Untangling the increasing elevation of cropland in China from 1980 to 2020

Wanxu Chen , Liyan Yang , Jie Zeng , Jintao Yuan , Tianci Gu , Zhiling Liu

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) : 281 -293.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (4) :281 -293. DOI: 10.1016/j.geosus.2023.06.002
Research Article
review-article

Untangling the increasing elevation of cropland in China from 1980 to 2020

Author information +
History +
PDF

Abstract

The redistribution of cropland to areas of higher elevation in China has long affected agricultural development and could seriously threaten national food security. However, there is currently little research reported on this phenomenon, which may limit the improvement of cropland protection policies. To fill this gap, we analyzed the spatiotemporal characteristics and driving mechanisms of increased cropland elevation in China during the period 1980–2020. The average cropland elevation in China increased by 17.38 m from 1980 to 2020. The gravity center of the cropland area and average cropland elevation in China moved to the northwest by 81.00 km and 51.47 km, respectively. The amount of newly added cropland in eastern China was less than that in occupied regions; however, the average elevation of newly added cropland was greater than that of occupied cropland, though the opposite phenomenon was observed in western China. Slope, temperature, land-use intensity, population, economic density, and distance to main roads were the main factors affecting the redistribution of cropland to areas of higher elevation. The effects of these major driving factors exhibited significant spatial and temporal variations in China. This study has important implications for improving existing cropland protection policies and developing more effective cropland management systems in China.

Keywords

Cropland / Elevation / Geodetector / Geographically weighted regression / Spatial analysis / China

Cite this article

Download citation ▾
Wanxu Chen, Liyan Yang, Jie Zeng, Jintao Yuan, Tianci Gu, Zhiling Liu. Untangling the increasing elevation of cropland in China from 1980 to 2020. Geography and Sustainability, 2023, 4(4): 281-293 DOI:10.1016/j.geosus.2023.06.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

This study was sponsored by the National Natural Science Foundation of China (Grant No. 42001187). This study was also sponsored by the Scientific Research Project of Education Department of Hubei Province (Grant No. B2022262) and the Philosophy and Social Sciences Research Project of Education Department of Hubei Province (Grant No. 22G024).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2023.06.002.

References

[1]

Arowolo, A. O., Deng, X. Z., 2018. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Change 18, 247-259.

[2]

Baumann, M, Kuemmerle, T, Elbakidze, M, Ozdogan, M, Radeloff, V. C., Keuler, N. S., Prishchepov, A. V., Kruhlov, I, Hostert, P., 2011. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 28, 552-562.

[3]

Brunsdon, C, Fotheringham, S, Charlton, M., 1998. Geographically weighted regression – Modelling spatial non-stationarity. J. R. Stat. Soc. Ser. D-Stat., 47, 431-443.

[4]

Cai, Y. L., Yu, F. G., 2004. Sticking points of fundamental policies for the farmland issue in China. China Land Sci., 18(3), 13-17.

[5]

Cao, F, Ge, Y, Wang, J., 2013. Optimal discretization for geographical detectors-based risk assessment. GISci. Remote Sens., 50, 78-92.

[6]

Chen, H, Tan, Y, Xiao, W, Li, G, Meng, F, He, T, Li, X., 2022. Urbanization in China drives farmland uphill under the constraint of the requisition–compensation balance. Sci. Total Environ., 831, 154895.

[7]

Chen, J., 2007. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 69, 1-15.

[8]

Chen, L. L., Zhao, H. S., Song, G, Liu, Y., 2021. Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China. Land Use Policy 108, 105589.

[9]

Chen, W, Zeng, J, Li, N., 2021. Change in land-use structure due to urbanisation in China. J. Clean. Prod., 321, 128986.

[10]

Chen, Y. F., Wang, J. Y., Zhang, F. R., Liu, Y. S., Cheng, S. K., Zhu, J, Si, W, Fan, S. G., Gu, S. S., Hu, B. C., Li, X. D., Yu, X. H., 2021. New patterns of globalization and food security. J. Nat. Resour., 36(6), 1362-1380.

[11]

Chen, W, Chi, G, Li, J., 2019. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ., 669, 459-470.

[12]

Chen, W, Li, J, Zeng, J, Ran, D, Yang, B., 2019. Spatial heterogeneity and formation mechanism of eco-environmental effect of land use change in China. Geogr. Res., 38(9), 2173-2187.

[13]

Chen, W, Ye, X, Li, J, Fan, X, Liu, Q, Dong, W., 2019. Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations. Land Use Policy 83, 134-146.

[14]

Deng, X, Huang, J, Rozelle, S, Zhang, J, Li, Z., 2015. Impact of urbanization on cultivated land changes in China. Land Use Policy 45, 1-7.

[15]

Dong, J. W., Liu, J. Y., Tao, F. L., Xu, X. L., Wang, J. B., 2009. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Res., 40, 37-48.

[16]

Fan, M, Xiao, Y. T., 2020. Impacts of the grain for Green Program on the spatial pattern of land uses and ecosystem services in mountainous settlements in southwest China. Glob. Ecol. Conserv., 21, e00806.

[17]

Fan, S. G., Brzeska, J., 2014. Feeding more people on an increasingly fragile planet: China's food and nutrition security in a national and global context. J. Integr. Agric., 13, 1193-1205.

[18]

Fullbrook, D., 2010. Food as security. Food Secur., 2, 5-20.

[19]

Gao, X. Y., Cheng, W. M., Wang, N, Liu, Q. Y., Ma, T, Chen, Y. J., Zhou, C. H., 2019. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990–2015. J. Geogr. Sci., 29, 180-196.

[20]

Gerland, P, Raftery, A. E., Sevcikova, H, Li, N, Gu, D. A., Spoorenberg, T, Alkema, L, Fosdick, B. K., Chunn, J, Lalic, N, Bay, G, Buettner, T, Heilig, G. K., Wilmoth, J., 2014. World population stabilization unlikely this century. Science 346(6206), 234-237.

[21]

Ghose, B., 2014. Food security and food self-sufficiency in China: From past to 2050. Food Energy Secur., 3, 86-95.

[22]

He, X, Chen, Z., 2022. Weather, cropland expansion, and deforestation in Ethiopia. J. Environ. Econ. Manage., 111, 102586.

[23]

He, X. J., Yan, J. Z., Cheng, X., 2021. Household perspective on cropland expansion on the Tibetan Plateau. Reg. Environ. Change 21(1), 21.

[24]

Huang, J. K., Wei, W, Cui, Q, Xie, W., 2017. The prospects for China's food security and imports: Will China starve the world via imports?. J. Integr. Agric., 16, 2933-2944.

[25]

Kuang, W. H., Liu, J. Y., Dong, J. W., Chi, W. F., Zhang, C., 2016. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landscape Urban Plann., 145, 21-33.

[26]

Lai, Z. H., Chen, M. Q., Liu, T. J., 2020. Changes in and prospects for cultivated land use since the reform and opening up in China. Land Use Policy 97, 104781.

[27]

Li, C, Chen, L. D., Liu, D. F., Wei, J. Q., He, J. H., Duan, X. W., 2021. The hidden risk in China's cropland conversion from the perspective of slope. Catena 206, 105536.

[28]

Li, G, Fang, C, Li, Y, Wang, Z, Sun, S, He, S, Qi, W, Bao, C, Ma, H, Fan, Y., 2022. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun., 13, 1-12.

[29]

Li, G, Sun, S, Fang, C., 2018. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape Urban Plann., 174, 63-77.

[30]

Li, H. C., Liao, L. J., Zhang, J. S., Zhang, C, Wang, D. J., Chen, Y. C., Yu, J. X., 2017. Analysis of the change characteristics of cultivated land physical quality grade at different elevations in Luliang county. Res. Soil Water Conserv., 24(4), 103-107.

[31]

Li, J, Wang, Z. L., Lai, C. G., Wu, X. Q., Zeng, Z. Y., Chen, X. H., Lian, Y. Q., 2018. Response of net primary production to land use and land cover change in mainland China since the late 1980s. Sci. Total Environ., 639, 237-247.

[32]

Li, S. F., Li, X. B., 2019. The mechanism of farmland marginalization in Chinese mountainous areas: Evidence from cost and return changes. J. Geogr. Sci., 29, 531-548.

[33]

Liang, X. Y., Jin, X. B., Yang, X. H., Xu, W. Y., Lin, J. H., Zhou, Y. K., 2021. Exploring cultivated land evolution in mountainous areas of Southwest China, an empirical study of developments since the 1980s. Land Degrad. Dev., 32, 546-558.

[34]

Liu, F, Xiao, X. M., Qin, Y. W., Yan, H. M., Huang, J. K., Wu, X. C., Zhang, Y, Zou, Z. H., Doughty, R. B., 2022. Large spatial variation and stagnation of cropland gross primary production increases the challenges of sustainable grain production and food security in China. Sci. Total Environ., 811, 151408.

[35]

Liu, J, Mooney, H, Hull, V, Davis, S. J., Gaskell, J, Hertel, T, Lubchenco, J, Seto, K. C., Gleick, P, Kremen, C., 2015. Systems integration for global sustainability. Science 347(6225), 1258832.

[36]

Liu, J. Y., Kuang, W. H., Zhang, Z. X., Xu, X. L., Qin, Y. W., Ning, J, Zhou, W. C., Zhang, S. W., Li, R. D., Yan, C. Z., Wu, S. X., Shi, X. Z., Jiang, N, Yu, D. S., Pan, X. Z., Chi, W. F., 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci., 24, 195-210.

[37]

Liu, X. W., Zhao, C. L., Song, W., 2017. Review of the evolution of cultivated land protection policies in the period following China's reform and liberalization. Land Use Policy 67, 660-669.

[38]

McPherson, M. F., 1982. Land fragmentation: A selected literature review. Harvard University, Cambridge

[39]

Millington, J, Xiong, H, Peterson, S, Woods, J., 2017. Integrating modelling approaches for understanding telecoupling: Global food trade and local land use. Land 6(3), 56.

[40]

Ning, J, Liu, J. Y., Kuang, W. H., Xu, X. L., Zhang, S. W., Yan, C. Z., Li, R. D., Wu, S. X., Hu, Y. F., Du, G. M., Chi, W. F., Pan, T, Ning, J., 2018. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci., 28, 547-562.

[41]

Niu, H. P., Zhang, A. L. 2008. Construction and application of mathematical model of cultivated land quantity gravity center based on niche theory and GIS. G. Li, Z. Jia, Z. Fu (Eds.), 2008 Proceedings of Information Technology and Environmental System Sciences: ITESS 2008, pp.1256-1260.

[42]

Qin, W. S., Zhang, Y. F., Li, G. D., 2015. Driving mechanism of cultivated land transition in Yantai Proper, Shandong Province, China. Chin. Geogr. Sci., 25, 337-349.

[43]

Qin, Y. W., Liu, J. Y., Shi, W. J., Tao, F. L., Yan, H. M., 2013. Spatial-temporal changes of cropland and climate potential productivity in northern China during 1990–2010. Food Secur., 5, 499-512.

[44]

Qu, Y. B., Jiang, G. H., Li, Z. T., Tian, Y. Y., Wei, S. W., 2019. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 82, 742-753.

[45]

Shao, T, Cui, F, Fan, Y, Xu, Q., 2011. Land use efficiency, regional disparities and the requisition-compensation balance among regions. China Econ. Q., 10(3), 1087-1104.

[46]

Shi, Y. Y., Lyu, X, Guo, G. C., Gong, C., 2019. Temporal-spatial pattern and driving mechanism of cultivated land use transition based on GIS and spatial econometric model. China Land Sci., 33(11), 51-60.

[47]

Shrestha, A, Luo, W., 2018. Assessment of groundwater nitrate pollution potential in Central Valley aquifer using geodetector-based frequency ratio (GFR) and optimized-DRASTIC methods. ISPRS Int. J. Geo-inf., 7(6), 211.

[48]

Song, W, Pijanowski, B. C., 2014. The effects of China's cultivated land balance program on potential land productivity at a national scale. Appl. Geogr., 46, 158-170.

[49]

Song, X. Q., Li, X. Y., 2019. Theoretical explanation and case study of regional cultivated land use function transition. Acta Geogr. Sin., 74(5), 992-1010.

[50]

Song, X. Q., Huang, Y, Wu, Z. F., Ouyang, Z., 2015. Does cultivated land function transition occur in China?. J. Geogr. Sci., 25, 817-835.

[51]

Tan, M. H., Li, X. B., Lu, C. H., 2005. Urban land expansion and arable land loss of the major cities in China in the 1990s. Sci. China Ser. D-Earth Sci., 48, 1492-1500.

[52]

Tan, S, Heerink, N, Qu, F., 2006. Land fragmentation and its driving forces in China. Land Use Policy 23, 272-285.

[53]

Timilsina, N, Escobedo, F. J., Cropper, W. P., Abd-Elrahman, A, Brandeis, T. J., Delphin, S, Lambert, S., 2013. A framework for identifying carbon hotspots and forest management drivers. J. Environ. Manage., 114, 293-302.

[54]

Urrutia-Jalabert, R, Barichivich, J, Rozas, V, Lara, A, Rojas, Y, Bahamondez, C, Rojas-Badilla, M, Gipoulou-Zuñiga, T, Cuq, E., 2021. Climate response and drought resilience of Nothofagus obliqua secondary forests across a latitudinal gradient in south-central Chile. For. Ecol. Manage., 485, 118962.

[55]

Wang, J. F., Li, X. H., Christakos, G, Liao, Y. L., Zhang, T, Gu, X, Zheng, X. Y., 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci., 24, 107-127.

[56]

Wang, Y. H., Li, X. B., Xin, L. J., Tan, M. H., 2020. Farmland marginalization and its drivers in mountainous areas of China. Sci. Total Environ., 719, 135132.

[57]

Wu, Y. L., Zhang, P, Yu, Y. Y., Xie, R. Y., 2021. Progress review on and prospects for non-grain cultivated land in China from the perspective of food security. China Land Sci., 35(9), 116-124.

[58]

Yang, H, Li, X. B., 2000. Cultivated land and food supply in China. Land Use Policy 17, 73-88.

[59]

Ye, L. M., Xiong, W, Li, Z. G., Yang, P, Wu, W. B., Yang, G. X., Fu, Y. J., Zou, J. Q., Chen, Z. X., Van Ranst, E, Tang, H. J., 2013. Climate change impact on China food security in 2050. Agron. Sustain. Dev., 33, 363-374.

[60]

Ye, S. J., Ren, S. Y., Song, C. Q., Cheng, C. X., Shen, S, Yang, J. Y., Zhu, D. H., 2022. Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ., 326, 107757.

[61]

Yu, B. H., Lu, C. H., 2006. Change of cultivated land and its implications on food security in China. Chin. Geogr. Sci., 16, 299-305.

[62]

Yu, J, Zheng, H. G., Wen, J, Peng, Y, Li, P., 2014. Characteristics of cultivated land natural quality at different elevation gradients in Yunnan province. Res. Soil Water Conserv., 21(4), 224-228.

[63]

Yuan, C. C., Zhang, D. X., Liu, L. M., Ye, J. W., 2021. Regional characteristics and spatial-temporal distribution of cultivated land change in China during 2009–2018. Trans. Chin. Soc. Agric. Eng., 37(1), 267-278.

[64]

Yuan, X, Du, W, Wei, X, Ying, Y, Shao, Y, Hou, R., 2018. Quantitative analysis of research on China's land transfer system. Land Use Policy 74, 301-308.

[65]

Zhang, B. F., Zhang, J, Miao, C. H., 2022. Urbanization level in Chinese counties: Imbalance pattern and driving force. Remote Sens., 14, 2268.

[66]

Zhao, X. J., Ye, Y., 2020. Analysis of temporal and spatial evolution and influence factors of cultivated land in Pearl River Delta based on GIS. IOP Conf. Ser. Earth Environ. Sci., 615(1), 012042.

[67]

Zhou, L, Dang, X. W., Zhou, C. H., Wang, B, Wei, W., 2021. Evolution characteristics of slope spectrum and slope-climbing effects of built-up land in China. Acta Geogr. Sin., 76(7), 1747-1762.

[68]

Zhou, Y, Li, X, Liu, Y., 2021. Cultivated land protection and rational use in China. Land Use Policy 106, 105454.

PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

/