Geography and Sustainability, 2024, 5(1): 64-76 DOI:10.1016/j.geosus.2023.09.008

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.09.008.

References

[1]

Agathokleous, S, Saitanis, C. J., Savvides, C, Sicard, P, Agathokleous, E, De Marco, A., 2022. Spatiotemporal variations of ozone exposure and its risks to vegetation and human health in Cyprus: an analysis across a gradient of altitudes. J. For. Res., 34 (3), pp. 579-594. doi: 10.1007/s11676-022-01520-2.

[2]

Ahmad, M, Iram, K, Jabeen, G., 2020. Perception-based influence factors of intention to adopt COVID-19 epidemic prevention in China. Environ. Res., 190, Article 109995. doi: 10.1016/j.envres.2020.109995.

[3]

Aneja, P, Adams, A, Arya, S., 2000. An observational-based analysis of ozone trends and production for urban areas in North Carolina. Chemosphere - Glob. Change Sci., 2, pp. 157-165. doi: 10.1016/s1465-9972(00)00007-6.

[4]

Bi, Z, Ye, Z, He, C, Li, Y., 2022. Analysis of the meteorological factors affecting the short-term increase in O3 concentrations in nine global cities during COVID-19. Atmos. Pollut. Res., 13 (9), Article 101523. doi: 10.1016/j.apr.2022.101523.

[5]

Brito, A. D. A., Araújo, H. A. D., Zebende, G. F., 2019. Detrended multiple cross-correlation coefficients applied to solar radiation, air temperature and relative humidity. Sci. Rep., 9, pp. 1-10. doi: 10.1038/s41598-019-56114-6.

[6]

Camalier, L, Cox, W, Dolwick, P., 2007. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ., 41 (33), pp. 7127-7137. doi: 10.1016/j.atmosenv.2007.04.061.

[7]

Coates, J, Mar, K. A., Ojha, N, Butler, T. M., 2016. The influence of temperature on ozone production under varying NOx conditions – a modelling study. Atmos. Chem. Phys., 16, pp. 11601-11615. doi: 10.5194/acp-16-11601-2016.

[8]

Coccia, M., 2020a. The effects of atmospheric stability with low wind speed and of air pollution on the accelerated transmission dynamics of COVID-19. Int. J. Environ. Stud. 78 (1), 1–27. doi: 10.1080/00207233.2020.1802937.

[9]

Chen, M., Chen, L., Cheng, J., Yu, J., 2022a. Identifying interlinkages between urbanization and Sustainable Development Goals. Geogr. Sustain. 3 (4), 339–346. doi: 10.1016/j.geosus.2022.10.001.

[10]

Chen, Y., Li, H., Karimian, H., Li, M., Fan, Q., Xu, Z., 2022b. Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on Geodetector and Geospatial models. Chemosphere 302, 134843. doi: 10.1016/j.chemosphere.2022.134843.

[11]

de Brogniez, D, Ballabio, C, Stevens, A, Jones, R. J. A., Montanarella, L, van Wesemael, B., 2015. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur. J. Soil Sci., 66 (1), pp. 121-134. doi: 10.1111/ejss.12193.

[12]

Engebretsen, K. A., Johansen, J. D., Kezic, S, Linneberg, A, Thyssen, J. P., 2016. The effect of environmental humidity and temperature on skin barrier function and dermatitis. J. Eur. Acad. Dermatol. Venereol., 30, pp. 223-249. doi: 10.1111/jdv.13301.

[13]

Finch, W. H., Finch, M. H., 2018. A simulation study evaluating the generalized additive model for assessing intervention effects with small samples. J. Exp. Educ., 86 (4), pp. 652-670. doi: 10.1080/00220973.2017.1339010.

[14]

Fu, B., 2020. Promoting geography for sustainability. Geogr. Sustain., 1 (1), pp. 1-7. doi: 10.1016/j.geosus.2020.02.003.

[15]

Fu, X, Xiang, S, Liu, Y, Liu, J, Yu, J, Mauzerall, D. L., Tao, S., 2020. High-resolution imulation of local traffic-related NOx dispersion and distribution in a complex urban terrain. Environ. Pollut., 263, Article 114390. doi: 10.1016/j.envpol.2020.114390.

[16]

Gong, X, Hong, S, Jaffe, D. A., 2018. Ozone in China: spatial distribution and leading meteorological factors controlling O3 in 16 Chinese cities. Aerosol Air Qual. Res., 18 (9), pp. 2287-2300. doi: 10.4209/aaqr.2017.10.0368.

[17]

Healy, R. M., Temime, B, Kuprovskyte, K, Wenger, J. C., 2009. Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene. Environ. Sci. Technol., 43, pp. 1884-1889. doi: 10.1021/es802404z.

[18]

Hu, M, Wang, Y, Wang, S, Jiao, M, Huang, G, Xia, B., 2021. Spatial-temporal heterogeneity of air pollution and its relationship with meteorological factors in the Pearl River Delta, China. Atmos. Environ., 254, Article 118415. doi: 10.1016/j.atmosenv.2021.118415.

[19]

Huangfu, P, Atkinson, R., 2020. Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: a systematic review and meta-analysis. Environ. Int., 144, p. 05998. doi: 10.1016/j.envint.2020.105998.

[20]

Jaffe, D. A., Zhang, L., 2017. Meteorological anomalies lead to elevated O3 in the western US in June 2015. Geophys. Res. Lett., 44, Article 2016GL072010. doi: 10.1002/2016GL072010.

[21]

Jiang, X, Tsona, N. T., Jia, L, Liu, S, Zhang, H, Xu, Y, Du, L., 2019. Secondary organic aerosol formation from photooxidation of furan: effects of NOx and humidity. Atmos. Chem. Phys., 19, pp. 13591-13609. doi: 10.5194/acp-19-13591-2019.

[22]

Kalisa, E, Fadlallah, S, Amani, M, Nahayo, L, Habiyaremye, G., 2018. Temperature and air pollution relationship during heatwaves in Birmingham, UK. Sustain. Cities Soc., 43, pp. 111-120. doi: 10.1016/j.scs.2018.08.033.

[23]

Karimian, H, Li, Q, Chen, H. F., 2013. Assessing urban sustainable development in Isfahan. Appl. Mech. Mater., 253, pp. 244-248. doi: 10.4028/www.scientific.net/AMM.253-255.244.

[24]

Karimian, H, Li, Q, Li, C, Chen, G, Mo, Y, Wu, C, Fan, J., 2019. Spatio-temporal variation of wind influence on distribution of fine particulate matter and its precursor gases. Atmos. Pollut. Res., 10 (1), pp. 53-64. doi: 10.1016/j.apr.2018.06.005.

[25]

Klimont, Z, Kupiainen, K, Heyes, C, Purohit, P, Cofala, J, Rafaj, P, Borken-Kleefeld, J, Schöpp, W., 2017. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys., 17 (14), pp. 8681-8723. doi: 10.5194/acp-17-8681-2017.

[26]

Lee, K, Xue, J, Geyh, A. S., Ozkaynak, H, Leaderer, B. P., Weschler, C. J., Spengler, J. D., 2002. Nitrous acid, nitrogen dioxide, and ozone concentrations in residential environments. Environ. Health Perspect., 110 (2), pp. 145-150. doi: 10.1289/ehp.02110145.

[27]

Li, K., Jacob, D.J., Liao, H., Shen, L., Zhang, Q., Bates, K.H., 2019a. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. U.S.A. 116 (2), 422–427. doi: 10.1073/pnas.1812168116.

[28]

Li, K., Jacob, D.J., Shen, L., Lu, X., De Smedt, I., Liao, H., 2020a. Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmos. Chem. Phys. 20, 11423–11433. doi: 10.5194/acp-20-11423-2020.

[29]

Li, W., Zou, T., Li, L., Deng, Y., Sun, V.T., Zhang, Q., Layton, J.B., Setoguchi, S., 2019b. Impacts of the North Atlantic subtropical high on interannual variation of summertime heat stress over the conterminous United States. Clim. Dynam. 53, 3345–3359. doi: 10.1007/s00382-019-04708-1.

[30]

Li, R., Cui, L., Hongbo, F., Li, J., Zhao, Y., Chen, J., 2020b. Satellite-based estimation of full-coverage ozone (O3 ) concentration and health effect assessment across Hainan Island. J. Clean. Prod. 244, 118773. doi: 10.1016/j.jclepro.2019.118773.

[31]

Liu, H, Liu, S, Xue, B, Lv, Z, Meng, Z, Yang, X, Xue, T, Yu, Q, He, K., 2018. Ground level ozone pollution and its health impacts in China. Atmos. Environ., 173, pp. 223-230. doi: 10.1016/j.atmosenv.2017.11.014.

[32]

Lu, X, Hong, J, Zhang, L, Cooper, O. R., Schultz, M. G., Xu, X. B., Wang, T, Gao, M, Zhao, Y. H., Zhang, Y. H., 2018. Severe surface ozone pollution in China: a global perspective. Environ. Sci. Technol. Lett., 5 (8), pp. 487-494. doi: 10.1021/acs.estlett.8b00366.

[33]

Lu, X, Zhang, L, Chen, Y, Zhou, M, Zheng, B, Li, K, Liu, Y, Lin, J, Fu, T, Zhang, Q., 2019. Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences. Atmos. Chem. Phys., 19, pp. 8339-8361. doi: 10.5194/acp-19-8339-2019.

[34]

Ma, Y, Ma, B, Jiao, H, Zhang, Y, Xin, J, Yu, Z., 2020. An analysis of the effects of weather and air pollution on tropospheric ozone using a generalized additive model in Western China: Lanzhou, Gansu. Atmos. Environ, 224, Article 117342. doi: 10.1016/j.atmosenv.2020.117342.

[35]

Maji, K. J., Namdeo, A., 2021. Continuous increases of surface ozone and associated premature mortality growth in China during 2015–2019. Environ. Pollut., 269, Article 116183. doi: 10.1016/j.envpol.2020.116183.

[36]

Mao, J, Wang, L, Lu, C, Liu, J, Li, M, Tang, G, Ji, D, Zhang, N, Wang, Y., 2020. Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. J. Environ. Sci., 92, pp. 187-199. doi: 10.1016/j.jes.2020.02.019.

[37]

Mo, Y, Li, Q, Karimian, H, Fang, S, Tang, B, Chen, G, Sachdeva, S., 2020. A novel framework for daily forecasting of ozone mass concentrations based on cycle reservoir with regular jumps neural networks. Atmos. Environ., 220, Article 117072. doi: 10.1016/j.atmosenv.2019.117072.

[38]

Mo, Y, Li, Q, Karimian, H, Zhang, S, Kong, X, Fang, S, Tang, B., 2021. Daily spatiotemporal prediction of surface ozone at the national level in China: an improvement of CAMS ozone product. Atmos. Pollut. Res., 12 (1), pp. 391-402. doi: 10.1016/j.apr.2020.09.020.

[39]

Niu, Y, Zhou, Y, Chen, R, Yin, P, Meng, X, Wang, W, Liu, C, Ji, J. S., Qiu, Y, Kan, H, Zhou, M., 2022. Long-term exposure to ozone and cardiovascular mortality in China: a nationwide cohort study. Lancet Planet. Health., 6 (6), pp. e496-e503. doi: 10.1016/S2542-5196(22)00093-6.

[40]

Nuvolone, D, Petri, D, Voller, F., 2018. The effects of ozone on human health. Environ. Sci. Pollut. Res. Int., 25, pp. 8074-8088. doi: 10.1007/s11356-017-9239-3.

[41]

Pu, X, Wang, T. J., Huang, X, Melas, D, Zanis, P, Papanastasiou, D. K., Poupkou, A., 2017. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China. Sci. Total Environ., 603–604, pp. 807-816. doi: 10.1016/j.scitotenv.2017.03.056.

[42]

Requia, W. J., Di, Q, Silvern, R, Kelly, J. T., Koutrakis, P, Mickley, L. J., Sulprizio, M. P., Amini, H, Shi, L, Schwartz, J., 2020. An ensemble learning approach for estimating high spatiotemporal resolution of ground-level ozone in the contiguous United States. Environ. Sci. Technol., 54 (18), pp. 11037-11047. doi: 10.1021/acs.est.0c01791.

[43]

Simon, H, Reff, A, Wells, B, Xing, J, Frank, N., 2015. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ. Sci. Technol., 49 (1), pp. 186-195. doi: 10.1021/es504514z.

[44]

Song, C, Wu, L, Xie, Y, He, J, Chen, X, Wang, T, Lin, Y, Jin, T, Wang, A, Liu, Y, Dai, Q, Liu, B, Wang, Y. N., Mao, H., 2017. Air pollution in China: status and spatiotemporal variations. Environ. Pollut., 227, pp. 334-347. doi: 10.1016/j.envpol.2017.04.075.

[45]

Tan, Z, Lu, K, Jiang, M, Su, R, Dong, H, Zeng, L, Xie, S, Tan, Q, Zhang, Y., 2018. Exploring ozone pollution in Chengdu, southwestern China: a case study from radical chemistry to O3-VOC-NOx sensitivity. Sci. Total Environ., 636, pp. 775-786. doi: 10.1016/j.scitotenv.2018.04.286.

[46]

Tang, G, Zhu, X, Xin, J, Hu, B, Song, T, Sun, Y, Zhang, J, Wang, L, Cheng, M, Chao, N, Kong, L, Li, X, Wang, Y., 2017. Modelling study of boundary-layer ozone over northern China - Part I: ozone budget in summer. Atmos. Res., 187, pp. 128-137. doi: 10.1016/j.atmosres.2016.10.017.

[47]

Tian, G, Qiao, Z, Xu, X., 2014. Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001–2012 in Beijing. Environ. Pollut., 192, pp. 266-274. doi: 10.1016/j.envpol.2014.04.036.

[48]

Vicedo-Cabrera, A. M., Sera, F, Liu, C, Armstrong, B, Milojevic, A, Guo, Y, Tong, S, Lavigne, E, Kyselý, J, Urban, A, Orru, H, Indermitte, E, Pascal, M, Huber, V, Schneider, A, Katsouyanni, K, Samoli, E, Stafoggia, M, Scortichini, M, Hashizume, M, Honda, Y, Ng, C. F. S., Hurtado-Diaz, M, Cruz, J, Silva, S, Madureira, J, Scovronick, N, Garland, R. M., Kim, H, Tobias, A, Forsberg, B, Ragettli, M. S., Röösli, M, Guo, Y. L., Chen, B, Zanobetti, A, Schwartz, J, Bell, M. L., Kan, H, Gasparrini, A., 2020. Short-term association between ozone and mortality: global two-stage time series study in 406 locations in 20 countries. BMJ, 368, p. m108. doi: 10.1136/bmj.m108.

[49]

Wang, Y, Wild, O, Chen, X, Wu, Q, Gao, M, Chen, H, Qi, Y, Wang, Z., 2020. Health impacts of long-term ozone exposure in China over 2013–2017. Environ. Int., 144, Article 106030. doi: 10.1016/j.envint.2020.106030.

[50]

Wei, W., Cheng, S., Li, G., Wang, G., Wang, H., 2014a. Characteristics of ozone and ozone precursors (VOCs and NOx ) around a petroleum refinery in Beijing, China. J. Environ. Sci. 26, 332–342. doi: 10.1016/S1001-0742(13)60412-X.

[51]

World Health Organization, 2018. Ambient (outdoor) Air Quality and Health.

[52]

Xiao, Q, Geng, G, Xue, T, Liu, S, Cai, C, He, K, Zhang, Q., 2021. Tracking PM2.5 and O3 pollution and the related health burden in China 2013–2020. Environ. Sci. Technol., 56, pp. 6922-6932. doi: 10.1021/acs.est.1c04548.

[53]

Xu, H, Jia, Y, Sun, Z, Su, J, Liu, Q. S., Zhou, Q, Jiang, G., 2022. Environmental pollution a hidden culprit for health issues. Eco-Environ. Health, 1 (1), pp. 31-45. doi: 10.1016/j.eehl.2022.04.003.

[54]

Xu, Y, Ying, Q, Hu, J, Gao, Y, Yang, Y, Wang, D, Zhang, H., 2018. Spatial and temporal variations in criteria air pollutants in three typical terrain regions in Shaanxi, China, during 2015. Air Qual. Atmos. Health., 11 (1), pp. 95-109. doi: 10.1007/s11869-017-0523-7.

[55]

Yan, R. E., Ye, H, Lin, X, He, X, Chen, C, Shen, J. D., Xu, K. E., Zhen, X. Y., Wang, L. J., 2018. Characteristics and influence factors of ozone pollution in Hangzhou. Acta Sci. Circumst., 38 (3), pp. 1128-1136. doi: 10.13671/j.hjkxxb.2017.0430.

[56]

Yang, J, Liu, J, Han, S, Yao, Q, Cai, Z., 2019. Study of the meteorological influence on ozone in urban areas and their use in assessing ozone trends in all seasons from 2009 to 2015 in Tianjin, China. Meteorol. Atmos. Phys., 131, pp. 1661-1675. doi: 10.1007/s00703-019-00664-x.

[57]

Yin, C, Deng, X, Zou, Y, Solmon, F, Li, F, Deng, T., 2019. Trend analysis of surface ozone at suburban Guangzhou, China. Sci. Total Environ., 695, Article 133880. doi: 10.1016/j.scitotenv.2019.133880.

[58]

Yin, Z.C., Wang, H.J., Li, Y.Y., Ma, X.H., Zhang, X.Y., 2019b. Links of climate variability among Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollution in North China. Atmos. Chem. Phys. 19, 3857–3871. doi: 10.5194/acp-19-3857-2019.

[59]

Young, P. J., Archibald, A. T., Bowman, K. W, Lamarque, J-.F, Naik, V, Stevenson, D. S., Tilmes, S, Voulgarakis, A, Wild, O, Bergmann, D, Cameron-Smith, P, Cionni, I, Collins, W. J., Dalsoren, S. B., Doherty, R. M., Eyring, V, Faluvegi, G, Horowitz, L. W., Josse, B, Lee, Y. H., MacKenzie, I. A., Nagashima, T, Plummer, D. A., Righi, M, Strode, S. A., 2013. Pre-industrial to end 21st century of projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13 (4), pp. 2063-2090. doi: 10.5194/acp-13-2063-2013.

[60]

Zeng, Y, Cao, Y, Qiao, X, Seyler, B. C., Tang, Y., 2019. Air pollution reduction in China: recent success but great challenge for the future. Sci. Total Environ., 663, pp. 329-337. doi: 10.1016/j.scitotenv.2019.01.262.

[61]

Zhao, N, Pinault, L, Toyib, O, Vanos, J, Tjepkema, M, Cakmak, S., 2021. Long-term ozone exposure and mortality from neurological diseases in Canada. Environ. Int., 157, Article 106817. doi: 10.1016/j.envint.2021.106817.

[62]

Zhao, S, Yin, D, Yu, Y, Kang, S, Qin, D, Dong, L., 2020. PM2.5 and O3 pollution during 2015–2019 over 367 Chinese cities: spatiotemporal variations, meteorological and topographical impacts. Environ. Pollut., 264, Article 114694. doi: 10.1016/j. envpol.2020.114694.

[63]

Zhang, B, Jiao, L, Xu, G, Zhao, S, Tang, X, Zhou, Y, Gong, C., 2018. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorol. Atmos. Phys., 130, pp. 383-392. doi: 10.1007/s00703-017-0526-9.

[64]

Zhong, Z, Zheng, J, Zhu, M, Huang, Z, Zhang, Z, Jia, G, Wang, X, Bian, Y, Wang, Y, Li, N., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ., 627, pp. 1080-1092. doi: 10.1016/j.scitotenv.2018.01.268.

[65]

Zhou, Y, Duan, W, Chen, Y, Yi, J, Wang, B, Di, Y, He, C., 2022. Exposure risk of global surface O3 during the boreal spring season. Expo. Health., 14 (2), pp. 431-446. doi: 10.1007/s12403-022-00463-7.

PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

/