Opportunity and shift of nitrogen use in China

Wangzheng Shen , Jing He , Sisi Li , Yanhua Zhuang , Hongyuan Wang , Hongbin Liu , Liang Zhang , Andreas Kappler

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) : 33 -40.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (1) :33 -40. DOI: 10.1016/j.geosus.2023.09.003
Research Article
review-article

Opportunity and shift of nitrogen use in China

Author information +
History +
PDF

Abstract

It is never an easy task for China to feed 1.4 billion people with only 7% of the world’s arable land. With nearly 30% of the world’s nitrogen (N) fertilizer applied, China achieves high crop yields while facing N pollution resulting from excessive N input. Here, we calculate the farmland N budget on the national and regional scales. The N use efficiency (NUE) in China increased by 28.0% during 2005–2018. This improvement is due to the reduction in fertilization and the improvement of crop management. The fragmented farmland is changing to large-scale farmland with the increase in cultivated land area per rural population and the development of agricultural mechanization. This opportunity brings more possibilities for precision farmland management, thus further improving NUE. The goal of an NUE of 0.6 may be achieved in the 2040s based on the current development trend. This striking N use shift in China has important implications for other developing countries.

Keywords

Environmental Kuznets curve / Nitrogen surplus / Greenhouse gas emission / Climate change / Non-point source pollution

Cite this article

Download citation ▾
Wangzheng Shen, Jing He, Sisi Li, Yanhua Zhuang, Hongyuan Wang, Hongbin Liu, Liang Zhang, Andreas Kappler. Opportunity and shift of nitrogen use in China. Geography and Sustainability, 2024, 5(1): 33-40 DOI:10.1016/j.geosus.2023.09.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. U21A2025 and 41907151) and the National Key Research and Development Program of China (Grant No. 2022YFD1700700).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.09.003.

References

[1]

Basu, N. B., Van Meter, K. J., Byrnes, D. K., Van Cappellen, P, Brouwer, R, Jacobsen, B. H., Jarsjo, J, Rudolph, D. L., Cunha, M. C., Nelson, N, Bhattacharya, R, Destouni, G, Olsen, S. B., 2022. Managing nitrogen legacies to accelerate water quality improvement. Nat. Geosci., 15 (2), pp. 97-105. doi: 10.1038/s41561-021-00889-9.

[2]

Bouwman, A. F., Beusen, A. H. W., Lassaletta, L, van Apeldoorn, D. F., van Grinsven, H. J. M., Zhang, J, van Ittersum, M. K., 2017. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep., 7, p. 40366. doi: 10.1038/srep40366.

[3]

Canfield, D. E., Glazer, A. N., Falkowski, P. G., 2010. The evolution and future of earth's nitrogen cycle. Science, 330 (2010), pp. 192-196. doi: 10.1126/science.1186120.

[4]

Chen, H. H., Li, X. C., Hu, F, Shi, W., 2013. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Glob. Change Biol., 19 (10), pp. 2956-2964. doi: 10.1111/gcb.12274.

[5]

Chen, L, Xie, H, Wang, G. L., Yuan, L. M., Qian, X. Q., Wang, W. L., Xu, Y. J., Zhang, W. Y., Zhang, H, Liu, L. J., Wang, Z. Q., Gu, J. F., Yang, J. C., 2021. Reducing environmental risk by improving crop management practices at high crop yield levels. Field Crops Res., 265, Article 108123. doi: 10.1016/j.fcr.2021.108123.

[6]

Cherkasov, N, Ibhadon, A. O., Fitzpatrick, P., 2015. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process., 90, pp. 24-33. doi: 10.1016/j.cep.2015.02.004.

[7]

Cui, Z. L., Zhang, H. Y., Chen, X. P., Zhang, C. C., Ma, W. Q., Huang, C. D., Zhang, W. F., Mi, G. H., Miao, Y. X., Li, X. L., Gao, Q, Yang, J. C., Wang, Z. H., Ye, Y. L., Guo, S. W., Lu, J. W., Huang, J. L., Lv, S. H., Sun, Y. X., Liu, Y. Y., Peng, X. L., Ren, J, Li, S. Q., Deng, X. P., Shi, X. J., Zhang, Q, Yang, Z. P., Tang, L, Wei, C. Z., Jia, L. L., Zhang, J. W., He, M. R., Tong, Y. A., Tang, Q. Y., Zhong, X. H., Liu, Z. H., Cao, N, Kou, C. L., Ying, H, Yin, Y. L., Jiao, X. Q., Zhang, Q. S., Fan, M. S., Jiang, R. F., Zhang, F. S., Dou, Z. X., 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555 (2018), pp. 363-366. doi: 10.1038/nature25785.

[8]

Du, J. Q., Shu, J. M., Yin, J. Q., Yuan, X. J., Jiaerheng, A, Xiong, S. S., He, P, Liu, W. L., 2015. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int. J. Appl. Earth Obs. Geoinf., 38, pp. 216-228. doi: 10.1016/j.jag.2015.01.006.

[9]

Duan, H, Wang, H, Li, S, Shen, W, Zhuang, Y, Zhang, F, Li, Xu, Zhai, L, Liu, H, Zhang, L., 2023. Potential to mitigate nitrogen emissions from paddy runoff: a microbiological perspective. Sci. Total Environ., 865, Article 161306. doi: 10.1016/j.scitotenv.2022.161306.

[10]

Food and Agriculture Organization of the United Nations (FAO), 2018. FAOSTAT Online Database. http://www.fao.org/faostat/ (accessed 14 February 2023).

[11]

Glibert, P. M., Maranger, R, Sobota, D. J., Bouwman, L., 2014. The Haber Bosch-harmful algal bloom (HB-HAB) link. Environ. Res. Lett., 9 (10), Article 105001. doi: 10.1088/1748-9326/9/10/105001.

[12]

Gu, B. J., Ju, X. T., Chang, J, Ge, Y, Vitousek, P. M., 2015. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. U. S. A., 112 (28), pp. 8792-8797. doi: 10.1073/pnas.1510211112.

[13]

Gu, B. J., Sutton, M. A., Chang, S. X., Ge, Y, Chang, J., 2014. Agricultural ammonia emissions contribute to China's urban air pollution. Front. Ecol. Evol., 12 (5), pp. 265-266. doi: 10.1890/14.wb.007.

[14]

Huang, R. J., Zhang, Y. L., Bozzetti, C, Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F, Zotter, P, Wolf, R, Pieber, S. M., Bruns, E. A., Crippa, M, Ciarelli, G, Piazzalunga, A, Schwikowski, M, Abbaszade, G, Schnelle-Kreis, J, Zimmermann, R, An, Z. S., Szidat, S, Baltensperger, U, El Haddad, I, Prevot, A. S. H., 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514 (2014), pp. 218-222. doi: 10.1038/nature13774.

[15]

Ju, X. T., Gu, B. J., Wu, Y. Y., Galloway, J. N., 2016. Reducing China's fertilizer use by increasing farm size. Glob. Environ. Change, 41, pp. 26-32. doi: 10.1016/j.gloenvcha.2016.08.005.

[16]

Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B, Christie, P, Zhu, Z. L., Zhang, F. S., 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. U. S. A., 106 (9), pp. 3041-3046. doi: 10.1073/pnas.0813417106.

[17]

Le, C, Zha, Y, Li, Y, Sun, D, Lu, H, Yin, B., 2010. Eutrophication of lake waters in China: cost, causes, and control. Environ. Manag., 45 (4), pp. 662-668. doi: 10.1007/s00267-010-9440-3.

[18]

Li, S, Zhuang, Y, Liu, H, Wang, Z, Zhang, F, Lv, M, Zhai, L, Fan, X, Niu, S, Chen, J, Xu, C, Wang, N, Ruan, S, Shen, W, Mi, M, Wu, S, Du, Y, Zhang, L., 2023. Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage. Nat. Commun., 14, p. 3794. doi: 10.1038/s41467-023-39454-w.

[19]

Li, Y. X., Zhang, W. F., Ma, L, Huang, G. Q., Oenema, O, Zhang, F. S., Dou, Z. X., 2013. An analysis of China's fertilizer policies: impacts on the industry, food security, and the environment. J. Environ. Qual., 42 (4), pp. 972-981. doi: 10.2134/jeq2012.0465.

[20]

Liu, X. J., Zhang, Y, Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L., Vitousek, P, Erisman, J. W., Goulding, K, Christie, P, Fangmeier, A, Zhang, F. S., 2013. Enhanced nitrogen deposition over China. Nature, 494 (2013), pp. 459-462. doi: 10.1038/nature11917.

[21]

Lu, C. Q., Tian, H. Q., 2007. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J. Geophys. Res., 112 (D22), p. D22S05. doi: 10.1029/2006jd007990.

[22]

Mu, X. Y., Zhao, Y. L., Liu, K, Ji, B. Y., Guo, H. B., Xue, Z. W., Li, C. H., 2016. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. Eur. J. Agron., 78, pp. 32-43. doi: 10.1016/j.eja.2016.04.010.

[23]

National Bureau of Statistics of China (NBSC), 2018. National Statistics Data. https://data.stats.gov.cn/ (accessed 14 February 2023).

[24]

Ren, W, Banger, K, Tao, B, Yang, J, Huang, Y, Tian, H., 2020. Global pattern and change of cropland soil organic carbon during 1901–2010: roles of climate, atmospheric chemistry, land use and management. Geogr. Sustain., 1(1), 59-69.

[25]

Robertson, G. P., Vitousek, P. M., 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour., 34, pp. 97-125. doi: 10.1146/annurev.environ.032108.105046.

[26]

Sang, X. G., Wang, D, Lin, X., 2016. Effects of tillage practices on water consumption characteristics and grain yield of winter wheat under different soil moisture conditions. Soil Till. Res., 163, pp. 185-194. doi: 10.1016/j.still.2016.06.003.

[27]

Scanlon, B. R., Jolly, I, Sophocleous, M, Zhang, L., 2007. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour. Res., 43 (3), p. W03437. doi: 10.1029/2006wr005486.

[28]

Shang, Z. Y., Abdalla, M, Xia, L. L., Zhou, F, Sun, W. J., Smith, P., 2021. Can cropland management practices lower net greenhouse emissions without compromising yield?. Glob. Change Biol., 27 (19), pp. 4657-4670. doi: 10.1111/gcb.15796.

[29]

Shen, W., Li, S., Basu, N., Ury, E., Jing, Q., Zhang, L., 2023a. Size and temperature drive nutrient retention potential across water bodies in China. Water Res. 239, 120054. doi: 10.1016/j.watres.2023.120054.

[30]

Shen, W, Li, S, Mi, M, Zhuang, Y, Zhang, L., 2021. What makes ditches and ponds more efficient in nitrogen control?. Agric. Ecosyst. Environ., 314, Article 107409. doi: 10.1016/j.agee.2021.107409.

[31]

Shen, W., Li, S., Zhuang, Y., He, J., Liu, H., Zhang, L., 2023b. Phosphorus use efficiency has crossed the turning point of the environmental Kuznets curve: opportunities and challenges for crop production in China. J. Environ. Manag. 326, 116754. doi: 10.1016/j.jenvman.2022.116754.

[32]

Shen, W, Zhang, L, Li, S, Zhuang, Y, Liu, H, Pan, J., 2020. A framework for evaluating county-level non-point source pollution: joint use of monitoring and model assessment. Sci. Total Environ., 722, Article 137956. doi: 10.1016/j.scitotenv.2020.137956.

[33]

Sun, C, Chen, L, Zhai, L. M., Liu, H. B., Wang, K, Jiao, C, Shen, Z. Y., 2020. National assessment of nitrogen fertilizers fate and related environmental impacts of multiple pathways in China. J. Clean. Prod., 277, Article 123519. doi: 10.1016/j.jclepro.2020.123519.

[34]

Tilman, D, Balzer, C, Hill, J, Befort, B. L., 2011. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. U. S. A., 108 (50), pp. 20260-20264. doi: 10.1073/pnas.1116437108.

[35]

Tong, Y. D., Wang, M. Z., Penuelas, J, Liu, X. Y., Paerl, H. W., Elser, J. J., Sardans, J, Couture, R. M., Larssen, T, Hu, H. Y., Dong, X, He, W, Zhang, W, Wang, X. J., Zhang, Y, Liu, Y, Zeng, S. Y., Kong, X. Z., Janssen, A. B. G., Lin, Y., 2020. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proc. Natl. Acad. Sci. U. S. A., 117 (21), pp. 11566-11572. doi: 10.1073/pnas.1920759117.

[36]

Van Meter, K. J., Van Cappellen, P, Basu, N. B., 2018. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science, 360 (2018), pp. 427-430. doi: 10.1126/science.aar4462.

[37]

Wang, S, Bai, X, Zhang, X, Reis, S, Chen, D, Xu, J, Gu, B., 2021. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food, 2 (3), pp. 183-191. doi: 10.1038/s43016-021-00228-6.

[38]

Wu, Y. Y., Xi, X. C., Tang, X, Luo, D. M., Gu, B. J., Lam, S. K., Vitousek, P. M., Chen, D. L., 2018. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. U. S. A., 115 (27), pp. 7010-7015. doi: 10.1073/pnas.1806645115.

[39]

Yan, X., Xia, L., Ti, C., 2022. Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environ. Pollut. 293, 118496. doi: 10.1016/j.envpol.2021.118496.

[40]

Zhai, L. C., Xu, P, Zhang, Z. B., Wei, B. H., Jia, X. L., Zhang, L. H., 2019. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate. Agron. J., 111 (2), pp. 666-676. doi: 10.2134/agronj2018.05.0347.

[41]

Zhang, W. F., Cao, G. X., Li, X. L., Zhang, H. Y., Wang, C, Liu, Q. Q., Chen, X. P., Cui, Z. L., Shen, J. B., Jiang, R. F., Mi, G. H., Miao, Y. X., Zhang, F. S., Dou, Z. X., 2016. Closing yield gaps in China by empowering smallholder farmers. Nature, 537 (2016), pp. 671-674. doi: 10.1038/nature19368.

[42]

Zhang, X, Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P, Shen, Y., 2015. Managing nitrogen for sustainable development. Nature, 528 (2015), pp. 51-59. doi: 10.1038/nature15743.

[43]

Zhao, Y. C., Wang, M. Y., Hu, S. J., Zhang, X. D., Ouyang, Z, Zhang, G. L., Huang, B. A., Zhao, S. W., Wu, J. S., Xie, D. T., Zhu, B, Yu, D. S., Pan, X. Z., Xu, S. X., Shi, X. Z., 2018. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. U. S. A., 115 (16), pp. 4045-4050. doi: 10.1073/pnas.1700292114.

PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

/