Evolution of gully erosion and susceptibility factors in the urban watershed of the Kimemi (Butembo/DR Congo)

Jonathan Ahadi Mahamba , Gloire Mulondi Kayitoghera , Moïse Kapiri Musubao , Géant Basimine Chuma , Walere Muhindo Sahani

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (3) : 268 -279.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (3) :268 -279. DOI: 10.1016/j.geosus.2023.07.001
Research Article
review-article

Evolution of gully erosion and susceptibility factors in the urban watershed of the Kimemi (Butembo/DR Congo)

Author information +
History +
PDF

Abstract

Gully erosion is one of the most intense landscape degradation mechanisms in areas with varying environmental characteristics. Both natural and anthropogenic factors affect the gullying process. Reliable documentation of these processes in tropical African cities is scarce. This study assessed the gully erosion dynamic and the susceptibility factors in the urban watershed of Kimemi in eastern Democratic Republic of Congo (DRC). Data were obtained through a combination of fieldwork and digitization of very high spatial resolution images from Google Earth (from 2011 to 2021). The length, width, and area of large gullies (width ≥ 5 m) were measured for each year of the study. A logistic regression model (LRM) was also used to investigate the influence of both physical and anthropogenic factors on gully susceptibility. The results revealed that the number of gullies has increased from 36 to 61 during the last decade. The gully mean length of 63.9 ± 61.1 m, 129.3 ± 104.9 m, and 174.7 ± 153.8 m were obtained for the years 2011, 2015, and 2021 respectively. The average density of gully network for the study period was 0.12 km/km², while the degraded land was ∼1.3 and ∼1.1 ha/year for 2011–2015 and 2015–2021 for the entire watershed. The significant changes in morphometric parameters (length, width, area) were found only in the bare land and building land uses. A strong and positive relationship between the length (m) and the area (ha) was found. Furthermore, the susceptibility of gullying was significantly influenced by the slope, stream power index (SPI), distance to roads and rivers, land use and land cover (LULC), and normalized difference vegetation index (NDVI). This means the areas located in the bare land and building or close to roads and/or streams are more likely to be gullied. The findings emphasize the impact of urbanization on gully erosion in the Kimemi watershed, highlighting the importance of informed land management decisions with a close attention to anthropogenic factors.

Keywords

Soil erosion / Gully susceptibility / LRM / Urbanization / Watershed / Butembo

Cite this article

Download citation ▾
Jonathan Ahadi Mahamba, Gloire Mulondi Kayitoghera, Moïse Kapiri Musubao, Géant Basimine Chuma, Walere Muhindo Sahani. Evolution of gully erosion and susceptibility factors in the urban watershed of the Kimemi (Butembo/DR Congo). Geography and Sustainability, 2023, 4(3): 268-279 DOI:10.1016/j.geosus.2023.07.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The author wishes to acknowledge all anonymous reviewers.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.07.001.

References

[1]

Adediji, A, Jeje, L. K., Ibitoye, M. O., 2013. Urban development and informal drainage patterns: Gully dynamics in Southwestern Nigeria. Appl. Geogr., 40, 90-102.

[2]

Anderson, R. L., Rowntree, K. M., Le Roux, J. J., 2021. An interrogation of research on the influence of rainfall on gully erosion. Catena 206, 105482.

[3]

Angel, S, Parent, J, Civco, D. L., Blei, A, Potere, D., 2011. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plann., 75, 53-107.

[4]

Arabameri, A, Rezaie, F, Pal, S. C., Cerda, A, Saha, A, Chakrabortty, R, Lee, S., 2021. Modelling of piping collapses and gully headcut landforms: Evaluating topographic variables from different types of DEM. Geosci. Front., 12(6), 101230.

[5]

Bartley, R, Poesen, J, Wilkinson, S, Vanmaercke, M., 2020. A review of the magnitude and response times for sediment yield reductions following the rehabilitation of gullied landscapes. Earth Surf. Process. Landforms 45(13), 3250-3279.

[6]

Bayumbasire, C, Bakulikira, J. P., Nduwimana, A, Mubalama, L, Wand'arhasima, L, Bagalwa, L., 2021. Contribution to the Study of urban growth and the evolution of the environmental situation. Case of the city of Bukavu, South Kivu, Democratic Republic of Congo. Int. J. Progress. Sci. Technol., 27(2), 190-202.

[7]

Belayneh, L, Bantider, A, Moges, A., 2014. Road construction and gully development in Hadero Tunto - Durgi Road Project, Southern Ethiopia. Ethiop. J. Environ. Stud. Manage., 7(1), 720-730.

[8]

Belayneh, M, Yirgu, T, Tsegaye, D., 2020. Current extent, temporal trends, and rates of gully erosion in the Gumara watershed, Northwestern Ethiopia. Glob. Ecol. Conserv., 24, e01255.

[9]

Boardman, J., 2016. The value of Google Earth™ for erosion mapping. Catena 143, 123-127.

[10]

Boughalem, M, Ienciu, A, Toure, A. O., Meghraoui, M, Regagba, M, Souidi, Z, Hamimed, A., 2020. Study of soil water erosion risk in the Tlemcen region, Algérie. Geo-Eco-Trop 44, 595-607.

[11]

Busnelli, J, Ldel Neder, V, Sayago, J. M., 2006. Temporal dynamics of soil erosion and rainfall erosivity as geoindicators of land degradation in Northwestern Argentina. Quat. Int., 158(1), 147-161.

[12]

Castillo, C, Gómez, J. A., 2016. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev., 160, 300-319.

[13]

Chuma, G. B., Mondo, J. M., Ndeko, A. B., Mugumaarhahama, Y, Bagula, E. M., Blaise, M, Valérie, M, Jacques, K, Karume, K, Mushagalusa, G. N., 2021. Forest cover affects gully expansion at the tropical watershed scale: Case study of Luzinzi in Eastern DR Congo. Trees For. People 4, 100083.

[14]

Conoscenti, C, Angileri, S, Cappadonia, C, Rotigliano, E, Agnesi, V, Märker, M., 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 204, 399-411.

[15]

Conoscenti, C, Rotigliano, E., 2020. Predicting gully occurrence at watershed scale: Comparing topographic indices and multivariate statistical models. Geomorphology 359, 107123.

[16]

Cotler, H, Ortega-Larrocea, M. P., 2006. Effects of land use on soil erosion in a tropical dry forest ecosystem, Chamela watershed, Mexico. Catena 65(2), 107-117.

[17]

Croke, J, Mockler, S., 2001. Gully initiation and road-to-stream linkage in a forested catchment southeastern Australia. Earth Surf. Process. Landforms 26(2), 205-217.

[18]

De Geeter, S, Verstraeten, G, Poesen, J, Campforts, B, Vanmaercke, M., 2023. A data driven gully head susceptibility map of Africa at 30 m resolution. Environ. Res., 224, 115573.

[19]

Dinov, I. D., 2018. Data Science and Predictive Analytics: Biomedical and Health Applications using R. Springer International Publishing, Cham

[20]

Frankl, A, Poesen, J, Deckers, J, Haile, M, Nyssen, J., 2012. Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology 173, 185-195.

[21]

Frankl, A, Zwertvaegher, A, Poesen, J, Nyssen, J., 2013. Transferring google earth observations to GIS-software: Example from gully erosion study. Int. J. Digit. Earth 6(2), 196-201.

[22]

Frankl, A, Poesen, J, Haile, M, Deckers, J, Nyssen, J., 2013. Quantifying long-term changes in gully networks and volumes in dryland environments: The case of Northern Ethiopia. Geomorphology 201, 254-263.

[23]

Gayen, A, Pourghasemi, H. R., Saha, S, Keesstra, S, Bai, S., 2019. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Sci. Total Environ., 668, 124-138.

[24]

Golosov, V, Yermolaev, O, Rysin, I, Vanmaercke, M, Medvedeva, R, Zaytseva, M., 2018. Mapping and spatial-temporal assessment of gully density in the Middle Volga region, Russia. Earth Surf. Process. Landforms 43(13), 2818-2834.

[25]

Gudino-Elizondo, N, Biggs, T. W., Bingner, R. L., Yuan, Y, Langendoen, E. J., Taniguchi, K. T., Kretzschmar, T, Taguas, E. V., Liden, D., 2018. Modelling ephemeral gully erosion from unpaved urban roads: Equifinality and implications for scenario analysis. Geosciences 8(4), 137.

[26]

Gutiérrez, Á. G, Schnabel, S, Contador, F. L., 2009. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad. Dev., 20(5), 535-550.

[27]

Hembram, T. K., Paul, G. C., Saha, S., 2020. Modelling of gully erosion risk using new ensemble of conditional probability and index of entropy in Jainti River basin of Chotanagpur Plateau Fringe Area, India. Appl. Geomat., 12, 337-360.

[28]

Ilombe, M. G., Landu, E. L., Imwangana, F. M., Nzolang, C, Nandefo, W, Poesen, J, Bielders, C, Dewitte, O, Vanmaercke, M., 2021. Quantifying the impacts of urban gullying at the scale of the Democratic Republic of Congo. EGU General Assembly 2021, pp. EGU21-E8831. doi: 10.5194/egusphere-egu21-8831.

[29]

Junior, O. C., Guimaraes, R, Freitas, L, Gomes-Loebmann, D, Gomes, R. A., Martins, E, Montgomery, D. R., 2010. Urbanization impacts upon catchment hydrology and gully development using mutli-temporal digital elevation data analysis. Earth Surf. Process. Landforms 35(5), 611-617.

[30]

Kakembo, V, Xanga, W. W., Rowntree, K., 2009. Topographic thresholds in gully development on the hillslopes of communal areas in Ngqushwa Local Municipality, Eastern Cape, South Africa. Geomorphology 110, 188-194.

[31]

Karolien, V, Anton, V. R., Maarten, L, Eria, S, Paul, M., 2012. Landscape and urban planning urban growth of Kampala, Uganda: Pattern analysis and scenario development. Lands. Urban Plan., 106(2), 199-206.

[32]

Kassambara, A., 2020. ggpubr: “ggplot2 ” based publication ready plots. R package version 0.4.0. https://CRAN.R-project.org/package = ggpubr.

[33]

Kayembe, W. K. M., Wolff, E., 2015. Contribution of the geographical approach to the study of the human factors of intra-urban gully erosion in Kinshasa (D.R. Congo). Geo-Eco-Trop 39(1), 119-138.

[34]

Kitakya, A. P., 2007. Interactions between land management and the local economy in the Butembo region, North Kivu, Democratic Republic of Congo. PhD. thesis, Université Catholique de Louvain, Louvain-la-Neuve, p. 289

[35]

Lopanza, M. J., Hamadi, H, Corneille, L. T., 2020. Urban erosion in Kinshasa: Causes, consequences and prospects. Eur. J. Soc. Sci. Stud., 5, 147-169.

[36]

Lüdecke, D., 2018. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw., 3(26), 772.

[37]

Lutete, L. E., Ilombe, M. G., Makanzu, I. F., Bielders, C, Dewitte, O, Poesen, J, Hubert, A, Vanmaercke, M., 2023. Effectiveness of measures aiming to stabilize urban gullies in tropical cities: Results from field surveys across D.R. Congo. Int. Soil Water Conserv. Res., 11, 14-29.

[38]

Mafikiri Tsongo, A., 2021. Governance and Development Actors: Butembo Region, DR Congo. L’Harmattan, Paris

[39]

Mahamba, J. A., Mulondi, G. K., Kapiri, M. M., Sahani, W. M., 2022. Land use and land cover dynamics in the urban watershed of Kimemi River (Butembo/D.R.C). J. Geosci. Environ. Prot., 10(6), 204-219.

[40]

Majhi, A, Nyssen, J, Verdoodt, A., 2021. What is the best technique to estimate topographic thresholds of gully erosion? Insights from a case study on the permanent gullies of Rarh Plain, India. Geomorphology 375, 107547.

[41]

Makanzu Imwangana, F, Vandecasteele, I, Trefois, P, Ozer, P, Moeyersons, J., 2015. The origin and control of mega-gullies in Kinshasa (D.R.Congo). Catena 125, 38-49.

[42]

Makanzu Imwangana, F, Dewitte, O, Ntombi, M, Moeyersons, J., 2014. Topographic and road control of mega-gullies in Kinshasa (DR Congo). Geomorphology 217, 131-139.

[43]

McInnes, J, Vigiak, O, Roberts, A. M. 2011. Using Google Earth to map gully extent in the West Gippsland region (Victoria, Australia). F. Chan, D. Marinova, R.S. Anderssen (Eds.), MODSIM2011, 19th International Congress on Modelling and Simulation, Perth, Australia, pp.3370-3376.

[44]

McKight, P.E., Najab, J., 2010. Kruskal-Wallis test. In: Weiner, B.I., Craighead, W.E. (Eds.), The Corsini Encyclopedia of Psychology. John Wiley & Sons, Inc.

[45]

Menéndez-Duarte, R, Marquínez, J, Fernández-Menéndez, S, Santos, R., 2007. Incised channels and gully erosion in Northern Iberian Peninsula: Controls and geomorphic setting. Catena 71(2), 267-278.

[46]

Moeyersons, J, Byizigiro, V, Vandecasteele, I, Nkurunziza, D, Sahani, W, Nahimana, L, Lutumba, I, Trefois, P. 2015. Nature and extent of catastrophic erosion in the Kivu region, Congo (DRC). E. Roose (Ed.), Restoring Productivity of Tropical and Mediterranean Soils. Contribution to Agroecology, IRD, Montpellier, pp.34-45.

[47]

Mokarram, M, Zarei, A. R., 2021. Determining prone areas to gully erosion and the impact of land use change on it by using multiple-criteria decision-making algorithm in arid and semi-arid regions. Geoderma 403, 115379.

[48]

Mukandala, P. S., Menomavuya, L. G. 2021. Erodibility problems and land instabilities in the Wayimirya valley: Environment, geotechnics and tectonics. T. Rose, G. de Gelder, D. Fernández-Blanco, M.J. Sieber (Eds.), Proceedings of the 5th International Young Earth Scientists (YES) Congress “Rocking Earth’s Future”, German YES Chapter & GFZ German Research Centre for Geosciences, Berlin, Germany, pp.85-89.

[49]

Mutungu, K. T., Nzuzi, L. F., Modeste, K. M., Didie, Y. N., 2021. Urban growth and gully erosion in the city of Kikwit (Democratic Republic of Congo). Rev. Can. Géogr. Trop., 8(1), 26-30.

[50]

Nyssen, J, Poesen, J, Moeyersons, J, Luyten, E, Veyret-Picot, M, Deckers, J, Haile, M, Govers, G., 2002. Impact of road building on gully erosion risk: A case study from the Northern Ethiopian Highlands. Earth Surf. Process. Landf., 27(12), 1267-1283.

[51]

Phinzi, K, Holb, I, Szabó, S., 2021. Mapping permanent gullies in an agricultural area using satellite images: Efficacy of machine learning algorithms. Agronomy 11(2), 333.

[52]

Poesen, J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf., 43(1), 64-84.

[53]

Rahmati, O, Kalantari, Z, Ferreira, C. S., Chen, W, Soleimanpour, S. M., Kapović-Solomun, M, Seifollahi-Aghmiuni, S, Ghajarnia, N, Kazemi Kazemabady, N., 2022. Contribution of physical and anthropogenic factors to gully erosion initiation. Catena 210, 105925.

[54]

Razavi-termeh, S. V., Sadeghi-niaraki, A, Choi, S., 2020. Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomat. Nat. Hazards Risk 11, 821-845.

[55]

Ripley, B, Venables, B, Bates, D. M., Hornik, K, Gebhardt, A, Firth, D, Ripley, M. B., 2013. Package ‘MASS’. Cran R 538, 113-120.

[56]

Rodrigues, M. V. C., Guimarães, D. V., Galvão, R. B., Patrick, E, Fernandes, F., 2022. Urban watershed management prioritization using the rapid impact assessment matrix (RIAM-UWMAP), GIS and field survey. Environ. Impact Assess. Rev., 94, 106759.

[57]

Sahani, M., 2011. The urban and climatic context of hydrological risks in the city of Butembo (North Kivu/DRC). Ph.D Thesis, Université de Liège, Liège, p. 300

[58]

Sahani, M, Moeyersons, J, Vandecasteele, I, Trefois, P, Ozer, P., 2012. Evolution of rainfall characteristics in the urban area of Butembo (DRC) from 1957 to 2010. Geo-Eco-Trop 36, 121-136.

[59]

Sahani, M, Ozer, P, Moeyersons, J., 2014. 34

[60]

Samani, A. N., Ahmadi, H, Jafari, M, Boggs, G, Ghoddousi, J, Malekian, A., 2009. Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal Watershed). J. Asian Earth Sci., 35(2), 180-189.

[61]

R, Coreeam, T., 2021. R: A language and environment for statistical computing. Vienna, Austria.

[62]

Schloerke, B., Crowley, J., Cook, D., 2018. Package ‘GGally’. Ext. to ‘ggplot2.’See 713.

[63]

Seutloali, K. E., Beckedahl, H. R., Dube, T, Sibanda, M., 2016. An assessment of gully erosion along major armoured roads in south-eastern region of South Africa: A remote sensing and GIS approach. Geocarto Int., 31(2), 225-239.

[64]

Sheather, S., 2009. A Modern Approach to Regression with R. Springer, New York

[65]

Sidorchuk, A., 2006. Stages in gully evolution and self-organized criticality. Earth Surf. Process. Landforms 31(11), 1329-1344.

[66]

Sikuzani, Y. U., André, M, Mahy, G, Kaleba, S. C., Malaisse, F, Kankumbi, F. M., Bogaert, J. 2018. Landscape interpretation of the urbanization process in Lubumbashi (DR Congo): Dynamics of the spatial pattern and monitoring of ecological indicators between 2002 and 2008. J. Bogaert, G. Colinet, G. Mahy (Eds.), 2018. Anthropisation of Katangese Landscapes, Presses Universitaires de Liège – Agronomie-Gembloux, Gembloux, Belgique, pp.281-296.

[67]

Sow, S. A., 2020. Dynamic geomorphology: Systemic analysis of continental water morphodynamics by gully. Eur. Sci. J., 16(15), 78-98.

[68]

Tufféry, S., 2017. Predictive Modeling and Machine Learning With R. (2nd ed.), TECHNIP, Paris

[69]

Tumwesigye, S, Vanmaercke, M, Hemerijckx, L. M., Opio, A, Poesen, J, Twongyirwe, R, Van Rompaey, A., 2021. Spatial patterns of urbanisation in Sub-Saharan Africa: A case study of Uganda. Dev. South. Afr., 40, 1-21.

[70]

Vandeschrick, C., 2021. Average annual growth rate via a geometric formula: Always, sometimes, never?. Quetelet J., 9, 23-45.

[71]

Valentin, C, Poesen, J, Li, Y., 2005. Gully erosion: Impacts, factors and control. Catena 63, 132-153.

[72]

Vanmaercke, M, Panagos, P, Vanwalleghem, T, Hayas, A, Foerster, S, Borrelli, P, Rossi, M, Torri, D, Casali, J, Borselli, L, Vigiak, O, Maerker, M, Haregeweyn, N, De Geeter, S, Conoscenti, C, Zg, W, Bielders, C, Cerd, A, Le, C, Radoane, M, Risti, R, Kert, A, Rousseva, S, Stankoviansky, M, Stolte, J, Stolz, C, Bartley, R, Wilkinson, S, Jarihani, B, Poesen, J., 2021. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev., 218, 103637.

[73]

Vanmaercke, M, Poesen, J, Van Mele, B, Demuzere, M, Bruynseels, A, Golosov, V, Bezerra, J. F. R., Bolysov, S, Dvinskih, A, Frankl, A, Fuseina, Y, Guerra, A. J. T., Haregeweyn, N, Ionita, I, Makanzu Imwangana, F, Moeyersons, J, Moshe, I, Nazari Samani, A, Niacsu, L, Nyssen, J, Otsuki, Y, Radoane, M, Rysin, I, Ryzhov, Y. V., Yermolaev, O., 2016. How fast do gully headcuts retreat?. Earth-Sci. Rev., 154, 336-355.

[74]

Vrieling, A., 2006. Satellite remote sensing for water erosion assessment: A review. Catena 65(1), 2-18.

[75]

Vyakuno, K., 2006. Anthropogenic Pressure and Rational Management of the Lubero highlands in D.R.C. Relations between Society and the Physical Environment in an Equatorial Mountain. Université Toulouse II – LE MIRAIL, Toulouse, p. 489

[76]

Wickham, H., 2016. ggplot2: Elegant Graphics For Data Analysis. (2nd ed.), Springer International Publishing, Houston, Texas, USA

[77]

Yibeltal, M, Tsunekawa, A, Haregeweyn, N, Adgo, E, Meshesha, D. T., Masunaga, T, Tsubo, M, Billi, P, Ebabu, K, Fenta, A. A., Berihun, M. L., 2019. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments. Geomorphology 341, 15-27.

[78]

Zabihi, M, Mirchooli, F, Motevalli, A, Khaledi Darvishan, A, Pourghasemi, H. R., Zakeri, M. A., Sadighi, F., 2018. Spatial modelling of gully erosion in Mazandaran Province, Northern Iran. Catena 161, 1-13.

[79]

Zakerinejad, R, Maerker, M., 2015. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan Basin, southwestern Iran. Nat. Hazards 79(1), 25-50.

[80]

Zolezzi, G, Bezzi, M, Spada, D, Bozzarelli, E., 2018. Urban gully erosion in sub-Saharan Africa: A case study from Uganda. Land Degrad. Dev., 29(3), 849-859.

PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

/