COCKPIT-PLUS: A proposed method for rapid groundwater vulnerability-driven land use zoning in tropical cockpit karst areas

Eko Haryono , Afid Nur Kholis , Margaretha Widyastuti , Ahmad Cahyadi , Hanindha Pradipa , Tjahyo Nugroho Adji

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) : 305 -317.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) :305 -317. DOI: 10.1016/j.geosus.2023.07.002
Research Article
review-article

COCKPIT-PLUS: A proposed method for rapid groundwater vulnerability-driven land use zoning in tropical cockpit karst areas

Author information +
History +
PDF

Abstract

Karst groundwater is highly vulnerable to contamination, which urges better land use zoning. This paper proposes a new approach, called COCKPIT-PLUS, to minimize groundwater contamination within cockpit karst regions. The method employed four parameters: P (the existence of ponor/swallow hole), L (lineament density), U (sinking stream to an underground river), and S (distance to spring/pumping site). These parameters are essential for identifying contaminant pathways and transport from the surface to the karst groundwater/springs. COCKPIT-PLUS has been developed and validated in the Gunungsewu karst in Java, Indonesia. This research considers a cockpit as a single hydrological unit that uniquely recharges karst groundwater. We analyzed 2,811 cockpits and 81 other closed depressions to develop a land use planning map. The research used the time to first arrival (Ta), time to peak (Tp), and Qmax/min ratio parameters of two karst springs and two underground pumping sites for validation. Cockpits with ponors/swallow holes, sinking streams, high lineament density, and short distances to springs are vulnerable to groundwater and thus must be restricted areas for any land uses. The findings show that though the COCKPIT-PLUS uses a limited karst dataset, the proposed method seems reliable enough for a rapid land-use zoning approach in cockpit karst areas.

Keywords

Cockpit karst / Karst aquifer / Land use planning / Rapid assessment / Karst vulnerability

Cite this article

Download citation ▾
Eko Haryono, Afid Nur Kholis, Margaretha Widyastuti, Ahmad Cahyadi, Hanindha Pradipa, Tjahyo Nugroho Adji. COCKPIT-PLUS: A proposed method for rapid groundwater vulnerability-driven land use zoning in tropical cockpit karst areas. Geography and Sustainability, 2023, 4(4): 305-317 DOI:10.1016/j.geosus.2023.07.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was part of a karst land-use planning project of the Yogyakarta Special Province (DIY). Special thanks to Rinaldy Saputro for help in processing the GIS data, Agus Hendratno and CV Madani Callysta Saibuyun for supporting the project, and ASC the information and data provided. Thanks to Hendy Fatchurohman, M. Hafiz Damar, Istriyar Wikanto, Sigit Wicaksono, Fuad Dwi Rahmawan, and Syahrul for their assistance in the field survey.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.07.002.

References

[1]

Abdullah, A, Akhir, J. M., Abdullah, I., 2010. Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran-Sungi Lembing Area, Malaysia. Electron. J. Geotech. Eng., 16(6), 949-958.

[2]

Adji, T, Misqi, M., 2010. The distribution of flood hydrograph recession constant for characterization of karst spring and underground river flow components releasing within Gunungsewu Karst Region, Indonesia. Indones. J. Geogr., 42, 35-46.

[3]

Adji, T. N., 2012. Wet season hydrochemistry of Bribin Cave in Gunung Sewu Karst, Indonesia. Environ. Earth Sci., 67(6), 1563-1572.

[4]

Adji, T. N., Bahtiar, I. Y., 2016. Rainfall–discharge relationship and karst flow components analysis for karst aquifer characterization in Petoyan Spring, Java, Indonesia. Environ. Earth Sci., 75(9), 735.

[5]

Adji, T. N., Haryono, E, Fatchurohman, H, Oktama, R., 2017. Spatial and temporal hydrochemistry variations of karst water in Gunung Sewu, Java, Indonesia. Environ. Earth Sci., 76(20), 709.

[6]

Adji, T. N., Haryono, E, Fatchurohman, H, Oktama, R., 2016. Diffuse flow characteristics and their relation to hydrochemistry conditions in the Petoyan Spring, Gunungsewu Karst, Java, Indonesia. Geosci. J., 20(3), 381-390.

[7]

Adji, T. N., Haryono, E, Mujib, A, Fatchurohman, H, Bahtiar, I. Y., 2019. Assessment of aquifer karstification degree in some karst sites on Java Island, Indonesia. Carbonates Evaporites 34(1), 53-66.

[8]

Agniy, R. F., 2016. Kajian Hidrogeologi Karst Sistem Gua Pindul, Kecamatan Karangmojo, Kabupaten Gunungkidul. B.Sc, Thesis, Universitas Gadjah Mada, Yogyakarta (in Indonesia)

[9]

Balazs, D. 1968. Karst Regions in Indonesia. Karszt-Es Barlangkutatas, Budapest, pp.3-61.

[10]

Beynen, P. E., 2011. Karst Management. Springer, Dordrecht

[11]

Briassoulis, H., 2020. Analysis of Land Use Change: Theoretical and Modeling Analysis of Land Use Change: Theoretical and Modeling Approaches. (2nd ed.), WVU Research Repository, Lesvos

[12]

Brunsch, A, Adji, T, Daniel, S, Ikhwan, M, Oberle, P, Nestmann, F. 2011. Hydrological assessment of a karst area in Southern Java with respect to climate phenomena. Asian Trans-Disciplinary Karst Conference. Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, pp.55-68.

[13]

Cahyadi, A, Riyanto, I. A., Adji, T. N., Haryono, E, Widyastuti, M, Aji, A. P. K., 2021. Temporal variations in the water quality of beton spring, Gunungsewu karst area, Indonesia. IOP Conference Series: Earth and Environmental Science, 896, IOP Publishing, Article 012014

[14]

Cahyadi, A, Riyanto, I. A., Adji, T. N., Tivianton, T. A., Agniy, R. F., Ramadhan, F, Naufal, M, Saputro, T. C., 2018. Hidrostratigrafi dan dampaknya pada kemunculan mataair di sub-sistem panggang. Kawasan Karst Gunungsewu, Kabupaten Gunungkidul (Eds.), Seminar Nasional Geografi II, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta (in Indonesia)

[15]

Carvalho Jr, O. A., Guimarães, R. F., Montgomery, D. R., Gillespie, A. R., Gomes, R. A. T., Silva, N. C., 2013. Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí Group, Brazil. Remote Sens., 6(1), 330-351.

[16]

Crutzen, P. J., Stoermer, E. F., 2000. The “Anthropocene”. Glob. Change Newsl., 41, 17-18.

[17]

Day, M. J., 1978. The Morphology of Tropical Mumid Karst with Particular Reference to the Caribbean and Central America. Ph.D, Thesis, University of Oxford, Oxford

[18]

Doerfliger, N, Jeannin, P. Y., Zwahlen, F., 1999. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol., 39(2), 165-176.

[19]

Eiche, E, Hochschild, M, Haryono, E, Neumann, T., 2016. Characterization of recharge and flow behaviour of different water sources in Gunung Kidul and its impact on water quality based on hydrochemical and physico-chemical monitoring. Appl. Water Sci., 6(3), 293-307.

[20]

Endarto, R, Gunawan, T, Haryono, E., 2015. Kajian kerusakan lingkungan karst sebagai dasar pelestarian sumberdaya air (Kasus di DAS Bribin hulu Kabupaten Gunungkidul Daerah Istimewa Yogyakarta). Maj. Geogr. Indones., 29(1), 51-59.

[21]

Fenart, P, Cat, N. N., Drogue, C, van Canh, D, Pistre, S., 1999. Influence of tectonics and neotectonics on the morphogenesis of the peak karst of Halong Bay, Vietnam. Geodin. Acta 12(3–4), 193-200.

[22]

Fleury, S., 2009. Land Use Policy and Practice on Karst Terrains: Living on Limestone. Springer, Dordrecht

[23]

Ford, D, Williams, P., 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons Ltd, West Sussex

[24]

Goldscheider, N., 2005. Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany. Hydrogeol. J., 13(4), 555-564.

[25]

Goldscheider, N, Chen, Z, Auler, A. S., Bakalowicz, M, Broda, S, Drew, D, Hartmann, J, Jiang, G, Moosdorf, N, Stevanovic, Z, Veni, G, De, C. Z., 2020. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J., 28, 1661-1677.

[26]

Haryono, E., 2011. Introduction to Gunungsewu Karst: Asian trans-disciplinary karst conference field guide. INA-Rxiv, Yogyakarta. https://doi.org/10.31227/osf.io/7w2sh(accesed 8 May 2022).

[27]

Haryono, E., 2000. Some properties of epikarst drainage system in Gunungkidul Regency, Yogyakarta, Indonesia. Indones. J. Geogr., 32, 75-86.

[28]

Haryono, E, Day, M., 2004. Landform differentiation within the Gunung Kidul kegel karst, Java, Indonesia. J. Cave Karst Stud., 66, 62-69.

[29]

Haryono, E., Nurcahyo, A.D., Gunawan, T., Purwanto, T.H., 2005. Underground river network modelling from lineaments and fracture traces by means of remote sensing and geographic information system. In: Stevanovic, Z., Milanovic, P. (Eds.), Water Resource and Environmental Problem in Karst. National Committee of IAH. Serbia Montenegro, Belgrade.

[30]

Haryono, E, Trijuni Putro, S., 2017. Polygonal karst morphology of Karangbolong Area, Java-Indonesia. Acta Carsologica 46(1), 63-72.

[31]

Haryono, E, Widartono, B. S., Lukito, H, Kusumayuda, S. B., 2016. A comparison of lineament and fracture trace extraction from LANDSAT ETM+ panchromatic band and panchromatic aerial photograph in Gunungsewu karst area, Java-Indonesia. IOP Conf. Ser. Earth Environ. Sci., 47(1), 012026.

[32]

Hayati, M. A. M., 2018. Kajian Kerentanan Spesifik Airtanah Terhadap Kontaminan Nitrat Di Daerah Tangkapan Air Pindul. B.Sc, Thesis, Universitas Gadjah Mada, Yogyakart Karangmojo  (in Indonesia)

[33]

Huang, W, Deng, C, Day, M. J., 2014. Differentiating tower karst (fenglin) and cockpit karst (fengcong) using DEM contour, slope, and centroid. Environ. Earth Sci., 72(2), 407-416.

[34]

Hung, N. G., Batelaan, O, Tam, V. T., Lagrou, D., 2002. Remote sensing and GIS-based analysis of cave development in the Suoimuoi catchment (Son La – NW Vietnam). J. Cave Karst Stud., 64(1), 23-33.

[35]

Kresic, N., 1995. Remote sensing of tectonic fabric controlling groundwater flow in Dinaric karst. Remote Sens. Environ., 53(2), 85-90.

[36]

Kusumayudha, S., 2005. Hidrogeologi Karst Dan Geometri Fraktal Di Daerah Gunungsewu. (1st ed.), Adicita Karya Nusa, Yogyakarta (in Indonesia)

[37]

Lestari, Y., 2013. Studi Neraca Air Dan Kualitas Air Pada Sistem Hidrologi Mataair Beton Untuk Konservasi Sumberdaya Air di Kecamatan Ponjong Kabupaten Gunungkidul. M.Sc, Thesis, Universitas Gadjah Mada, Yogykarta (in Indonesia)

[38]

Lewis, W. V., Sweeting, M. M., 1959. The karstlands of Jamaica: Cockpits or rounded hills?. Geogr. J., 125(2), 289.

[39]

Liang, F, Xu, B., 2014. Discrimination of tower-, cockpit-, and non-karst landforms in Guilin, Southern China, based on morphometric characteristics. Geomorphology 204, 42-48.

[40]

Long, N. T., Dac Trien, N., 2019. The tropical limestone forest ecosystem: A review of distinctive characteristics. J. Sci. Technol. Hung Vuong Univ., 17(4), 44-50.

[41]

Lyew-Ayee, P, Viles, H. A., Tucker, G. E., 2007. The use of GIS-based digital morphometric techniques in the study of cockpit karst. Earth Surf. Process. Landf., 32(2), 165-179.

[42]

Marín, A. I., Andreo, B, Mudarra, M., 2015. Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests. Sci. Total Environ., 532, 435-446.

[43]

Naufal, M., 2019. Karakterisasi Perkembangan Akuifer Karst Gunung Sewu melalui Analisis Master Recession Curve (MRC) (Studi Kasus Mataair Guntur dan Mataair Beton Kabupaten Gunungkidul). B.Sc, Thesis, Universitas Gadjah Mada, Yogyakarta (in Indonesia)

[44]

Nestmann, F, Oberle, P, Ikhwan, M, Stoffel, D., 2013. Development of underground water extraction system for karst regions with adapted technologies and operating system – Pilot plant in Java, Indonesia. Procedia Eng., 54, 58-68.

[45]

Nugroho, U. C., Tjahjaningsih, A., 2017. Lineament density information extraction using DEM SRTM data to predict the mineral potential zones. Int. J. Remote Sens. Earth Sci., 13(1), 67-74.

[46]

Nurkholis, A, Adji, T. N., Haryono, E, Cahyadi, A, Suprayogi, S., 2019. Time series analysis application for karst aquifer characterisation in Pindul Cave karst system, Indonesia. Acta Carsologica 48(1), 69-84.

[47]

Pannekoek, A. J., 1949. Outline of the Geomorphology of Java. E.J. Brill, Leiden

[48]

Pardo-Igúzquiza, E, Durán, J. J., Dowd, P. A., 2013. Automatic detection and delineation of karst terrain depressions and its application in geomorphological mapping and morphometric analysis. Acta Carsologica 42(1), 17-24.

[49]

Plagnes, V, Bakalowicz, M, Plagnes, V, Bakalowicz, M., 2001. The protection of karst water resources: The example of the Larzac karst plateau (south of France). Environ. Geol., 40, 349-358.

[50]

Pradipa, H., 2018. Variabilitas Temporal Bakteri Coliform Sebagai Indikator Pencemaran Pada Sistem Sungai Permukaan Daerah Tangkapan Air Pindul. B.Sc, Thesis, Universitas Gadjah Mada, Yogyakarta (in Indonesia)

[51]

Ruddiman, W. F., 2013. The anthropocene. Annu. Rev. Earth Planet Sci., 41, 45-68.

[52]

Rusmanto, T, Taftazani, A., 2008. Studi parameter air dan radioaktivitas alam perairan sungai Seropan Gunungkidul. GANENDRA 11(1), 37-44.

[53]

Rusmanto, T, Taftazani, A., 2005. Analisis sifat fisika, kia, biologi, dan raioaktivitas sampel air Sungai Bribin Gunungkidul-Yogyakarta. Prosiding PPI-PDIPTN, Puslitbang Teknologi Maju-BATAN, Yogyakarta (in Indonesia)

[54]

Salomon, J. N., 2011. A mysterious karst: The “chocolate hills” of Bohol (Philippines). Acta Carsologica 40(3), 429-444.

[55]

Siart, C, Hecht, S, Holzhauer, I, Altherr, R, Meyer, H. P., Schukraft, G, Eitel, B, Bubenzer, O, Panagiotopoulos, D., 2010. Karst depressions as geoarchaeological archives: The palaeoenvironmental reconstruction of Zominthos (Central Crete), based on geophysical prospection, sedimentological investigations and GIS. Quat. Int., 216(1–2), 75-92.

[56]

Surono, Toha, B., Sudarno, I., Wiryosujono, S., 1992. Peta Geologi Lembar Surakarta- Giritontro, Jawa. Pusat Penelitian dan Pengembangan Geologi, Bandung, Indonesia. https://geologi.esdm.go.id/geomap/pages/preview/peta-geologi-lembar-yogyakartajawa .

[57]

Sweeting, M. M., 1973. Karst landforms and limestones. S. Afr. Geogr. J., 55(1), 81-88.

[58]

Sweeting, M. M., 1958. The karstlands of Jamaica. Geogr. J., 124(2), 184.

[59]

Telbisz, T, Dragušica, H, Nagy, B., 2009. Doline morphometric analysis and karst morphology of Biokovo Mt (Croatia) based on field observations and digital terrain analysis. Hrvatski Geografski Glasnik 71(2), 2-22.

[60]

Theilen-Willige, B, Malek, H. A., Charif, A, el Bchari, F, Chaïbi, M., 2014. Remote sensing and GIS contribution to the investigation of karst landscapes in NW-Morocco. Geosciences 4(2), 50-72.

[61]

Urich, P. B., Day, M. J., Lynagh, F., 2001. Policy and practice in karst landscape protection: Bohol, the Philippines. Geogr. J., 167(4), 305-323.

[62]

van Bemmelen, R., 1949. The Geology of Indonesia: Vol. 1A-General Geology of Indonesia and Adjacent Archipelagoes. Government Printing Office, Den Haag

[63]

Veress, M., 2016. Covered Karst, Springer Geology. Springer, Dordrecht

[64]

Vías, J. M., Andreo, B, Perles, M. J., Carrasco, F, Vadillo, I, Jiménez, P., 2006. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J., 14(6), 912-925.

[65]

White, W. B., 1969. Conceptual models for carbonate aquifers. Groundwater 7(3), 15-21.

[66]

Widyastuti, M., 2014. Kajian Kerentanan Airtanah Terhadap Pencemaran Di Daerah Karst Gunungsewu (studi di Daerah Aliran Sungai Bawah Tanah Bribin Kabupaten Gunungkidul Dan Wonogiri). Ph.D, Thesis, Universitas Gadjah Mada, Yogyakarta (in Indonesia)

[67]

Widyastuti, M, Irshabdillah, M. R., Firizqi, F., 2020. Water quality analysis of bribin underground river as the source of raw water for a government-owned water company (pdam) in the bribin management unit, Gunungkidul regency-Indonesia. IOP Conference Series: Earth and Environmental Science, 451, IOP Publishing, Article 012065

[68]

Widyastuti, M, Sudarmadji, S, Sutikno, S, Hendrayana, H., 2012. Physical water quality response to rainfall of Beton karst spring at Gunungkidul Regency-Yogyakarta, Indonesia. Indones. J. Geogr., 44(1), 38-46.

[69]

Williams, P. W., 1972. Morphometric analysis of polygonal karst in New Guinea. Geol. Soc. Am. Bull., 83(3), 761-796.

[70]

Zhao, Y, Zhang, Y, Li, X., 2017. Evolution and spatial variation of land use conflict intensity in Qian-Gui karst mountainous areas. Carsologica Sin., 36(4), 492-500.

PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

/