Development of biofertilizers for sustainable agriculture over four decades (1980–2022)

Guangxu Zhao , Xiaoling Zhu , Gang Zheng , Guangfan Meng , Ziliang Dong , Ju Hye Baek , Che Ok Jeon , Yanlai Yao , Yuan Hu Xuan , Jie Zhang , Baolei Jia

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) : 19 -28.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) :19 -28. DOI: 10.1016/j.geosus.2023.09.006
Research Article
review-article

Development of biofertilizers for sustainable agriculture over four decades (1980–2022)

Author information +
History +
PDF

Abstract

The application of biofertilizers is becoming an inevitable trend to substitute chemical fertilizers for sustainable agriculture. To better understand the development of biofertilizers from 1980 to 2022, we used bibliometric mining to analyze 12,880 journal articles related to biofertilizer. The network cooccurrence analysis suggested that the biofertilizers research can be separated into three stages. The first stage (1980–2005) focused on nitrogen fixation. The second stage (2006–2015) concentrated on the mechanisms for increasing plant yield. The third stage (2016–2022) was the application of biofertilizers to improve the soil environment. The keyword analysis revealed the mechanisms of biofertilizers to improve plant-growth: biofertilizers can impact the nutritional status of plants, regulate plant hormones, and improve soil environments and the microbiome. The bacteria use as biofertilizers, included Pseudomonas, Azospirillum, and Bacillus, were also identified through bibliometric mining. These findings provide critical discernment to aid further study of biofertilizers for sustainable agriculture.

Keywords

Biofertilizer / Plant-growth-promoting bacteria / Plant-growth promoting rhizobacteria / Bibliometric / Research hotspots

Cite this article

Download citation ▾
Guangxu Zhao, Xiaoling Zhu, Gang Zheng, Guangfan Meng, Ziliang Dong, Ju Hye Baek, Che Ok Jeon, Yanlai Yao, Yuan Hu Xuan, Jie Zhang, Baolei Jia. Development of biofertilizers for sustainable agriculture over four decades (1980–2022). Geography and Sustainability, 2024, 5(1): 19-28 DOI:10.1016/j.geosus.2023.09.006

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Ziliang Dong reports a relationship with Chongqing Taiji Group Co., Ltd. that includes: employment.

Acknowledgements

This study was funded by the Key R&D Projects in Zhejiang Province (Grant No. 2020C02001), Sannong Jiufang S&T Project in Zhejiang Province (Grant No. 2022SNJF024), Key innovation Project of Qilu University of Technology (Shandong Academy of Sciences) (Grant No. 2022JBZ01-06), Natural Science Foundation of Shandong Province (Grant No. ZR2021KE038), Shandong Province Agricultural Major Application Technology Innovation Project (Grant No. 20182130106), and Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry (Grant No. 202119).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.09.006.

References

[1]

Ahmad, F, Ahmad, I, Khan, M. S., 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res., 163 (2), pp. 173-181. doi: 10.1016/j.micres.2006.04.001.

[2]

Alakhdar, H. H., Shaban, K. A., Esmaeil, M. A., Abdel Fattah, A. K., 2020. Abdel Fattah. Influence of organic and biofertilizers on some soil chemical properties, wheat productivity and infestation levels of some piercing-sucking pests in saline soil. Middle East J. Agric. Res., 9 (3), pp. 586-598. doi: 10.36632/mejar/2020.9.3.45.

[3]

Alencar, T. L., Chaves, A. F., Santos, C. L. A., Assis Júnior, R. N., Mota, J. C. A., 2015. Atributos físicos de um cambissolo cultivado e tratado com biofertilizante na Chapada do Apodi. Ceará. Rev. Bras. Ciênc. Solo, 39 (3), pp. 737-749. doi: 10.1590/01000683rbcs201404.

[4]

Aoki, Y, Haga, S, Suzuki, S., 2020. 6 (1), Article 1747903. doi: 10.1080/23312025.2020.1747903.

[5]

Azizoglu, U., 2019. Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known plant growth-promoting properties of Bt. Curr. Microbiol., 76 (11), pp. 1379-1385. doi: 10.1007/s00284-019-01705-9.

[6]

Baldi, E, Gioacchini, P, Montecchio, D, Mocali, S, Antonielli, L, Masoero, G, Toselli, M., 2021. Effect of biofertilizers application on soil biodiversity and litter degradation in a commercial apricot orchard. Agronomy, 11 (6), p. 1116. doi: 10.3390/agronomy11061116.

[7]

Barin, M, Asadzadeh, F, Hosseini, M, Hammer, E. C., Vetukuri, R. R., Vahedi, R., 2022. Optimization of biofertilizer formulation for phosphorus solubilizing by Pseudomonas fluorescens Ur21 via response surface methodology. Processes, 10 (4), p. 650. doi: 10.3390/pr10040650.

[8]

Becerra, M. J., Pimentel, M. A., De Souza, E. B., Tovar, G. I., 2020. Geospatiality of climate change perceptions on coastal regions: a systematic bibliometric analysis. Geogr. Sustain., 1 (3), pp. 209-219. doi: 10.1016/j.geosus.2020.09.002.

[9]

Belimov, A. A., Hontzeas, N, Safronova, V. I., Demchinskaya, S. V., Piluzza, G, Bullitta, S, Glick, B. R., 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem., 37 (2), pp. 241-250. doi: 10.1016/j.soilbio.2004.07.033.

[10]

Bomfim, C. A., Coelho, L. G. F., do Vale, H. M. M., Mendes, I. D., Megias, M, Ollero, F. J., Dos Reis, F. B., 2021. Brief history of biofertilizers in Brazil: from conventional approaches to new biotechnological solutions. Braz. J. Microbiol., 52 (4), pp. 2215-2232. doi: 10.1007/s42770-021-00618-9.

[11]

Brown, L. R., 1981. World population growth, soil erosion, and food security. Science, 214 (1981), pp. 995-1002. doi: 10.1126/science.7302578.

[12]

Burd, G. I., Dixon, D. G., Glick, B. R., 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 46 (3), pp. 237-245. doi: 10.1139/cjm-46-3-237.

[13]

Chen, D., Wei, W., Chen, L., 2021. Effects of terracing on soil properties in three key mountainous regions of China. Geogr. Sustain. 2 (3), 195–206. doi: 10.1016/j.geosus.2021.08.002.

[14]

Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., Young, C. C., 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol., 34 (1), pp. 33-41. doi: 10.1016/j.apsoil.2005.12.002.

[15]

Cheraghi, M, Lorestani, B, Merrikhpour, H, Rouniasi, N., 2013. Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils. Environ. Monit. Assess., 185 (2), pp. 1825-1831. doi: 10.1007/s10661-012-2670-5.

[16]

Cleland, J., 2013. World population growth; past, present and future. Environ. Resour. Econ., 55 (4), pp. 543-554. doi: 10.1007/s10640-013-9675-6.

[17]

Delfim, J, Schoebitz, M, Paulino, L, Hirzel, J, Zagal, E., 2018. Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability, 10 (2), p. 144. doi: 10.3390/su10010144.

[18]

Dineshkumar, R, Kumaravel, R, Gopalsamy, J, Sikder, M. N. A., Sampathkumar, P., 2018. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valori., 9 (5), pp. 793-800. doi: 10.1007/s12649-017-9873-5.

[19]

Du, H, Li, N, Brown, M. A., Peng, Y, Shuai, Y., 2014. A bibliographic analysis of recent solar energy literatures: the expansion and evolution of a research field. Renew. Energy, 66, pp. 696-706. doi: 10.1016/j.renene.2014.01.018.

[20]

Fu, L, Penton, C. R., Ruan, Y, Shen, Z, Xue, C, Li, R, Shen, Q., 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem., 104, pp. 39-48. doi: 10.1016/j.soilbio.2016.10.008.

[21]

Gezgin, Y, Maral Gül, D, Sözer Şenşatar, S, Kara, C. U., Sargın, S, Sukan, F. V., Eltem, R., 2020. Evaluation of Trichoderma atroviride and Trichoderma citrinoviride growth profiles and their potentials as biocontrol agent and biofertilizer. Turk. J. Biochem., 45 (2), pp. 163-175. doi: 10.1515/tjb-2018-0378.

[22]

Glick, B. R., Cheng, Z, Czarny, J, Duan, J., 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol., 119 (3), pp. 329-339. doi: 10.1007/s10658-007-9162-4.

[23]

Glick, B. R., Penrose, D. M., Li, J., 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190 (1), pp. 63-68. doi: 10.1006/jtbi.1997.0532.

[24]

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L, Lawrence, D, Muir, J. F., Pretty, J, Robinson, S, Thomas, S. M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science, 327 (2010), pp. 812-818. doi: 10.1126/science.1185383.

[25]

Goss, M. J., Barry, D. A. J., Rudolph, D. L., 1998. Contamination in Ontario farmstead domestic wells and its association with agriculture. J. Contam. Hydrol., 32 (3–4), pp. 267-293. doi: 10.1016/s0169-7722(98)00054-0.

[26]

Hang, X, Meng, L, Ou, Y, Shao, C, Xiong, W, Zhang, N, Liu, H, Li, R, Shen, Q, Kowalchuk, G. A., 2022. Trichoderma-amended biofertilizer stimulates soil resident Aspergillus population for joint plant growth promotion. npj Biofilms Microbiomes, 8 (1), p. 57. doi: 10.1038/s41522-022-00321-z.

[27]

Hassan, M. K., McInroy, J. A., Kloepper, J. W., 2019. The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture, 9 (7), p. 142. doi: 10.3390/agriculture9070142.

[28]

Heaton, E. A., Schulte, L. A., Berti, M, Langeveld, H, Zegada-Lizarazu, W, Parrish, D, Monti, A., 2013. Managing a second-generation crop portfolio through sustainable intensification: examples from the USA and the EU. Biofuel. Bioprod. Biorefin., 7 (6), pp. 702-714. doi: 10.1002/bbb.1429.

[29]

Huang, R, Li, Q, Wang, D, Feng, H, Zhang, N, Shao, J, Shen, Q, Xu, Z, Zhang, R., 2023. Novel fatty acids-governed cannibalism in beneficial rhizosphere Bacillus enhances biofilm formation via a two-component system OmpS/R and toxin transporter. Sci. Bull., 68 (14), pp. 1500-1504. doi: 10.1016/j.scib.2023.06.022.

[30]

Huo, Y, Kang, J. P., Ahn, J. C., Kim, Y. J., Piao, C. H., Yang, D. U., Yang, D. C., 2021. Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer. J. Ginseng Res., 45 (2), pp. 218-227. doi: 10.1016/j.jgr.2019.12.008.

[31]

Ismail, G. S. M., Saber, N. E. S., Abdelrahim, B. I., Abou-Zeid, H. M., 2021. Influence of cyanobacterial biofertilizer on the response of Zea mays plant to cadmium-stress. Egypt. J. Bot., 61 (2), pp. 391-404. doi: 10.21608/ejbo.2020.41791.1553.

[32]

Jin, S, Zhou, F., 2018. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol., 9 (1), pp. 50-58. doi: 10.5814/j.issn.1674-764x.2018.01.006.

[33]

Kaur, T, Devi, R, Kumar, S, Sheikh, I, Kour, D, Yadav, A., 2022. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon, 8 (4), p. e09326. doi: 10.1016/j.heliyon.2022.e09326.

[34]

Kefi, A, Ben Slimene, I, Karkouch, I, Rihouey, C, Azaeiz, S, Bejaoui, M, Belaid, R, Cosette, P, Jouenne, T, Limam, F., 2015. Characterization of endophytic bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J. Microbiol. Biotechnol., 31 (12), pp. 1967-1976. doi: 10.1007/s11274-015-1943-x.

[35]

Kildea, S, Ransbotyn, V, Khan, M. R., Fagan, B, Leonard, G, Mullins, E, Doohan, F. M., 2008. Bacillus megaterium shows potential for the biocontrol of septoria tritici blotch of wheat. Biol. Control, 47 (1), pp. 37-45. doi: 10.1016/j.biocontrol.2008.07.001.

[36]

Kloepper, J. W., Leong, J, Teintze, M, Schroth, M. N., 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286 (1980), pp. 885-886. doi: 10.1038/286885a0.

[37]

Latifi, Z, Jalali, M., 2018. Trace element contaminants in mineral fertilizers used in Iran. Environ. Sci. Pollut. Res., 25 (32), pp. 31917-31928. doi: 10.1007/s11356-018-1810-z.

[38]

Lee, B, Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., Ryu, C. M., 2012. Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE, 7 (11), p. e48744. doi: 10.1371/journal.pone.0048744.

[39]

Li, A., Hu, B., Chu, C., 2021. Epigenetic regulation of nitrogen and phosphorus responses in plants. J. Plant Physiol. 258-259, 153363. doi: 10.1016/j.jplph.2021.153363.

[40]

Lima, J. V., Tinôco, R. S., Olivares, F. L., de Moraes, A. J. G., Chia, G. S., da Silva, G. B., 2020. Hormonal imbalance triggered by rhizobacteria enhance nutrient use efficiency and biomass in oil palm. Sci. Hortic., 264, Article 109161. doi: 10.1016/j.scienta.2019.109161.

[41]

Liu, C, Lin, H, Li, B, Dong, Y, Menzembere, E. R. G. Y., 2021. Endophyte Pseudomonas putida enhanced Trifolium repens L. growth and heavy metal uptake: a promising in-situ non-soil cover phytoremediation method of nonferrous metallic tailing. Chemosphere, 272, Article 129816. doi: 10.1016/j.chemosphere.2021.129816.

[42]

Liu, N, Shao, C, Sun, H, Liu, Z, Guan, Y, Wu, L, Zhang, L, Pan, X, Zhang, Z, Zhang, Y, Zhang, B., 2020. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma, 363, Article 114155. doi: 10.1016/j.geoderma.2019.114155.

[43]

Liu, Q, Pang, Z, Yang, Z, Nyumah, F, Hu, C, Lin, W, Yuan, Z., 2022. Bio-fertilizer affects structural dynamics, function, and network patterns of the sugarcane rhizospheric microbiota. Microb. Ecol., 84 (4), pp. 1195-1211. doi: 10.1007/s00248-021-01932-3.

[44]

Liu, X, Jiang, X, He, X, Zhao, W, Cao, Y, Guo, T, Li, T, Ni, H, Tang, X., 2019. Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J. Plant Growth Regul., 38 (4), pp. 1314-1324. doi: 10.1007/s00344-019-09935-8.

[45]

Malboobi, M. A., Behbahani, M, Madani, H, Owlia, P, Deljou, A, Yakhchali, B, Moradi, M, Hassanabadi, H., 2009. Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J. Microbiol. Biotechnol., 25 (8), pp. 1479-1484. doi: 10.1007/s11274-009-0038-y.

[46]

Mayak, S, Tirosh, T, Glick, B. R., 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem., 42 (6), pp. 565-572. doi: 10.1016/j.plaphy.2004.05.009.

[47]

Mehmood, S., Khatoon, Z., Amna, Ahmad, I., Muneer, M.A., Kamran, M.A., Ali, J., Ali, B., Chaudhary, H.J., Munis, M.F.H., 2021a. Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Arch. Agron. Soil Sci. 69 (2), 197–211. doi: 10.1080/03650340.2021. 1971654.

[48]

Mehmood, S., Muneer, M.A., Tahir, M., Javed, M.T., Mahmood, T., Afridi, M.S., Pakar, N.P., Abbasi, H.A., Munis, M.F.H., Chaudhary, H.J., 2021b. Deciphering distinct biological control and growth promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker. Physiol. Mol. Biol. Plants 27 (9), 2101–2114. doi: 10.1007/s12298-021-01067-2.

[49]

Misra, S, Chauhan, P. S., 2020. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech, 10 (3), p. 119. doi: 10.1007/s13205-020-2104-y.

[50]

Mkhongi, F. A., Musakwa, W., 2022. Trajectories of deagrarianization in South Africa − past, current and emerging trends: a bibliometric analysis and systematic review. Geogr. Sustain., 3 (4), pp. 325-333. doi: 10.1016/j.geosus.2022.10.003.

[51]

Motesharezadeh, B, Etesami, H, Bagheri-Novair, S, Amirmokri, H., 2017. Fertilizer consumption trend in developing countries vs. developed countries. Environ. Monit. Assess., 189 (3), p. 103. doi: 10.1007/s10661-017-5812-y.

[52]

Muthuraja, R, Muthukuma, T., 2021. Isolation and characterization of potassium solubilizing Aspergillus species isolated from saxum habitats and their effect on maize growth in different soil types. Geomicrobiol. J., 38 (8), pp. 672-685. doi: 10.1080/01490451.2021.1928800.

[53]

Naeem, U, Haq, I, Afzaal, M, Qazi, A, Yasar, A, Tabinda, A, Mahfooz, Y, Naz, A. U., Awan, H., 2021. Investigating the effect of Aspergillus niger inoculated press mud (biofertilizer) on the potential of enhancing maize (Zea mays L.) yield, potassium use efficiency and potassium agronomic efficiency. Cereal Res. Commun., 50 (1), pp. 157-170. doi: 10.1007/s42976-021-00153-1.

[54]

Nascimento, F. X., Uron, P, Glick, B. R., Giachini, A, Rossi, M. J., 2021. Genomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas thivervalensis SC5 reveals its multifaceted roles in soil and in beneficial interactions with plants. Front. Microbiol., 12, Article 752288. doi: 10.3389/fmicb.2021.752288.

[55]

Olanrewaju, O. S., Glick, B. R., Babalola, O. O., 2017. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol., 33 (11), p. 197. doi: 10.1007/s11274-017-2364-9.

[56]

Omar, S. A., 1998. The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol., 14 (2), pp. 211-218. doi: 10.1023/a:1008830129262.

[57]

Pal, S, Singh, H, Farooqui, A, Rakshit, A., 2015. Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J. Eco-friendly Agric., 10(2), 101-113.

[58]

Patel, R., 2013. The long green revolution. J. Peasant Stud., 40 (1), pp. 1-63. doi: 10.1080/03066150.2012.719224.

[59]

Penrose, D. M., Glick, B. R., 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant., 118 (1), pp. 10-15. doi: 10.1034/j.1399-3054.2003.00086.x.

[60]

Pereira, I, Ortega, R, Barrientos, L, Moya, M, Reyes, G, Kramm, V., 2008. Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J. Appl. Phycol., 21 (1), pp. 135-144. doi: 10.1007/s10811-008-9342-4.

[61]

Pham, V. T., Rediers, H, Ghequire, M. G. K., Nguyen, H. H., de Mot, R, Vanderleyden, J, Spaepen, S., 2017. The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch. Microbiol., 199 (3), pp. 513-517. doi: 10.1007/s00203-016-1332-3.

[62]

Qiao, H, Sun, X. R., Wu, X. Q., Li, G. E., Wang, Z, Li, D. W., 2019. The phosphate-solubilizing ability of Penicillium guanacastense and its effects on the growth of Pinus massoniana in phosphate-limiting conditions. Biol. Open, 8 (11), Article bio046797. doi: 10.1242/bio.046797.

[63]

Raimi, A., Roopnarain, A., Adeleke, R., 2021. Biofertilizer production in Africa: current status, factors impeding adoption and strategies for success. Sci. Afr. 11, e00694. doi: 10.1016/j.sciaf.2021.e00694.

[64]

Rees, D. C., Akif Tezcan, F, Haynes, C. A., Walton, M. Y., Andrade, S, Einsle, O, Howard, J. B., 2005. Structural basis of biological nitrogen fixation. Phil. Trans. R. Soc. A, 363 (2005), pp. 971-984. doi: 10.1098/rsta.2004.1539.

[65]

Riaz, M, Kamran, M, Fang, Y, Wang, Q, Cao, H, Yang, G, Deng, L, Wang, Y, Zhou, Y, Anastopoulos, I, Wang, X., 2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J. Hazard. Mater., 402, Article 123919. doi: 10.1016/j.jhazmat.2020.123919.

[66]

Rivers, C. N., Barrett, M. H., Hiscock, K. M., Dennis, P. F., Feast, N. A., Lerner, D. N., 2012. Use of nitrogen isotopes to identify nitrogen contamination of the sherwood sandstone aquifer beneath the city of nottingham, United Kingdom. Hydrogeol. J., 4 (1), pp. 90-102. doi: 10.1007/s100400050099.

[67]

Russo, A, Felici, C, Toffanin, A, Götz, M, Collados, C, Barea, J. M., Moënne-Loccoz, Y, Smalla, K, Vanderleyden, J, Nuti, M., 2005. Effect of Azospirillum inoculants on arbuscular mycorrhiza establishment in wheat and maize plants. Biol. Fertil. Soils, 41 (5), pp. 301-309. doi: 10.1007/s00374-005-0854-7.

[68]

Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., Pare, P. W., 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol., 134 (3), pp. 1017-1026. doi: 10.1104/pp.103.026583.

[69]

Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., Kloepper, J. W., 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 100 (8), pp. 4927-4932. doi: 10.1073/pnas.0730845100.

[70]

Savci, S., 2012a. An agricultural pollutant: chemical fertilizer. Int. J. Environ. Sci. Dev. 3 (1), 73–80. doi: 10.7763/ijesd.2012.V3.191.

[71]

Savci, S., 2012b. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1, 287–292. doi: 10.1016/j.apcbee.2012.03.047.

[72]

Shen, Z, Ruan, Y, Wang, B, Zhong, S, Su, L, Li, R, Shen, Q., 2015. Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Appl. Soil Ecol., 93, pp. 111-119. doi: 10.1016/j.apsoil.2015.04.013.

[73]

Shi, J, Liu, A, Li, X, Chen, W., 2013. Control of phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putida MGP1. J. Sci. Food Agric., 93 (3), pp. 568-574. doi: 10.1002/jsfa.5831.

[74]

Shi, J., Wang, X., Wang, E., 2023. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu. Rev. Plant Biol. 74 (1), 569–607. doi: 10.1146/annurev-arplant-061722-090342.

[75]

Shin, W, Islam, R, Benson, A, Joe, M. M., Kim, K, Gopal, S, Samaddar, S, Banerjee, S, Sa, T., 2016. Role of diazotrophic bacteria in biological nitrogen fixation and plant growth improvement. Korean J. Soil Sci. Fert., 49 (1), pp. 17-29. doi: 10.7745/kjssf.2016.49.1.017.

[76]

Singh, B, Boukhris, I, Pragya, V, Yadav, A. N., Farhat-Khemakhem, A, Kumar, A, Singh, D, Blibech, M, Chouayekh, H, Alghamdi, O. A., 2020. Contribution of microbial phytases to the improvement of plant growth and nutrition: a review. Pedosphere, 30 (3), pp. 295-313. doi: 10.1016/s1002-0160(20)60010-8.

[77]

Sinha, R. K., 1997. Embarking on the second green revolution for sustainable agriculture in india a judicious mix of traditional wisdom and modern knowledge in ecological farming. J. Agric. Environ. Ethics, 10 (2), pp. 183-197. doi: 10.1023/a:1007796609378.

[78]

Soumare, A, Diedhiou, A. G., Thuita, M, Hafidi, M, Ouhdouch, Y, Gopalakrishnan, S, Kouisni, L., 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9 (8), p. 1011. doi: 10.3390/plants9081011.

[79]

Strader, L. C., Bartel, B., 2011. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant., 4 (3), pp. 477-486. doi: 10.1093/mp/ssr006.

[80]

Sun, B, Bai, Z, Bao, L, Xue, L, Zhang, S, Wei, Y, Zhang, Z, Zhuang, G, Zhuang, X., 2020. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environ. Int., 144, Article 105989. doi: 10.1016/j.envint.2020.105989.

[81]

Sun, X, Xu, Z, Xie, J, Hesselberg-Thomsen, V, Tan, T, Zheng, D, Strube, M. L., Dragoš, A, Shen, Q, Zhang, R, ÁKovács, T., 2022. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J., 16 (3), pp. 774-787. doi: 10.1038/s41396-021-01125-3.

[82]

Swain, M. R., Ray, R. C., 2009. Swain, R.C. Ray. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiol. Res., 164 (2), pp. 121-130. doi: 10.1016/j.micres.2006.10.009.

[83]

Tilman, D, Cassman, K. G., Matson, P. A., Naylor, R, Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature, 418 (2002), pp. 671-677. doi: 10.1038/nature01014.

[84]

Trivedi, P, Leach, J. E., Tringe, S. G., Sa, T, Singh, B. K., 2020. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol., 18 (11), pp. 607-621. doi: 10.1038/s41579-020-00490-8.

[85]

Tsukanova, K. A., Meyer, J. J. M., Bibikova, T. N., 2017. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot., 113, pp. 91-102. doi: 10.1016/j.sajb.2017.07.007.

[86]

Turner, B. L., Blackwell, M. S. A., 2013. Isolating the influence of pH on the amounts and forms of soil organic phosphorus. Eur. J. Soil Sci., 64 (2), pp. 249-259. doi: 10.1111/ejss.12026.

[87]

Velimirovic, A., Jovovic, Z., Przulj, N., 2021. From neolithic to late modern period: brief history of wheat. Genetika 53 (1), 407–417. doi: 10.2298/gensr2101407v.

[88]

Vessey, J. K., 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255 (2), pp. 571-586. doi: 10.1023/a:1026037216893.

[89]

Vyas, P, Gulati, A., 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol., 9, p. 174. doi: 10.1186/1471-2180-9-174.

[90]

Wang, M, Geng, L, Sun, X, Shu, C, Song, F, Zhang, J., 2020. Screening of Bacillus thuringiensis strains to identify new potential biocontrol agents against Sclerotinia sclerotiorum and Plutella xylostella in Brassica campestris L. Biol. Control, 145, Article 104262. doi: 10.1016/j.biocontrol.2020.104262.

[91]

Wang, X, Xie, H, Ku, Y, Yang, X, Chen, Y, Yang, N, Mei, X, Cao, C., 2019. Chemotaxis of Bacillus cereus YL6 and its colonization of Chinese cabbage seedlings. Plant Soil, 447 (1–2), pp. 413-430. doi: 10.1007/s11104-019-04344-y.

[92]

Wang, X, Zhang, J, Wang, X, An, J, You, C, Zhou, B, Hao, Y., 2022. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta. Hortic. Plant J., 8 (1), pp. 22-34. doi: 10.1016/j.hpj.2021.11.005.

[93]

Win, K. T., Fukuyo, T, Keiki, O, Ohwaki, Y., 2018. The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol. Biochem., 127, pp. 599-607. doi: 10.1016/j.plaphy.2018.04.038.

[94]

Xie, E, Zhao, Y, Li, H, Shi, X, Lu, F, Zhang, X, Peng, Y., 2019. Spatio-temporal changes of cropland soil pH in a rapidly industrializing region in the Yangtze River Delta of China, 1980–2015. Agric. Ecosyst. Environ., 272, pp. 95-104. doi: 10.1016/j.agee.2018.11.015.

[95]

Xu, P., Lv, T., Dong, S., Cui, Z., Luo, X., Jia, B., Jeon, C.O., Zhang, J., 2022a. Association between intestinal microbiome and inflammatory bowel disease: insights from bibliometric analysis. Comp. Struct. Biotechnol. J. 20, 1716–1725. doi: 10.1016/j.csbj.2022.04.006.

[96]

Xu, P., Zhu, X., Tian, H., Zhao, G., Chi, Y., Jia, B., Zhang, J., 2022b. The broad application and mechanism of humic acids for treating environmental pollutants: insights from bibliometric analysis. J. Clean. Prod. 337, 130510. doi: 10.1016/j.jclepro.2022.130510.

[97]

Xu, Z, Mandic-Mulec, I, Zhang, H, Liu, Y, Sun, X, Feng, H, Xun, W, Zhang, N, Shen, Q, Zhang, R., 2019. Antibiotic Bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cell Rep., 29 (5), pp. 1192-1202. doi: 10.1016/j.celrep.2019.09.061.

[98]

Xu, Z, Zhang, R, Wang, D, Qiu, M, Feng, H, Zhang, N, Shen, Q., 2014. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl. Environ. Microbiol., 80 (9), pp. 2941-2950. doi: 10.1128/AEM.03943-13.

[99]

Xue, X, Zhang, L, Peng, Y, Li, P, Yu, J., 2018. Effects of mineral structure and microenvironment on K release from potassium aluminosilicate minerals by Cenococcum geophilum fr. Geomicrobiol. J., 36 (1), pp. 11-18. doi: 10.1080/01490451.2018.1485064.

[100]

Yin, J, Sui, Z. M., Huang, J. G., 2021. Mobilization of soil inorganic phosphorus and stimulation of crop phosphorus uptake and growth induced by Ceriporia lacerata HG2011. Geoderma, 383, Article 114690. doi: 10.1016/j.geoderma.2020.114690.

[101]

Yuan, K, Reckling, M, Ramirez, M. D. A., Djedidi, S, Fukuhara, I, Ohyama, T, Yokoyama, T, Bellingrath-Kimura, S. D., Halwani, M, Egamberdieva, D, Ohkama-Ohtsu, N., 2020. Characterization of rhizobia for the improvement of soybean cultivation at cold conditions in central europe. Microbes Environ., 35 (1), pp. 1-13. doi: 10.1264/jsme2.ME19124.

[102]

Zainab, N, Amna, A. A., Azeem, M. A., Ali, B, Wang, T, Shi, F, Alghanem, S. M., Munis, H. M. F., Hashem, M, Alamri, S, Abdel Latef, A. A. H., Ali, O. M., Soliman, M. H., Chaudhary, H. J., 2021. PGPR-mediated plant growth attributes and metal extraction ability of Sesbania sesban L. in industrially contaminated soils. Agronomy, 11 (9), p. 1820. doi: 10.3390/agronomy11091820.

[103]

Zhang, H, Kim, M. S., Krishnamachari, V, Payton, P, Sun, Y, Grimson, M, Farag, M. A., Ryu, C. M., Allen, R, Melo, I. S., Pare, P. W., 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226 (4), pp. 839-851. doi: 10.1007/s00425-007-0530-2.

[104]

Zhang, Z, Duan, Z, Shao, H, Chen, P, Xu, P., 2011. Establishing a biotech-modern-agriculture for China. Afr. J. Biotechnol., 10 (72), pp. 16113-16119. doi: 10.5897/ajb10.2366.

[105]

Zhao, H., Li, X., Jiang, Y., 2019. Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production. Sustainability 11 (6), 1513. doi: 10.3390/su11061513.

[106]

Zhao, Y, Lu, G, Jin, X, Wang, Y, Ma, K, Zhang, H, Yan, H, Zhou, X., 2022. Effects of microbial fertilizer on soil fertility and alfalfa rhizosphere microbiota in alpine grassland. Agronomy, 12 (7), p. 1722. doi: 10.3390/agronomy12071722.

PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

/