Dynamics and controls of ecosystem multiserviceability across the Qingzang Plateau

Ruowei Li , Guodong Han , Jian Sun , Tiancai Zhou , Junhe Chen , Wen He , Yi Wang

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) : 318 -328.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) :318 -328. DOI: 10.1016/j.geosus.2023.06.004
Research Article
review-article

Dynamics and controls of ecosystem multiserviceability across the Qingzang Plateau

Author information +
History +
PDF

Abstract

Ecosystem multiserviceability (EMS), a comprehensive and significant ecological indicator, reflects the capacity of ecosystems to offer multiple services concurrently. Intensified climate change and human activity are continuously altering ecosystem functions, services, and EMSs. However, numerous studies have only focused on one or a few ecosystem services, rarely taking into account spatial-temporal distribution and drivers of EMS on behalf of different agencies. We calculated EMS including pastoralist (PA), environmental protection agency (EPA), biodiversity conservation agency (BCA), and climate change mitigation agency (CCMA) using grassland production, habitat quality, water conservation, and carbon sequestration. Then, the effects of geographical features, climate factors, and human activities on spatial-temporal patterns of EMS were explored. The result indicated that EMS showed a decreasing tendency from the southeast to northwest on the Qingzang Plateau (QZP). Meanwhile, there were no obvious fluctuations in four simulated scenarios (PA, EPA, BCA and CCMA) among different vegetation types during 2000 to 2015. Notably, EMS of all simulated scenarios decreased in the alpine steppe ecosystem, but negligible changes were found in other ecosystems from 2015 to 2020. Moreover, the relative importance of precipitation in annual mean value (from 2000 to 2020) of PA, EPA, BCA and CCMA were 0.13, 0.11, 0.30 and 0.19, respectively. Overall, precipitation played the dominant role on the dynamics of EMS, followed by elevation and human footprint. Our findings highlighted that understanding the patterns and drivers of EMS could provide a reference for the regional management and maintenance of ecosystem stability on QZP.

Keywords

Ecosystem multiserviceability / Qingzang Plateau / Spatial-temporal patterns / Drivers

Cite this article

Download citation ▾
Ruowei Li, Guodong Han, Jian Sun, Tiancai Zhou, Junhe Chen, Wen He, Yi Wang. Dynamics and controls of ecosystem multiserviceability across the Qingzang Plateau. Geography and Sustainability, 2023, 4(4): 318-328 DOI:10.1016/j.geosus.2023.06.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 41871040), the Second Tibetan Plateau Scientific Expedition and Research (Grant No. 2019QZKK0405), and the Joint Research Project of Three-River-Resource National Park Funded by the Chinese Academy of Sciences and Qinghai Provincial People's Government (Grant No. LHZX-2020–08).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.geosus.2023.06.004.

References

[1]

Bai, Y, Ochuodho, T. O., Yang, J., 2019. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic., 102, 51-64.

[2]

Bardgett, R. D., Bullock, J. M., Lavorel, S, Manning, P, Schaffner, U, Ostle, N, Chomel, M, Durigan, G, Fry, E. L., Johnson, D, Lavallee, J. M., Le Provost, G, Luo, S, Png, K, Sankaran, M, Hou, X, Zhou, H, Ma, L, Ren, W, Li, X, Ding, Y, Li, Y, Shi, H., 2021. Combatting global grassland degradation. Nat. Rev. Earth Environ., 2, 720-735.

[3]

Bellarby, J, Tirado, R, Leip, A, Weiss, F, Lesschen, J. P., Smith, P., 2013. Livestock greenhouse gas emissions and mitigation potential in Europe. Glob. Change Biol., 19, 3-18.

[4]

Bennett, D. E., Gosnell, H., 2015. Integrating multiple perspectives on payments for ecosystem services through a social-ecological systems framework. Ecol. Econ., 116, 172-181.

[5]

Brauman, K. A., Daily, G. C., Duarte, T. K., Mooney, H. A., 2007. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour., 32, 67-98.

[6]

Butchart, S. H. M., Walpole, M, Collen, B, van Strien, A, Scharlemann, J. P. W., Baillie, J. E. M., Bomhard, B, Brown, C, Bruno, J, Carpenter, K. E., Carr, G. M., Chanson, J, Chenery, A. M., Csirke, J, Davidson, N. C., Dentener, F, Foster, M, Galli, A, Galloway, J. N., Genovesi, P, Gregory, R. D., Hockings, M, Kapos, V, J-Lamarque, F, Leverington, F, Loh, J, McGeoch, M. A., McRae, L, Minasyan, A, Hernández Morcillo, M, Oldfield, T. E., Pauly, D, Quader, S, Revenga, C, Sauer, J. R., Skolnik, B, Spear, D, Stanwell-Smith, D, Stuart, S. N., Symes, A, Tierney, M, Tyrrell, T. D., Vié, J. C., Watson, R., 2010. Global biodiversity: Indicators of recent declines. Science 328(5982), 1164-1168.

[7]

Carpenter, S. R., DeFries, R, Dietz, T, Mooney, H. A., Polasky, S, Reid, W. V., Scholes, R. J., 2006. Millennium ecosystem assessment: Research needs. Science 314(5797), 257-258.

[8]

Cavanagh, R. D., Melbourne-Thomas, J, Grant, S. M., Barnes, D, Hill, S. L., 2021. Future risk for Southern Ocean ecosystem services under climate change. Front. Mar. Sci., 7, 615214.

[9]

Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C., Daily, G. C., 2006. Conservation planning for ecosystem services. PLoS Biol., 4, 2138-2152.

[10]

Chen, B., Zhang, X., Tao, J., Wu, J., Wang, J., Shi, P., Zhang, Y., Yu, C., 2014. The impact of climate change and anthropogenic activities on alpine grassland over the, Qinghai-Tibetlateau. Agric. For. Meteorol. 189/190, P, 11–18.

[11]

Chen, S, Guo, B, Yang, F, Han, B, Fan, Y, Yang, X, He, T, Liu, Y, Yang, W., 2020. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015. J. Nat. Resour., 35, 2511-2527.

[12]

Chen, F, Ding, L, Piao, S, Zhou, T, Xu, B, Yao, T, Li, X., 2021. The Tibetan Plateau as the engine for Asian environmental change: The Tibetan Plateau earth system research into a new era. Sci. Bull., 66, 1263-1266.

[13]

Chen, J, Wang, Y, Sun, J, Liang, E, Shen, M, Yang, B, Jia, X, Zhang, J., 2021. Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet Plateau. Glob. Ecol. Conserv., 32, e01886.

[14]

Costanza, R, D'Arge, R, de Groot, R, Farber, S, Grasso, M, Hannon, B, Limburg, K, Naeem, S, Oneill, R. V., Paruelo, J, Raskin, R. G., Sutton, P, van den Belt, M., 1997. The value of the world's ecosystem services and natural capital. Nature 387(6630), 253-260.

[15]

Cui, Y, Li, S, Yu, C, Tian, Y, Zhong, Z, Wu, J., 2017. Effects of the award-allowance payment policy for natural grassland conservation on income of farmer and herdsman families in Tibet. Acta Pratac. Sin., 26, 22-32.

[16]

Deutsch, L, Gräslund, S, Folke, C, Troell, M, Huitric, M, Kautsky, N, Lebel, L., 2007. Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Glob. Environ. Change 17, 238-249.

[17]

Fang, J, Yang, Y, Ma, W, Mohammat, A, Shen, H., 2010. Ecosystem carbon stocks and their changes in China's grasslands. Sci. China-Life Sci., 53, 757-765.

[18]

Fu, B, Ouyang, Z, Shi, P, Fan, J, Wang, X, Zheng, H, Zhao, W, Wu, F., 2021. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci., 36, 1298-1306.

[19]

Gallai, N, J-Salles, M, Settele, J, Vaissiere, B. E., 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ., 68, 810-821.

[20]

Gao, W, Zheng, C, Liu, X, Lu, Y, Chen, Y, Wei, Y, Ma, Y., 2022. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic., 137, 108745.

[21]

Hernández-Blanco, M, Costanza, R, Anderson, S, Kubiszewski, I, Sutton, P., 2020. Future scenarios for the value of ecosystem services in Latin America and the Caribbean to 2050. Curr. Res. Environ. Sustain., 2, 100008.

[22]

Hernández-Blanco, M, Costanza, R, Chen, H, DeGroot, D, Jarvis, D, Kubiszewski, I, Montoya, J, Sangha, K, Stoeckl, N, Turner, K., 2022. Ecosystem health, ecosystem services, and the well-being of humans and the rest of nature. Glob. Change Biol., 28, 5027-5040.

[23]

Hua, T, Zhao, W, Cherubini, F, Hu, X, Pereira, P., 2022. Continuous growth of human footprint risks compromising the benefits of protected areas on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv., 34, e02053.

[24]

Hua, T, Zhao, W, Cherubini, F, Hu, X, Pereira, P., 2022. Effectiveness of protected areas edges on vegetation greenness, cover and productivity on the Tibetan Plateau, China. Landscape Urban Plann., 224, 104421.

[25]

Jäger, H, Peratoner, G, Tappeiner, U, Tasser, E., 2020. Grassland biomass balance in the European Alps: Current and future ecosystem service perspectives. Ecosyst. Serv., 45, 101163.

[26]

Jenkins, C. N., Pimm, S. L., Joppa, L. N., 2013. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. U.S.A., 110, E2602-E2610.

[27]

Jiang, W, , Y, Liu, Y, Gao, W., 2020. Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25 years. Ecosyst. Serv., 44, 101146.

[28]

Jing, X, He, J., 2021. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: Literature overview and research advances. Chin. J. Plant Ecol., 45, 1094-1111.

[29]

Kemp, D. R., Han, G, Hou, X, Michalk, D. L., Hou, F, Wu, J, Zhang, Y., 2013. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. U.S.A., 110, 8369-8374.

[30]

Kemp, D, Han, G, Hou, F, Hou, X, Li, Z, Sun, Y, Wang, Z, Wu, J, Zhang, X, Zhang, Y, Gong, X., 2018. Sustainable management of Chinese grasslands—Issues and knowledge. Front. Agric. Sci. Eng., 5, 9-23.

[31]

Kremen, C., 2005. Managing ecosystem services: What do we need to know about their ecology?. Ecol. Lett., 8, 468-479.

[32]

Kuang, X, Jiao, J. J., 2016. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos., 121, 3979-4007.

[33]

Lan, X, Sun, J, Wang, Y, Ye, C, Zeng, T., 2021. Spatiotemporal variation characteristics and its driving forces of water conservation function on the Tibetan Plateau from 1995 to 2014. Acta Agrestia Sin., 29, 80-92.

[34]

Lavorel, S, Colloff, M. J., Locatelli, B, Gorddard, R, Prober, S. M., Gabillet, M, Devaux, C, Laforgue, D, Peyrache-Gadeau, V., 2018. Mustering the power of ecosystems for adaptation to climate change. Environ. Sci. Policy 92, 87-97.

[35]

Li, H, Liu, G, Fu, B., 2011. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region. Acta Ecol. Sin., 31, 5495-5504.

[36]

Li, S, Zhang, Y, Wang, Z, Li, L., 2018. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv., 30, 276-286.

[37]

Li, S, Zhang, H, Zhou, X, Yu, H, Li, W., 2020. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai Tibet Plateau. Ecosyst. Serv., 43, 101090.

[38]

Li, R, Ye, C, Wang, G, Han, G, Sun, J., 2021. Carbon storage estimation and its drivering force analysis based on InVEST Model in the Tibetan Plateau. Acta Agrestia Sin., 29(S1), 43-51.

[39]

Li, X, Lyu, X, Dou, H, Dang, D, Li, S, Li, X, Li, M, Xuan, X., 2021. Strengthening grazing pressure management to improve grassland ecosystem services. Glob. Ecol. Conserv., 31, e01782.

[40]

Liu, M, Zhang, H, Wang, Y, Pei, H., 2021. Characteristics of habitat quality in the agro-pastoral ecotone of northern China based on land uses. Res. Soil. Water Conserv., 28, 156-162.

[41]

Luo, L. H., Duan, Q. T., Wang, L. X., Zhao, W. Z., Zhuang, Y. L., 2020. Increased human pressures on the alpine ecosystem along the Qinghai-Tibet Railway. Reg. Environ. Change 20, 33.

[42]

Maes, J, Paracchini, M. L., Zulian, G, Dunbar, M. B., Alkemade, R., 2012. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv., 155, 1-12.

[43]

Mallapaty, S., 2020. How China could be carbon neutral by mid-century. Nature 586(7830), 482-483.

[44]

Manning, P, van der Plas, F, Soliveres, S, Allan, E, Maestre, F. T., Mace, G, Whittingham, M. J., Fischer, M., 2018. Redefining ecosystem multifunctionality. Nat. Ecol. Evol., 2, 427-436.

[45]

Mao, D, Luo, L, Wang, Z, Zhang, C, Ren, C., 2015. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau. J. Geogr. Sci., 25, 967-977.

[46]

Mu, C, Abbott, B. W., Norris, A. J., Mu, M, Fan, C, Chen, X, Jia, L, Yang, R, Zhang, T, Wang, K, Peng, X, Wu, Q, Guggenberger, G, Wu, X., 2020. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Sci. Rev., 211, 103433.

[47]

Nie, Y, Pritchard, H. D., Liu, Q, Hennig, T, Wang, W, Wang, X, Liu, S, Nepal, S, Samyn, D, Hewitt, K, Chen, X., 2021. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth. Environ., 2, 91-106.

[48]

Nolan, C, Overpeck, J. T., Allen, J. R. M., Anderson, P. M., Betancourt, J. L., Binney, H. A., Brewer, S, Bush, M. B., Chase, B. M., Cheddadi, R, Djamali, M, Dodson, J, Edwards, M. E., Gosling, W. D., Haberle, S, Hotchkiss, S. C., Huntley, B, Ivory, S. J., Kershaw, A. P, Kim, S-.H, Latorre, C, Leydet, M, Lézine, A. M., Liu, K. B., Liu, Y, Lozhkin, A. V., McGlone, M. S., Marchant, R. A., Momohara, A, Moreno, P. I., Müeller, S, Otto-Bliesner, B. L., Shen, C, Stevenson, J, Takahara, H, Tarasov, P. E., Tipton, J, Vincens, A, Weng, C, Xu, Q, Zheng, Z, Jackson, S. T., 2018. Past and future global transformation of terrestrial ecosystems under climate change. Science 361(6405), 920-923.

[49]

Ostrom, E., 2007. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. U.S.A., 104, 15181-15187.

[50]

Ostrom, E. 2007. Multiorganizational arrangements and coordination: An application of institutional analysis. F.X. Kaufmann, G. Majone, V. Ostrom (Eds.), Guidance, Control, and Evaluation in the Public Sector, Walter de Gruyter, Berlin and New York, pp.495-510.

[51]

Parmesan, C, Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 37-42.

[52]

Peng, S, Piao, S, Wang, T, Sun, J, Shen, Z., 2009. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem., 41, 1008-1014.

[53]

Peterson, G. D., Beard Jr, T. D., Beisner, B. E., Bennett, E. M., Carpenter, S. R., Cumming, G. S., Dent, C. L., Havlicek, T. D., 2003. Assessing future ecosystem services, a case study of the Northern Highlands Lake District. Wisconsin. Conserv. Ecol., 7(3), 1.

[54]

Peyraud, J. L. 2011. The role of grasslands in intensive animal production in north-west Europe: Conditions for a more sustainable farming system. G. Lemaire, J. Hodgson, A. Chabbi (Eds.), Grassland Productivity and Ecosystem Services, CABI, Wallingford, pp.179-187.

[55]

Pfeffer, W. T., Arendt, A. A., Bliss, A, Bolch, T, Ranzi, R., 2014. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol., 60, 537-552.

[56]

Piao, S, Fang, J., 2002. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982–1999. J. Nat. Resour., 17, 373-380.

[57]

Qian, C, Gong, J, Zhang, J, Liu, D, Ma, X., 2018. Change and tradeoffs-synergies analysis on watershed ecosystem services: A case study of Bailongjiang Watershed, Gansu. Acta Geogr. Sin., 73, 868-879.

[58]

Qian, C., Gong, J., Zhang, J., Liu, D., Ma, X., 2018. Change and tradeoffs-synergies analysis on watershed ecosystem services: A case study of Bailongjiang Watershed, Gansu. Acta Geogr. Sin. 73, 868–879 (in Chinese).

[59]

Ren, H, Han, G, Ohm, M, Schnbach, P, Taube, F., 2015. Do sheep grazing patterns affect ecosystem functioning in steppe grassland ecosystems in Inner Mongolia?. Agric. Ecosyst. Environ., 213, 1-10.

[60]

Rodriguez, J. P., Beard Jr, T. D., Bennett, E. M., Cumming, G. S., Cork, S. J., Agard, J, Dobson, A. P., Peterson, G. D., 2006. Trade-offs across space, time, and ecosystem services. Ecol. Soc., 11(1), 28.

[61]

Rodriguez-Loinaz, G, Alday, J. G., Onaindia, M., 2015. Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. J. Environ. Manage., 147, 152-163.

[62]

Roll, U, Feldman, A, Novosolov, M, Allison, A, Bauer, A. M., Bernard, R, Bohm, M, Castro-Herrera, F, Chirio, L, Collen, B, Colli, G. R., Dabool, L, Das, I, Doan, T. M., Grismer, L. L., Hoogmoed, M, Itescu, Y, Kraus, F, LeBreton, M, Lewin, A, Martins, M, Maza, E, Meirte, D, Nagy, Z. T., Nogueira, C. D. C., Pauwels, O. S. G., Pincheira-Donoso, D, Powney, G. D., Sindaco, R, Tallowin, O. J. S., Torres-Carvajal, O, J-Trape, F, Vidan, E, Uetz, P, Wagner, P, Wang, Y, Orme, C. D. L., Grenyer, R, Meiri, S., 2017. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol., 1, 1677-1682.

[63]

Shaw, M. R., Pendleton, L, Cameron, D. R., Morris, B, Bachelet, D, Klausmeyer, K, MacKenzie, J, Conklin, D. R., Bratman, G. N., Lenihan, J, Haunreiter, E, Daly, C, Roehrdanz, P. R., 2011. The impact of climate change on California's ecosystem services. Clim. Change 109, 465-484.

[64]

Sun, H, Zheng, D, Yao, T, Zhang, Y., 2012. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr. Sin., 67, 3-12.

[65]

Sun, J, Zhou, T, Liu, M, Chen, Y, Shang, H, Zhu, L, Shedayi, A. A., Yu, H, Cheng, G, Liu, G, Xu, M, Deng, W, Fan, J, Lu, X, Sha, Y., 2018. Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth-Sci. Rev., 185, 308-324.

[66]

Sun, J, Liu, M, Fu, B, Kemp, D, Zhao, W, Liu, G, Han, G, Wilkes, A, Lu, X, Chen, Y, Cheng, G, Zhou, T, Hou, G, Zhan, T, Peng, F, Shang, H, Xu, M, Shi, P, He, Y, Li, M, Wang, J, Tsunekawa, A, Zhou, H, Liu, Y, Li, Y, Liu, S., 2020. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull., 65, 1405-1414.

[67]

Sun, J., Wang, Y., Piao, S., Liu, M., Han, G., Li, J., Liang, E., Lee, T.M., Liu, G., Wilkes, A., Liu, S., Zhao, W., Zhou, H., Yibeltal, M., Berihun, M.L., Browning, D., Fenta, A.A., Tsunekawa, A., Brown, J., Willms, W., Tsubo, M., 2022a. Toward a sustainable grassland ecosystem worldwide. Innovation 3, 100265.

[68]

Sun, J, Ye, C, Liu, M, Wang, Y, Chen, J, Wang, S, Lu, X, Liu, G, Xu, M, Li, R, Liu, S, Zhou, H, Du, Z, Peng, F, Tsunekawa, A, Tsubo, M., 2022. Response of net reduction rate in vegetation carbon uptake to climate change across a unique gradient zone on the Tibetan Plateau. Environ. Res., 203, 111894.

[69]

Tang, W, Xu, S, Zhou, X, Yang, K, Wang, Y, Qin, J, Wang, H, Li, X., 2023. Meeting China’s electricity demand with renewable energy over Tibetan Plateau. Sci. Bull., 68, 39-42.

[70]

Tilman, D, Fargione, J, Wolff, B, D'Antonio, C, Dobson, A, Howarth, R, Schindler, D, Schlesinger, W. H., Simberloff, D, Swackhamer, D., 2001. Forecasting agriculturally driven global environmental change. Science 292(5515), 281-284.

[71]

Turner, R. K., Paavola, J, Cooper, P, Farber, S, Jessamy, V, Georgiou, S., 2003. Valuing nature: Lessons learned and future research directions. Ecol. Econ., 46, 493-510.

[72]

van Jaarsveld, A. S., Biggs, R, Scholes, R. J., Bohensky, E, Reyers, B, Lynam, T, Musvoto, C, Fabricius, C., 2005. Measuring conditions and trends in ecosystem services at multiple scales: The southern african millennium ecosystem assessment (SAfMA) experience. Philos. Trans. R. Soc. B-Biol. Sci., 360, 425-441.

[73]

Venter, O, Sanderson, E. W., Magrach, A, Allan, J. R., Beher, J, Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P, Fekete, B. M., Levy, M. A., Watson, J. E. M., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun., 7, 12558.

[74]

Wang, Y, Dai, E., 2020. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod., 264, 121573.

[75]

Wang, J, Peng, J, Zhao, M, Liu, Y, Chen, Y., 2017. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-western Yunnan, China. Sci. Total Environ., 574, 57-64.

[76]

Wang, Z, Han, G, Hao, X, Zhao, M, Ding, H, Li, Z, Wang, J, Hamilton, A, Liu, Y, Lata, A, Hexige, B., 2017. Effect of manipulating animal stocking rate on the carbon storage capacity in a degraded desert steppe. Ecol. Res., 32, 1001-1009.

[77]

Wang, Y, Zi, H, Cheng, R, Tang, L, Suoer, A, Luo, X, Li, J, Wang, C., 2019. Forest soil organic carbon and nitrogen storage and characteristics of vertical distribution in Qinghai Province. Acta Ecol. Sin., 39, 4096-4105.

[78]

Wang, Z, Wang, H, Feng, X, Wang, X, Zhang, L, Fu, B., 2019. Evaluation index system of comprehensive benefits of ecological restoration in key ecologically vulnerable regions. Acta Ecol. Sin., 39, 7356-7366.

[79]

Wang, Y, Sun, J, Ye, C, Zeng, T., 2021. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau. Chin. J. Plant Ecol., 45, 434-443.

[80]

Wu, Y, Meng, J., 2022. Quantifying the spatial pattern for the importance of natural resource ecosystem services in China. J. Nat. Resour., 37, 17-33.

[81]

Xie, G, Lu, C, Leng, Y, Zheng, D, Li, S., 2003. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour., 18, 189-196.

[82]

Xin, Y, Shu, K, Dai, L, Qian, D, Guo, X, Du, Y., 2021. Spatial characteristics of soil organic carbon in Alpine Desert in the Qaidam Basin, Qinghai-Tibet Plateau. Chin. J. Grassland 43(11), 113-118.

[83]

Xu, W, Xiao, Y, Zhang, J, Yang, W, Zhang, L, Hull, V, Wang, Z, Zheng, H, Liu, J, Polasky, S, Jiang, L, Xiao, Y, Shi, X, Rao, E, Lu, F, Wang, X, Daily, G. C., Ouyang, Z., 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A., 114, 1601-1606.

[84]

Xu, L, Yang, D, Liu, D, Lin, H., 2020. Spatiotemporal distribution characteristics and supply-demand relationships of ecosystem services on the Qinghai-Tibet Plateau, China. Mt. Res., 38(4), 483-494.

[85]

Xu, T, Zhao, X, Zhang, X, Wang, X, Geng, Y, Hu, L, Zhao, N, Mao, S, Liu, H, Kang, S, Ma, L, Han, X, Jia, G, Zhao, L, Dong, Q, Chai, S, Xu, S., 2020. Sustainable development of ecological grass-based livestock husbandry in Qinghai-Tibet Plateau Alpine area: Principle, technology and practice. Acta Ecol. Sin., 40, 6324-6337.

[86]

Yang, Y, Rao, S, Hu, H, Chen, A, Ji, C, Zhu, B, Zuo, W, Li, X, Shen, H, Wang, Z, Tang, Y, Fang, J., 2004. Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau. Biodiv. Sci., 12(1), 200-205.

[87]

Yang, B, Wang, S, Chang, Q, Sun, Y, Yin, H, Wang, X., 2015. Response of NPP to phenology changes in the Tibet Plateau. Geogr. Geo-inf. Sci., 31(5), 115-120.

[88]

Yao, T, Thompson, L, Yang, W, Yu, W, Gao, Y, Guo, X, Yang, X, Duan, K, Zhao, H, Xu, B, Pu, J, Lu, A, Xiang, Y, Kattel, D. B., Joswiak, D., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663-667.

[89]

Ye, C, Sun, J, Liu, M, Xiong, J, Zong, N, Hu, J, Huang, Y, Duan, X, Tsunekawa, A., 2020. Concurrent and lagged effects of extreme drought induce net reduction in vegetation carbon uptake on Tibetan Plateau. Remote Sens., 12(15), 2347.

[90]

Zhang, X, Jin, X., 2021. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecol. Indic., 131, 108223.

[91]

Zhang, L, Hickel, K, Dawes, W. R., Chiew, F. H. S., Western, A. W., Briggs, P. R., 2004. A rational function approach for estimatingmean annual evapotranspiration. Water Resour. Res., 40 (2), pp. 89-97. doi: 10.1029/2003WR002710.

[92]

Zhang, X, Niu, J, Zhang, Q, Dong, J, Zhang, J., 2016. Spatial pattern of water conservation function in grassland ecosystem in the Xilin River Basin, Inner Mongolia. Arid Zone Res., 33(4), 814-821.

[93]

Zhang, L, Fan, J, Zhou, D, Zhang, H., 2017. Ecological protection and restoration program reduced grazing pressure in the Three-River Headwaters Region, China. Rangeland Ecol. Manage., 70, 540-548.

[94]

Zhang, Z, Zhou, H, Zhao, X, Yao, B, Ma, Z, Dong, Q, Zhang, Z, Wang, W, Yang, Y., 2018. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiv. Sci., 26(2), 111-129.

[95]

Zhang, G, Yao, T, Xie, H, Yang, K, Zhu, L, Shum, C. K., Bolch, T, Yi, S, Allen, S, Jiang, L, Chen, W, Ke, C., 2020. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev., 208, 103269.

[96]

Zheng, D, Zhao, D., 2017. Characteristics of natural environment of the Tibetan Plateau. Sci. Technol. Rev., 35(6), 13-22.

PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

/