Potential impacts of climate and anthropogenic-induced changes on DOM dynamics among the major Chinese rivers

Si-Liang Li , Hao Zhang , Yuanbi Yi , Yutong Zhang , Yulin Qi , Khan MG Mostofa , Laodong Guo , Ding He , Pingqing Fu , Cong-Qiang Liu

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) : 329 -339.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) :329 -339. DOI: 10.1016/j.geosus.2023.07.003
Research Article
review-article

Potential impacts of climate and anthropogenic-induced changes on DOM dynamics among the major Chinese rivers

Author information +
History +
PDF

Abstract

Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of climate and anthropogenic-induced changes on DOM in riverine systems under increasingly warming conditions still need to be better understood, particularly at large regional scales. To address this knowledge gap, we analyzed a dataset containing 386 published measurements for nine major Chinese river systems, examining dissolved organic carbon (DOC) concentrations and optical properties of chromophoric DOM (CDOM) under diverse environmental conditions, including mean air temperature, precipitation, surface solar radiation, population density, and land use. Our findings indicate that riverine DOC concentrations are significantly higher in northern China (at 46.8%) than in the south. This disparity is primarily due to the high input of soil erosion-induced DOM from drying-affected lands (57.0%), farmland (49.1%), and forests in the north. The high temperate and strong hydrological conditions would lead to DOM degradation easily in the riverine system in the south of China. Our study highlights that various climatic and anthropogenic factors, such as agriculture, vegetation coverage, soil erosion, surface solar radiation, and precipitation, individually or in combination, can affect DOM dynamics in river systems. Therefore, considering alterations in DOM dynamics resulting from climate and environmental changes is crucial for carbon-neutral policies and sustainable river ecosystem assessments.

Keywords

River / Dissolved organic carbon / Land use / Climate and environmental change / Sustainable development

Cite this article

Download citation ▾
Si-Liang Li, Hao Zhang, Yuanbi Yi, Yutong Zhang, Yulin Qi, Khan MG Mostofa, Laodong Guo, Ding He, Pingqing Fu, Cong-Qiang Liu. Potential impacts of climate and anthropogenic-induced changes on DOM dynamics among the major Chinese rivers. Geography and Sustainability, 2023, 4(4): 329-339 DOI:10.1016/j.geosus.2023.07.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grants No. 41925002, 42221001, 42230509) and received financial support from the Haihe Laboratory of Sustainable Chemical Transformations.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.07.003.

References

[1]

Barker, J, Dubnick, A, Lyons, W, Y-Chin, P., 2013. Changes in dissolved organic matter (DOM) fluorescence in proglacial Antarctic streams. Arct. Antarct. Alp. Res., 45(3), 305-317.

[2]

Barnes, R. T., Butman, D. E., Wilson, H. F., Raymond, P. A., 2018. Riverine export of aged carbon driven by flow path depth and residence time. Environ. Sci. Technol., 52(3), 1028-1035.

[3]

Best, J., 2019. Author Correction: Anthropogenic stresses on the world’s big rivers. Nat. Geosci., 12 (2)

[4]

Bushaw, K. L., Zepp, R. G., Tarr, M. A., Schulz-Jander, D, Bourbonniere, R. A., Hodson, R. E., Miller, W. L., Bronk, D. A., Moran, M. A., 1996. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381(6581), 404-407.

[5]

Carlson, C. A., Hansell, D. A.DOM sources, sinks, reactivity, and budgets. D.A. Hansell, C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. 2nd Ed, Elsevier Inc. 2015; 65-126.

[6]

Catalán, N, Marcé, R, Kothawala, D. N., Tranvik, L. J., 2016. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat. Geosci., 9(7), 501-504.

[7]

Chen, M, Li, C, Spencer, R. G., Maie, N, Hur, J, McKenna, A. M., Yan, F., 2021. Climatic, land cover, and anthropogenic controls on dissolved organic matter quantity and quality from major alpine rivers across the Himalayan-Tibetan Plateau. Sci. Total. Environ., 754, 142411.

[8]

Cooley, S. W., Ryan, J. C., Smith, L. C., 2021. Human alteration of global surface water storage variability. Nature 591(7848), 78-81.

[9]

Cory, R. M., Ward, C. P., Crump, B. C., Kling, G. W., 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345(6199), 925-928.

[10]

Cui, H, Shi, J, Qiu, L, Zhao, Y, Wei, Z, Wang, X, Jia, L, Li, J., 2016. Characterization of chromophoric dissolved organic matter and relationships among PARAFAC components and water quality parameters in Heilongjiang, China. Environ. Sci. Pollut. Res., 23(10), 10058-10071.

[11]

Dittmar, T.Reasons behind the long-term stability of dissolved organic matter. D.A. Hansell, C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter, 2nd Ed, Elsevier Inc. 2015; 369-388.

[12]

Fang, S, Mao, K, Xia, X, Wang, P, Shi, J, Bateni, S. M., Xu, T, Cao, M, Heggy, E, Qin, Z., 2022. Dataset of daily near-surface air temperature in China from 1979 to 2018. Earth Syst. Sci. Data 14(3), 1413-1432.

[13]

Fichot, C. G., Benner, R., 2011. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett., 38(3), L03610.

[14]

Gao, L, Zhou, Z, Reyes, A. V., Guo, L., 2018. Yields and Characterization of dissolved organic matter from different aged soils in Northern Alaska. J. Geophys. Res.-Biogeo., 123(7), 2035-2052.

[15]

Gonsior, M, Zwartjes, M, Cooper, W. J., Song, W, Ishida, K. P., Tseng, L. Y., Jeung, M. K., Rosso, D, Hertkorn, N, Schmitt-Kopplin, P., 2011. Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. Water Res., 45(9), 2943-2953.

[16]

Grannas, A. M., Martin, C. B, Chin, Y-.P, Platz, M., 2006. Hydroxyl radical production from irradiated Arctic dissolved organic matter. Biogeochemistry 78(1), 51-66.

[17]

Griffin, C. G., Finlay, J. C., Brezonik, P. L., Olmanson, L, Hozaiski, R. M., 2018. Limitations on using CDOM as a proxy for DOC in temperate lakes. Water Res., 144, 719-727.

[18]

Grill, G, Lehner, B, Thieme, M, Geenen, B, Tickner, D, Antonelli, F, Babu, S, Borrelli, P, Cheng, L, Crochetiere, H., 2019. Mapping the world's free-flowing rivers. Nature 569(7755), 215.

[19]

Guo, L, J-Zhang, Z, Guéguen, C., 2004. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Global Biogeochem. Cy., 18(1), GB1038.

[20]

Guo, Q, Hao, Y, Liu, B., 2015. Rates of soil erosion in China: A study based on runoff plot data. Catena 124, 68-76.

[21]

Hansen, A. M., Kraus, T. E. C., Pellerin, B. A., Fleck, J. A., Downing, B. D., Bergamaschi, B. A., 2016. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol. Oceanogr., 61(3), 1015-1032.

[22]

Harrell, F. E., Dupont, C., 2008. Hmisc: Harrell miscellaneous. R Pack. Vers., 3(2), 437.

[23]

He, Q, Xiao, Q, Fan, J, Zhao, H, Cao, M, Zhang, C, Jiang, Y., 2021. Excitation-emission matrix fluorescence spectra of chromophoric dissolved organic matter reflected the composition and origination of dissolved organic carbon in Lijiang River, Southwest China. J. Hydrol., 598, 126240.

[24]

Heddam, S., 2014. Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: Case study of Connecticut River at Middle Haddam Station, USA. Environ. Monit. Assess., 186(11), 7837-7848.

[25]

Helms, J. R., Stubbins, A, Ritchie, J. D., Minor, E. C., Kieber, D. J., Mopper, K., 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr., 53(3), 955-969.

[26]

Hollander, D. J., Mckenzie, J. A., 1991. CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer. Geology 19(9), 929-932.

[27]

Hu, X, Zhou, Y, Zhou, L, Zhang, Y, Wu, L, Xu, H, Zhu, G, K-Jang, S, Spencer, R. G., Jeppesen, E., 2022. Urban and agricultural land use regulates the molecular composition and bio-lability of fluvial dissolved organic matter in human-impacted southeastern China. Carbon Res., 1(1), 1-14.

[28]

Jiang, G, Ma, R, Loiselle, S. A., Duan, H., 2012. Optical approaches to examining the dynamics of dissolved organic carbon in optically complex inland waters. Environ. Res. Lett., 7(3), 034014.

[29]

Jiao, N, Herndl, G. J., Hansell, D. A., Benner, R, Kattner, G, Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T, Chen, F, Azam, F., 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol., 8(8), 593-599.

[30]

Jiao, N, Liu, J, Edwards, B, Lv, Z, Cai, R, Liu, Y, Xiao, X, Wang, J, Jiao, F, Wang, R., 2021. Correcting a major error in assessing organic carbon pollution in natural waters. Sci. Adv., 7(16), eabc7318.

[31]

Kellerman, A. M., Guillemette, F, Podgorski, D. C., Aiken, G. R., Butler, K. D., Spencer, R. G. M., 2018. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems. Environ. Sci. Technol., 52(5), 2538-2548.

[32]

Lehrter, J. C., Ko, D. S., Lowe, L. L., Penta, B. 2017. Predicted effects of climate change on northern Gulf of Mexico hypoxia. D. Justic, K.A. Rose, R.D. Hetland, K. Fennel (Eds.), Modeling Coastal Hypoxia: Numerical Simulations of Patterns, Controls and Effects of Dissolved Oxygen Dynamics, Springer International Publishing, pp.173-214.

[33]

Li, S, Ju, H, Ji, M, Zhang, J, Song, K, Chen, P, Mu, G., 2018. Terrestrial humic-like fluorescence peak of chromophoric dissolved organic matter as a new potential indicator tracing the antibiotics in typical polluted watershed. J. Environ. Manage., 228, 65-76.

[34]

Liang, C, Das, K, McClendon, R., 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour. Technol., 86(2), 131-137.

[35]

Liu, B, Xie, Y, Li, Z, Liang, Y, Zhang, W, Fu, S, Yin, S, Wei, X, Zhang, K, Wang, Z., 2020. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res., 8(4), 430-439.

[36]

Liu, D, Du, Y, Yu, S, Luo, J, Duan, H., 2020. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River. Water Res., 168, 115132.

[37]

Liu, D, Tian, L, Jiang, X, Wu, H, Yu, S., 2022. Human activities changed organic carbon transport in Chinese rivers during 2004–2018. Water Res., 222, 118872.

[38]

Liu, Z. H., Zhao, M, Sun, H. L., Yang, R, Chen, B, Yang, M. X., Zeng, Q. R., Zeng, H. T., 2017. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: Coupled action of carbonate weathering and aquatic photosynthesis. Appl. Geochem., 78, 96-104.

[39]

Maavara, T, Chen, Q. W., Van Meter, K, Brown, L. E., Zhang, J. Y., Ni, J. R., Zarfl, C., 2020. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ., 1(2), 103-116.

[40]

Maavara, T, Lauerwald, R, Regnier, P, Van Cappellen, P., 2017. Global perturbation of organic carbon cycling by river damming. Nat. Commun., 8(1), 1-10.

[41]

Mackay, M. D., Neale, P. J., Arp, C. D., De Senerpont Domis, L. N., Fang, X, Gal, G, Jöhnk, K. D., Kirillin, G, Lenters, J. D., Litchman, E, Macintyre, S, Marsh, P, Melack, J, Mooij, W. M., Peeters, F, Quesada, A, Schladow, S. G., Schmid, M, Spence, C, Stokesr, S. L., 2009. Modeling lakes and reservoirs in the climate system. Limnol. Oceanogr., 54(6part2), 2315-2329.

[42]

Massicotte, P, Asmala, E, Stedmon, C, Markager, S., 2017. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans. Sci. Total. Environ., 609, 180-191.

[43]

Matoušů, A, Rulík, M, Tušer, M, Bednařík, A, Bussmann, I., 2019. Methane dynamics in a large river: A case study of the Elbe River. Aquat. Sci., 81(1), 1-15.

[44]

Minor, E, Stephens, B., 2008. Dissolved organic matter characteristics within the Lake Superior watershed. Org. Geochem., 39(11), 1489-1501.

[45]

Mostofa, K. M., Honda, Y, Sakugawa, H., 2005. Dynamics and optical nature of fluorescent dissolved organic matter in river waters in Hiroshima Prefecture, Japan. Geochem. J., 39(3), 257-271.

[46]

Mostofa, K. M., Sakugawa, H, Yuan, J, C-Liu, Q, Senesi, N, Mohinuzzaman, M, Liu, Y, Vione, D, S-Li, L., 2022. Continuous production-degradation of dissolved organic matter provides signals of biogeochemical processes from terrestrial to marine end-members. Front. Mar. Sci., p. 2340

[47]

Mostofa, K. M., Yoshioka, T, Konohira, E, Tanoue, E., 2007. Photodegradation of fluorescent dissolved organic matter in river waters. Geochem. J., 41(5), 323-331.

[48]

Mostofa, K. M., Yoshioka, T, Konohira, E, Tanoue, E, Hayakawa, K, Takahashi, M., 2005. Three-dimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the Lake Biwa watershed. Limnology 6(2), 101-115.

[49]

Mostofa, K. M., Yoshioka, T, Mottaleb, A, Vione, D., 2013. Photobiogeochemistry of Organic Matter: Principles and Practices in Water Environments. Springer, Berlin, Heidelberg

[50]

Nebbioso, A, Piccolo, A., 2013. Molecular characterization of dissolved organic matter (DOM): A critical review. Anal. Bioanal. Chem., 405(1), 109-124.

[51]

Oksanen, J, Blanchet, F. G., Kindt, R, Legendre, P, Minchin, P, O’hara, R, Simpson, G, Solymos, P, Stevens, M, Wagner, H., 2013. Community ecology package. R package version 2, 321-326.

[52]

Piao, S, Fang, J, Ciais, P, Peylin, P, Huang, Y, Sitch, S, Wang, T., 2009. The carbon balance of terrestrial ecosystems in China. Nature 458(7241), 1009-1013.

[53]

Qian, J, Mopper, K, Kieber, D. J., 2001. Photochemical production of the hydroxyl radical in Antarctic waters. Deep Sea Res. Part I 48(3), 741-759.

[54]

Ran, X, Liu, J, Zang, J, Xu, B, Zhao, S, Wu, W, Wang, H, Liu, S., 2018. Export and dissolution of biogenic silica in the Yellow River (Huanghe) and implications for the estuarine ecosystem. Mar. Chem., 200, 14-21.

[55]

Raymond, P. A., Bauer, J. E., 2001. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409(6819), 497-500.

[56]

Raymond, P. A., Spencer, R. G. M. 2015. Riverine DOM. P.A. Raymond, R.G.M. Spencer (Eds.), Biogeochemistry of Marine Dissolved Organic Matter, 2nd Ed, Elsevier, pp.509-533.

[57]

Rochelle-Newall, E. J., Fisher, T. R., 2002. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar. Chem., 77(1), 23-41.

[58]

Roebuck Jr, J. A., Seidel, M, Dittmar, T, Jaffé, R., 2019. Controls of land use and the river continuum concept on dissolved organic matter composition in an anthropogenically disturbed subtropical watershed. Environ. Sci. Technol., 54(1), 195-206.

[59]

Romera-Castillo, C, Galí, M, Gasol, J. M., Marrasé, C., 2013. Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean). Mar. Chem., 148, 44-51.

[60]

Sanchez, G, Trinchera, L, Sanchez, M. G., FactoMineR, S., 2013. Package ‘plspm’. Citeseer: State College, PA, USA

[61]

Semenov, V, Tulina, A, Semenova, N, Ivannikova, L., 2013. Humification and nonhumification pathways of the organic matter stabilization in soil: A review. Euras. Soil Sci., 46(4), 355-368.

[62]

Smith, H. J., Foster, R. A., McKnight, D. M., Lisle, J. T., Littmann, S, Kuypers, M. M., Foreman, C. M., 2017. Microbial formation of labile organic carbon in Antarctic glacial environments. Nat. Geosci., 10(5), 356-359.

[63]

Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J, Stets, E. G., 2012. Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem. Cy., 26(4), GB0E05.

[64]

Stubbins, A, Dittmar, T. 2014. 12.6 - Dissolved organic matter in aquatic systems. H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry, 2nd Ed, Elsevier, pp.125-156.

[65]

Sun, C, Liu, J, Li, M, Zang, J, Wang, L, Wu, W, Zhang, A, Wang, J, Ran, X., 2022. Inventory of riverine dissolved organic carbon in the Bohai Rim. Environ. Pollut., 293, 118601.

[66]

Sun, Q, Jiang, J, Zheng, Y, Wang, F, Wu, C, Xie, R., 2017. Effect of a dam on the optical properties of different-sized fractions of dissolved organic matter in a mid-subtropical drinking water source reservoir. Sci. Total. Environ., 598, 704-712.

[67]

R Core Team, 2013. R: A language and Environment For Statistical Computing. R Foun- dation for Statistical Computing.

[68]

Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P, Finlay, K, Fortino, K, Knoll, L. B., Kortelainen, P. L., Kutser, T, Larsen, S, Laurion, I, Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E, Porter, J. A., Prairie, Y, Renwick, W. H., Roland, F, Sherman, B. S., Schindler, D. W., Sobek, S, Tremblay, A, Vanni, M. J., Verschoor, A. M., Von Wachenfeldt, E, Weyhenmeyer, G. A., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54(6part2), 2298-2314.

[69]

Ullman, J. B., Bentler, P. M., 2012. Structural equation modeling. I.B. Weiner (Ed.), Handbook of Psychology (2nd Ed), John Wiley & Sons, Inc

[70]

Wagner, S, Riedel, T, Niggemann, J, Vähätalo, A. V., Dittmar, T, Jaffé, R., 2015. Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers. Environ. Sci. Technol., 49(23), 13798-13806.

[71]

Wang, H, Yang, S, Wang, Y, Gu, Z, Xiong, S, Huang, X, Sun, M, Zhang, S, Guo, L, Cui, J., 2022. Rates and causes of black soil erosion in Northeast China. Catena 214, 106250.

[72]

Wang, K, Li, P, He, C, Shi, Q, He, D., 2021. Density currents affect the vertical evolution of dissolved organic matter chemistry in a large tributary of the Three Gorges Reservoir during the water-level rising period. Water Res., 204, 117609.

[73]

Wang, X, Ma, H, Li, R, Song, Z, Wu, J., 2012. Seasonal fluxes and source variation of organic carbon transported by two major Chinese rivers: The Yellow River and Changjiang (Yangtze) River. Global Biogeochem. Cy., 26, GB2025

[74]

Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C., Dittmar, T, Yager, P. L., Krusche, A. V., Richey, J. E., 2013. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci., 6(7), 530-533.

[75]

Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R, Mopper, K., 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol., 37(20), 4702-4708.

[76]

Yi, Y, S-Li, L, Zhong, J, Wang, W, Chen, S, Bao, H, He, D., 2022. The influence of the deep subtropical reservoir on the karstic riverine carbon cycle and its regulatory factors: Insights from the seasonal and hydrological changes. Water Res., 226, 119267.

[77]

Yi, Y, Zhong, J, Bao, H, Mostofa, K. M. G., Xu, S, Xiao, H. Y., Li, S. L., 2021. The impacts of reservoirs on the sources and transport of riverine organic carbon in the karst area: A multi-tracer study. Water Res., 194, 116933.

[78]

Zhao, C, Liu, B, Piao, S, Wang, X, Lobell, D. B., Huang, Y, Huang, M, Yao, Y, Bassu, S, Ciais, P., 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. U.S.A., 114(35), 9326-9331.

[79]

Zhao, Y, Song, K., 2018. Relationships between DOC and CDOM based on the total carbon-specific fluorescence intensities for river waters across China. J. Geophys. Res.-Biogeo., 123(8), 2353-2361.

[80]

Zhong, J, Wallin, M. B., Wang, W, Li, S. L., Guo, L, Dong, K, Ellam, R. M., Liu, C. Q., Xu, S., 2021. Synchronous evaporation and aquatic primary production in tropical river networks. Water Res., 200, 117272.

PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

/