Critical role of multidimensional biodiversity in contributing to ecosystem sustainability under global change

Ruiyang Zhang , Dashuan Tian , Jinsong Wang , Shuli Niu

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (3) : 232 -243.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (3) :232 -243. DOI: 10.1016/j.geosus.2023.05.002
Research Article
review-article

Critical role of multidimensional biodiversity in contributing to ecosystem sustainability under global change

Author information +
History +
PDF

Abstract

The 21st century has seen an acceleration of global change, including climate change, elevated carbon dioxide, nitrogen deposition, and land-use intensification, which poses a significant threat to ecosystem functioning. Nevertheless, studies on the relationship between biodiversity and ecosystem functioning (BEF) have consistently demonstrated that biodiversity enhances ecosystem functioning and its stability, even in variable environmental conditions. These findings potentially indicate the critical role of biodiversity in promoting sustainable provisioning of ecosystem functioning under global change. Our paper provides a comprehensive review of current BEF research and the response of BEF to multiple global change factors. We demonstrate that (1) assessing the effects of biodiversity on ecosystem functioning requires consideration of multiple dimensions of diversity, such as diversity across multiple trophic levels (plants, animals, and microbes), multiple facets (taxonomy, functional traits, and phylogeny), and multiple spatial scales (local, regional, and landscape scales). (2) The interaction of multiple global change factors may lead to a greater reduction in biodiversity and ecosystem functioning than a single global change factor. (3) Multidimensional biodiversity regulates the response of ecosystem functioning to global change factors, indicating that high levels of multidimensional biodiversity can mitigate the negative impacts of global change on ecosystem functioning. Overall, we emphasize that recognizing the importance of multidimensional biodiversity is critical for sustaining ecosystem functioning. Therefore, prioritizing conservation efforts to maintain and enhance all dimensions of biodiversity is essential to address the challenges of future global change.

Keywords

Biodiversity / Ecosystem functioning / Global change / Ecosystem sustainability

Cite this article

Download citation ▾
Ruiyang Zhang, Dashuan Tian, Jinsong Wang, Shuli Niu. Critical role of multidimensional biodiversity in contributing to ecosystem sustainability under global change. Geography and Sustainability, 2023, 4(3): 232-243 DOI:10.1016/j.geosus.2023.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 32101309), National Key R & D Program of China (Grant No. 2022YFF0802102), International Partnership Program of Chinese Academy of Sciences (Grant No. 177GJHZ2022020BS), and Youth Innovation Promotion Association CAS (2021050).

References

[1]

Allan, E, Manning, P, Alt, F, Binkenstein, J, Blaser, S, Bluthgen, N, Bohm, S, Grassein, F, Holzel, N, Klaus, V. H., Kleinebecker, T, Morris, E. K., Oelmann, Y, Prati, D, Renner, S. C., Rillig, M. C., Schaefer, M, Schloter, M, Schmitt, B, Schoning, I, Schrumpf, M, Solly, E, Sorkau, E, Steckel, J, Steffen-Dewenter, I, Stempfhuber, B, Tschapka, M, Weiner, C. N., Weisser, W. W., Werner, M, Westphal, C, Wilcke, W, Fischer, M., 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett., 18(8), 834-843.

[2]

Aznar-Sanchez, J. A., Piquer-Rodriguez, M, Velasco-Munoz, J. F., Manzano-Agugliaro, F., 2019. Worldwide research trends on sustainable land use in agriculture. Land Use Policy 87, 104069.

[3]

Baert, J. M., Eisenhauer, N, Janssen, C. R., De laender, F., 2018. Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecol. Lett., 21(8), 1191-1199.

[4]

Bardgett, R. D., van der Putten, W. H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515(7528), 505-511.

[5]

Barnes, A. D., Jochum, M, Lefcheck, J. S., Eisenhauer, N, Scherber, C, O'Connor, M. I., de Ruiter, P, Brose, U., 2018. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol., 33(3), 186-197.

[6]

Beckmann, M, Gerstner, K, Akin-Fajiye, M, Ceaușu, S, Kambach, S, Kinlock, N. L., Phillips, H. R., Verhagen, W, Gurevitch, J, Klotz, S., 2019. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Glob. Change Biol., 25(6), 1941-1956.

[7]

Behm, J. E., 2020. Is biodiversity needed for sustainability? A spotlight on urban landscapes. Am. J. Bot., 107(5), 703-706.

[8]

Bertness, M. D., Callaway, R., 1994. Positive interactions in communities. Trends Ecol. Evol., 9(5), 191-193.

[9]

Bussotti, F, Pollastrini, M, Holland, V, Brüggemann, W., 2015. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot., 111, 91-113.

[10]

Butenschoen, O, Scheu, S, Eisenhauer, N., 2011. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol. Biochem., 43(9), 1902-1907.

[11]

Cadotte, M. W., Cardinale, B. J., Oakley, T. H., 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. U.S.A., 105(44), 17012-17017.

[12]

Cadotte, M. W., Dinnage, R, Tilman, D., 2012. Phylogenetic diversity promotes ecosystem stability. Ecology 93(8), S223-S233.

[13]

Cardinale, B. J., Palmer, M. A., Collins, S. L., 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415(6870), 426-429.

[14]

Cardinale, B. J., Srivastava, D. S., Duffy, J. E., Wright, J. P., Downing, A. L., Sankaran, M, Jouseau, C., 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443(7114), 989-992.

[15]

Chandra, R, Rakshit, A, Singh, S, Abhilash, P, Biswas, A. 2021. Soil biodiversity and community composition for ecosystem services. A. Rakshit, S.K. Singh, P.C. Abhilash, A. Biswas (Eds.), Soil Science: Fundamentals to Recent Advances, Springer, Singapore, pp.69-84.

[16]

Chen, Q. L., Ding, J, Zhu, Y. G., He, J. Z., Hu, H. W., 2020. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environ. Int., 140, 105766.

[17]

Chen, Y, Zhang, Y, Bai, E, Piao, S, Chen, N, Zhao, G, Zheng, Z, Zhu, Y., 2022. The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition. Sci. Total Environ., 813, 151907.

[18]

Chung, H, Zak, D. R., Reich, P. B., Ellsworth, D. S., 2007. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob. Change Biol., 13(5), 980-989.

[19]

Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199(4335), 1302-1310.

[20]

Craine, J. M., Ocheltree, T. W., Nippert, J. B., Towne, E, Skibbe, A. M., Kembel, S. W., Fargione, J. E., 2013. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3(1), 63-67.

[21]

Craven, D, Eisenhauer, N, Pearse, W. D., Hautier, Y, Isbell, F, Roscher, C, Bahn, M, Beierkuhnlein, C, Bonisch, G, Buchmann, N, Byun, C, Catford, J. A., Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J. M., De Luca, E, Ebeling, A, Griffin, J. N., Hector, A, Hines, J, Jentsch, A, Kattge, J, Kreyling, J, Lanta, V, Lemoine, N, Meyer, S. T., Minden, V, Onipchenko, V, Polley, H. W., Reich, P. B., van Ruijven, J, Schamp, B, Smith, M. D., Soudzilovskaia, N. A., Tilman, D, Weigelt, A, Wilsey, B, Manning, P., 2018. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol., 2(10), 1579-1587.

[22]

de Gea, A. B., Hautier, Y, Geisen, S., 2023. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Glob. Change Biol., 29(2), 296-307.

[23]

Decaens, T, Jimenez, J. J., Gioia, C, Measey, G. J., Lavelle, P., 2006. The values of soil animals for conservation biology. Eur. J. Soil Biol., 42, S23-S38.

[24]

DeForest, J. L., Zak, D. R., Pregitzer, K. S., Burton, A. J., 2004. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci. Soc. Am. J., 68(1), 132-138.

[25]

Delgado-Baquerizo, M, Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D, Berdugo, M, Campbell, C. D., Singh, B. K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun., 7, 10541.

[26]

Delgado-Baquerizo, M, Reich, P. B., Trivedi, C, Eldridge, D. J., Abades, S, Alfaro, F. D., Bastida, F, Berhe, A. A., Cutler, N. A., Gallardo, A, Garcia-Velazquez, L, Hart, S. C., Hayes, P. E., He, J. Z., Hseu, Z. Y., Hu, H. W., Kirchmair, M, Neuhauser, S, Perez, C. A., Reed, S. C., Santos, F, Sullivan, B. W., Trivedi, P, Wang, J. T., Weber-Grullon, L, Williams, M. A., Singh, B. K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol., 4(2), 210-220.

[27]

Dijkstra, F. A., Hobbie, S. E., Reich, P. B., Knops, J. M. H., 2005. Divergent effects of elevated CO2, N fertilizattion, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant Soil 272(2), 41-52.

[28]

Duffy, J. E., 2002. Biodiversity and ecosystem function: The consumer connection. Oikos 99(2), 201-219.

[29]

Duffy, J. E., Cardinale, B. J., France, K. E., McIntyre, P. B., Thébault, E, Loreau, M., 2007. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett., 10(6), 522-538.

[30]

Edlinger, A, Saghai, A, Herzog, C, Degrune, F, Garland, G., 2020. Towards a multidimensional view of biodiversity and ecosystem functioning in a changing world. New Phytol., 228(3), 820-822.

[31]

Eisenhauer, N, Cesarz, S, Koller, R, Worm, K, Reich, P. B., 2012. Global change belowground: Impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol., 18(2), 435-447.

[32]

Eisenhauer, N, Schielzeth, H, Barnes, A. D., Barry, K. E., Bonn, A, Brose, U, Bruelheide, H, Buchmann, N, Buscot, F, Ebeling, A, Ferlian, O, Freschet, G. T., Giling, D. P., Hattenschwiler, S, Hillebrand, H, Hines, J, Isbell, F, Koller-France, E, Konig-Ries, B, de Kroon, H, Meyer, S. T., Milcu, A, Muller, J, Nock, C. A., Petermann, J. S., Roscher, C, Scherber, C, Scherer-Lorenzen, M, Schmid, B, Schnitzer, S. A., Schuldt, A, Tscharntke, T, Turke, M, van Dam, N. M., van der Plas, F, Vogel, A, Wagg, C, Wardle, D. A., Weigelt, A, Weisser, W. W., Wirth, C, Jochum, M, Eisenhauer, N, Bohan, D. A., Dumbrell, A. J. 2019. A multitrophic perspective on biodiversity-ecosystem functioning research. N. Eisenhauer (Ed.), Mechanisms Underlying the Relationship between Biodiversity and Ecosystem Function, Elsevier, pp.1-54.

[33]

Eldridge, D. J., Delgado-Baquerizo, M., 2017. Continental-scale impacts of livestock grazing on ecosystem supporting and regulating services. Land Degrad. Dev., 28(4), 1473-1481.

[34]

Evans, S, Bell-Dereske, L, Dougherty, K, Kittredge, H., 2020. Dispersal alters soil microbial community response to drought. Environ. Microbiol., 22(3), 905-916.

[35]

Fay, P. A., Prober, S. M., Harpole, W. S., Knops, J. M., Bakker, J. D., Borer, E. T., Lind, E. M., MacDougall, A. S., Seabloom, E. W., Wragg, P. D., Adler, P. B., Blumenthal, D. M., Buckley, Y. M., Chu, C, Cleland, E. E., Collins, S. L., Davies, K. F., Du, G, Feng, X, Firn, J, Gruner, D. S., Hagenah, N, Hautier, Y, Heckman, R. W., Jin, V. L., Kirkman, K. P., Klein, J, Ladwig, L. M., Li, Q, McCulley, R. L., 2015. Grassland productivity limited by multiple nutrients. Nat. Plants 1(7), 15080.

[36]

FA, O.Livestock and the environment.FA, Rome, O, Italy. http://www.fao.org/livestock-environment/en/ (accessed 4 Feburary 2017).

[37]

Field, C. B., Jackson, R. B., Mooney, H. A., 1995. Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ., 18(10), 1214-1225.

[38]

Gao, J, Carmel, Y., 2020. Can the intermediate disturbance hypothesis explain grazing-diversity relations at a global scale?. Oikos 129(4), 493-502.

[39]

García, F. C., Bestion, E, Warfield, R, Yvon-Durocher, G., 2018. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A., 115(43), 10989-10994.

[40]

Gong, X, Wang, S, Wang, Z. W., Jiang, Y. J., Hu, Z. K., Zheng, Y, Chen, X. Y., Li, H. X., Hu, F, Liu, M. Q., Scheu, S., 2019. Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma 347, 59-69.

[41]

Gonzalez, A, Germain, R. M., Srivastava, D. S., Filotas, E, Dee, L. E., Gravel, D, Thompson, P. L., Isbell, F, Wang, S, Kéfi, S, Montoya, J, Zelnik, Y. R., Loreau, M., 2020. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett., 23(4), 757-776.

[42]

Goswami, M, Bhattacharyya, P, Mukherjee, I, Tribedi, P., 2017. Functional diversity: An important measure of ecosystem functioning. Adv. Microbiol., 7(1), 82.

[43]

Grace, J. B., Anderson, T. M., Seabloom, E. W., Borer, E. T., Adler, P. B., Harpole, W. S., Hautier, Y, Hillebrand, H, Lind, E. M., Partel, M, Bakker, J. D., Buckley, Y. M., Crawley, M. J., Damschen, E. I., Davies, K. F., Fay, P. A., Firn, J, Gruner, D. S., Hector, A, Knops, J. M. H., MacDougall, A. S., Melbourne, B. A., Morgan, J. W., Orrock, J. L., Prober, S. M., Smith, M. D., 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529(7586), 390-393.

[44]

Hallett, L. M., Stein, C, Suding, K. N., 2017. Functional diversity increases ecological stability in a grazed grassland. Oecologia 183(3), 831-840.

[45]

Hammill, E, Hawkins, C. P., Greig, H. S., Kratina, P, Shurin, J. B., Atwood, T. B., 2018. Landscape heterogeneity strengthens the relationship between β-diversity and ecosystem function. Ecology 99(11), 2467-2475.

[46]

Hautier, Y, Isbell, F, Borer, E. T., Seabloom, E. W., Harpole, W. S., Lind, E. M., MacDougall, A. S., Stevens, C. J., Adler, P. B., Alberti, J, Bakker, J. D., Brudvig, L. A., Buckley, Y. M., Cadotte, M, Caldeira, M. C., Chaneton, E. J., Chu, C. J., Daleo, P, Dickman, C. R., Dwyer, J. M., Eskelinen, A, Fay, P. A., Firn, J, Hagenah, N, Hillebrand, H, Iribarne, O, Kirkman, K. P., Knops, J. M. H., La Pierre, K. J., McCulley, R. L., Morgan, J. W., Partel, M, Pascual, J, Price, J. N., Prober, S. M., Risch, A. C., Sankaran, M, Schuetz, M, Standish, R. J., Virtanen, R, Wardle, G. M., Yahdjian, L, Hector, A., 2018. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol., 2(1), 50-56.

[47]

He, M, Pan, Y, Zhou, G, Barry, K. E., Fu, Y, Zhou, X., 2022. Grazing and global change factors differentially affect biodiversity-ecosystem functioning relationships in grassland ecosystems. Glob. Change Biol., 28(18), 5492-5504.

[48]

He, N. P., Li, Y, Liu, C. C., Xu, L, Li, M. X., Zhang, J. H., He, J. S., Tang, Z. Y., Han, X. G., Ye, Q, Xiao, C. W., Yu, Q, Liu, S. R., Sun, W, Niu, S. L., Li, S. G., Sack, L, Yu, G. R., 2020. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends Ecol. Evol., 35(10), 908-918.

[49]

Hector, A, Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature 448(7150), 188-190.

[50]

Hector, A, Hautier, Y, Saner, P, Wacker, L, Bagchi, R, Joshi, J, Schererlorenzen, M, Spehn, E. M., Bazeleywhite, E, Weilenmann, M., 2010. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91(8), 2213-2220.

[51]

Hillebrand, H, Donohue, I, Harpole, W. S., Hodapp, D, Kucera, M, Lewandowska, A. M., Merder, J, Montoya, J. M., Freund, J. A., 2020. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol., 4(11), 1502-1509.

[52]

Hisano, M, Searle, E. B., Chen, H. Y., 2018. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev., 93(1), 439-456.

[53]

IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services (eds Díaz S et al.). IPBES Secretariat, Bonn, Germany.

[54]

Isbell, F, Cowles, J, Dee, L. E., Loreau, M, Reich, P. B., Gonzalez, A, Hector, A, Schmid, B., 2018. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett., 21(6), 763-778.

[55]

Isbell, F, Gonzalez, A, Loreau, M, Cowles, J, Diaz, S, Hector, A, Mace, G. M., Wardle, D. A., O'Connor, M. I., Duffy, J. E., Turnbull, L. A., Thompson, P. L., Larigauderie, A., 2017. Linking the influence and dependence of people on biodiversity across scales. Nature 546(7656), 65-72.

[56]

Isbell, F, Craven, D, Connolly, J, Loreau, M, Schmid, B, Beierkuhnlein, C, Bezemer, T. M., Bonin, C, Bruelheide, H, de Luca, E, Ebeling, A, Griffin, J. N., Guo, Q. F., Hautier, Y, Hector, A, Jentsch, A, Kreyling, J, Lanta, V, Manning, P, Meyer, S. T., Mori, A. S., Naeem, S, Niklaus, P. A., Polley, H. W., Reich, P. B., Roscher, C, Seabloom, E. W., Smith, M. D., Thakur, M. P., Tilman, D, Tracy, B. F., van der Putten, W. H., van Ruijven, J, Weigelt, A, Weisser, W. W., Wilsey, B, Eisenhauer, N., 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526(7574), 574-577.

[57]

Jing, X, Prager, C. M., Chen, L, Chu, H, Gotelli, N. J., He, J. S., Shi, Y, Yang, T, Zhu, B, Classen, A. T., 2022. The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Glob. Ecol. Biogeogr., 31, 486-500.

[58]

Keenan, T. F., Hollinger, D. Y., Bohrer, G, Dragoni, D, Munger, J. W., Schmid, H. P., Richardson, A. D., 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499(7458), 324-327.

[59]

Klein, J. A., Harte, J, Zhao, X. Q., 2007. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol. Appl., 17(2), 541-557.

[60]

Laforest-Lapointe, I, Paquette, A, Messier, C, Kembel, S. W., 2017. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546(7656), 145-147.

[61]

Le Bagousse-Pinguet, Y, Soliveres, S, Gross, N, Torices, R, Berdugo, M, Maestre, F. T., 2019. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A., 116(17), 8419-8424.

[62]

Le Provost, G, Schenk, N. V., Penone, C, Thiele, J, Westphal, C, Allan, E, Ayasse, M, Bluthgen, N, Boeddinghaus, R. S., Boesing, A. L., Bolliger, R, Busch, V, Fischer, M, Gossner, M. M., Holzel, N, Jung, K, Kandeler, E, Klaus, V. H., Kleinebecker, T, Leimer, S, Marhan, S, Morris, K, Muller, S, Neff, F, Neyret, M, Oelmann, Y, Perovic, D. J., Peter, S, Prati, D, Rillig, M. C., Saiz, H, Schafer, D, Scherer-Lorenzen, M, Schloter, M, Schoning, I, Schrumpf, M, Steckel, J, Steffan-Dewenter, I, Tschapka, M, Vogt, J, Weiner, C, Weisser, W, Wells, K, Werner, M, Wilcke, W, Manning, P., 2022. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol., 7, 236-249.

[63]

Le Provost, G, Thiele, J, Westphal, C, Penone, C, Allan, E, Neyret, M, van der Plas, F, Ayasse, M, Bardgett, R. D., Birkhofer, K, Boch, S, Bonkowski, M, Buscot, F, Feldhaar, H, Gaulton, R, Goldmann, K, Gossner, M. M., Klaus, V. H., Kleinebecker, T, Krauss, J, Renner, S, Scherreiks, P, Sikorski, J, Baulechner, D, Bluthgen, N, Bolliger, R, Borschig, C, Busch, V, Chiste, M, Fiore-Donno, A. M., Fischer, M, Arndt, H, Hoelzel, N, John, K, Jung, K, Lange, M, Marzini, C, Overmann, J, Pasalic, E, Perovic, D. J., Prati, D, Schafer, D, Schoning, I, Schrumpf, M, Sonnemann, I, Steffan-Dewenter, I, Tschapka, M, Turke, M, Vogt, J, Wehner, K, Weiner, C, Weisser, W, Wells, K, Werner, M, Wolters, V, Wubet, T, Wurst, S, Zaitsev, A. S., Manning, P., 2021. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun., 12(1), 3918.

[64]

Lefcheck, J. S., Byrnes, J. E., Isbell, F, Gamfeldt, L, Griffin, J. N., Eisenhauer, N, Hensel, M. J., Hector, A, Cardinale, B. J., Duffy, J. E., 2015. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun., 6, 6936.

[65]

Leibold, M. A., Chase, J. M., Ernest, S. K. M., 2017. Community assembly and the functioning of ecosystems: How metacommunity processes alter ecosystems attributes. Ecology 98(4), 909-919.

[66]

Li, F. S., Yan, Y. Z., Zhang, J. N., Zhang, Q, Niu, J. M., 2021. Taxonomic, functional, and phylogenetic beta diversity in the Inner Mongolia grassland. Glob. Ecol. Conserv., 28, e01634.

[67]

Li, H, Chen, Y. X., Yu, G. L., Rossi, F, Huo, D, De Philippis, R, Cheng, X. L., Wang, W. B., Li, R. H., 2021. Multiple diversity facets of crucial microbial groups in biological soil crusts promote soil multifunctionality. Glob. Ecol. Biogeogr., 30(6), 1204-1217.

[68]

Li, W, Zhang, H, Huang, G, Liu, R, Wu, H, Zhao, C, McDowell, N. G., 2020. Effects of nitrogen enrichment on tree carbon allocation: A global synthesis. Glob. Ecol. Biogeogr., 29(3), 573-589.

[69]

Li, Y, Dong, S, Liu, S, Su, X, Wang, X, Zhang, Y, Zhao, Z, Gao, X, Li, S, Tang, L., 2019. Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity. Ecol. Eng., 127, 375-382.

[70]

Lian, X, Jiao, L, Liu, Z., 2022. Saturation response of enhanced vegetation productivity attributes to intricate interactions. Glob. Change Biol., 29, 1080-1095.

[71]

Lin, D, Xia, J, Wan, S., 2010. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol., 188(1), 187-198.

[72]

Loreau, M., 2000. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 91(1), 3-17.

[73]

Loreau, M, Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412(6842), 72-76.

[74]

Loreau, M, de Mazancourt, C., 2013. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett., 16, 106-115.

[75]

Loreau, M, Mouquet, N, Gonzalez, A., 2003. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. U.S.A., 100(22), 12765-12770.

[76]

Loreau, M, Naeem, S, Inchausti, P, Bengtsson, J, Grime, J. P., Hector, A, Hooper, D. U., Huston, M. A., Raffaelli, D, Schmid, B., 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294(5543), 804-808.

[77]

Lukac, M, Calfapietra, C, Godbold, D. L., 2003. Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Glob. Change Biol., 9(6), 838-848.

[78]

Luo, W, Muraina, T. O., Griffin-Nolan, R. J., Ma, W, Song, L, Fu, W, Yu, Q, Knapp, A. K., Wang, Z, Han, X., 2022. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Ecology 104(2), e3920.

[79]

Luo, Y., 2007. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst., 38, 683-712.

[80]

Luo, Y, Wan, S, Hui, D, Wallace, L. L., 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413(6856), 622-625.

[81]

Ma, F, Song, B, Quan, Q, Zhang, F, Wang, J, Zhou, Q, Niu, S., 2020. Light competition and biodiversity loss cause saturation response of aboveground net primary productivity to nitrogen enrichment. J. Geophys. Res. Biogeosci., 125(3), e2019JG005556.

[82]

Maestre, F. T., Callaway, R. M., Valladares, F, Lortie, C. J., 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol., 97(2), 199-205.

[83]

Maestre, F. T., Quero, J. L., Gotelli, N. J., Adrián, E, Victoria, O, Manuel, D. B., Miguel, G. G., Bowker, M. A., Santiago, S, Cristina, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335(6065), 214-218.

[84]

Maestre, F. T., Le Bagousse-Pinguet, Y, Delgado-Baquerizo, M, Eldridge, D. J., Saiz, H, Berdugo, M, Gozalo, B, Ochoa, V, Guirado, E, García-Gómez, M., 2022. Grazing and ecosystem service delivery in global drylands. Science 378(6622), 915-920.

[85]

Manning, P, van der Plas, F, Soliveres, S, Allan, E, Maestre, F. T., Mace, G, Whittingham, M. J., Fischer, M., 2018. Redefining ecosystem multifunctionality. Nat. Ecol. Evol., 2(3), 427-436.

[86]

Mau, R. L., Liu, C. M., Aziz, M, Schwartz, E, Dijkstra, P, Marks, J. C., Price, L. B., Keim, P, Hungate, B. A., 2015. Linking soil bacterial biodiversity and soil carbon stability. ISME J., 9(6), 1477-1480.

[87]

Mazzochini, G. G., Fonseca, C. R., Costa, G. C., Santos, R. M., Oliveira, A. T., Ganade, G., 2019. Plant phylogenetic diversity stabilizes large-scale ecosystem productivity. Glob. Ecol. Biogeogr., 28(10), 1430-1439.

[88]

Milchunas, D. G., Lauenroth, W. K., 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr., 63(4), 327-366.

[89]

Milchunas, D. G., Sala, O. E., Lauenroth, W. K., 1988. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat., 132(1), 87-106.

[90]

Mo, J, Zhang, W, Zhu, W, Gundersen, P, Fang, Y, Li, D, Wang, H., 2008. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol., 14(2), 403-412.

[91]

Morecroft, M.D., Parmesan, C., Schoeman, D., Vale, M.M., 2022. IPCC Sixth Assessment Report (AR6): Climate Change 2022-Impacts, Adaptation and Vulnerability: Factsheet Biodiversity. Cambridge University Press, Cambridge, UK.

[92]

Mori, A. S., Furukawa, T, Sasaki, T., 2013. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev., 88(2), 349-364.

[93]

Mori, A. S., Isbell, F, Seidl, R., 2018. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol., 33(7), 549-564.

[94]

Naeem, S, Hahn, D. R., Schuurman, G., 2000. Producer–decomposer co-dependency influences biodiversity effects. Nature 403(6771), 762-764.

[95]

Natali, S. M., Schuur, E. A., Rubin, R. L., 2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol., 100(2), 488-498.

[96]

Newbold, T, Hudson, L. N., Hill, S. L., Contu, S, Lysenko, I, Senior, R. A., Börger, L, Bennett, D. J., Choimes, A, Collen, B., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520(7545), 45-50.

[97]

Niu, S, Sherry, R. A., Zhou, X, Luo, Y., 2013. Ecosystem carbon fluxes in response to warming and clipping in a tallgrass prairie. Ecosystems 16(6), 948-961.

[98]

Niu, S, Wu, M, Han, Y, Xia, J, Li, L, Wan, S., 2008. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol., 177(1), 209-219.

[99]

Olff, H, Ritchie, M. E., 1998. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol., 13(7), 261-265.

[100]

Olivares, I, Svenning, J. C., Bodegom, P. M. V., Balslev, H., 2015. Effects of warming and drought on the vegetation and plant diversity in the Amazon basin. Bot. Rev., 81(1), 42-69.

[101]

Omidipour, R, Tahmasebi, P, Faizabadi, M. F., Faramarzi, M, Ebrahimi, A., 2021. Does beta diversity predict ecosystem productivity better than species diversity?. Ecol. Indic., 122, 107212.

[102]

Pasari, J. R., Levi, T, Zavaleta, E. S., Tilman, D., 2013. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A., 110(25), 10219-10222.

[103]

Peng, J, Ma, F, Quan, Q, Chen, X, Wang, J, Yan, Y, Zhou, Q, Niu, S., 2022. Nitrogen enrichment alters climate sensitivity of biodiversity and productivity differentially and reverses the relationship between them in an alpine meadow. Sci. Total Environ., 835, 155418.

[104]

Peng, Y, Penuelas, J, Vesterdal, L, Yue, K, Peguero, G, Fornara, D. A., Hedenec, P, Steffens, C, Wu, F. Z., 2022. Responses of soil fauna communities to the individual and combined effects of multiple global change factors. Ecol. Lett., 25(9), 1961-1973.

[105]

Peñuelas, J, Prieto, P, Beier, C, Cesaraccio, C, de Angelis, P, de Dato, G, Emmett, B. A., Estiarte, M, Garadnai, J, Gorissen, A., 2007. Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought: Reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol., 13(12), 2563-2581.

[106]

Peters, M. K., Hemp, A, Appelhans, T, Becker, J. N., Behler, C, Classen, A, Detsch, F, Ensslin, A, Ferger, S. W., Frederiksen, S. B., Gebert, F, Gerschlauer, F, Gutlein, A, Helbig-Bonitz, M, Hemp, C, Kindeketa, W. J., Kuhnel, A, Mayr, A. V., Mwangomo, E, Ngereza, C, Njovu, H. K., Otte, I, Pabst, H, Renner, M, Roder, J, Rutten, G, Costa, D. S., Sierra-Cornejo, N, Vollstadt, M. G. R., Dulle, H. I., Eardley, C. D., Howell, K. M., Keller, A, Peters, R. S., Ssymank, A, Kakengi, V, Zhang, J, Bogner, C, Bohning-Gaese, K, Brandl, R, Hertel, D, Huwe, B, Kiese, R, Kleyer, M, Kuzyakov, Y, Nauss, T, Schleuning, M, Tschapka, M, Fischer, M, Steffan-Dewenter, I., 2019. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568(7750), 88-92.

[107]

Pires, A. P., Srivastava, D. S., Marino, N. A., MacDonald, A. A. M., Figueiredo-Barros, M. P., Farjalla, V. F., 2018. Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99(5), 1203-1213.

[108]

Piseddu, F, Bellocchi, G, Picon-Cochard, C., 2021. Mowing and warming effects on grassland species richness and harvested biomass: Meta-analyses. Agron. Sustain. Dev., 41, 74.

[109]

IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA.

[110]

Quan, Q, Zhang, F, Jiang, L, Chen, H. Y., Wang, J, Ma, F, Song, B, Niu, S., 2021. High-level rather than low-level warming destabilizes plant community biomass production. J. Ecol., 109(4), 1607-1617.

[111]

Quan, Q, Tian, D, Luo, Y, Zhang, F, Crowther, T. W., Zhu, K, Chen, H. Y., Zhou, Q, Niu, S., 2019. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv., 5(8), eaav1131.

[112]

Reich, P. B., 2009. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science 326(5958), 1399-1402.

[113]

Reich, P. B., Knops, J, Tilman, D, Craine, J, Ellsworth, D, Tjoelker, M, Lee, T, Wedin, D, Naeem, S, Bahauddin, D., 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410(6830), 809-810.

[114]

Rillig, M. C., Ryo, M, Lehmann, A, Aguilar-Trigueros, C. A., Buchert, S, Wulf, A, Iwasaki, A, Roy, J, Yang, G., 2019. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366(6467), 886-890.

[115]

Ritchie, H., Roser M., 2013. Land, Use. our world in data. https://ourworldindata.org/land-use (accessed 15 May 2022).

[116]

Roger, F, Bertilsson, S, Langenheder, S, Osman, O. A., Gamfeldt, L., 2016. Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality. Ecology 97(10), 2716-2728.

[117]

Ruiz-Benito, P, Ratcliffe, S, Jump, A. S., Gómez-Aparicio, L, Madrigal-González, J, Wirth, C, Kändler, G, Lehtonen, A, Dahlgren, J, Kattge, J., 2017. Functional diversity underlies demographic responses to environmental variation in European forests. Glob. Ecol. Biogeogr., 26(2), 128-141.

[118]

Saleska, S. R., Shaw, M. R., Fischer, M. L., Dunne, J. A., Still, C. J., Holman, M. L., Harte, J., 2002. Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Glob. Biogeochem. Cycles 16(4), 1055.

[119]

Sasaki, T, Lu, X, Hirota, M, Bai, Y., 2019. Species asynchrony and response diversity determine multifunctional stability of natural grasslands. J. Ecol., 107(4), 1862-1875.

[120]

Schnabel, F, Liu, X, Kunz, M, Barry, K. E., Bongers, F. J., Bruelheide, H, Fichtner, A, Härdtle, W, Li, S, C-Pfaff, T., 2021. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci. Adv., 7(51), eabk1643.

[121]

Schroter, M, Stumpf, K. H., Loos, J, van Oudenhoven, A. P. E., Bohnke-Henrichs, A, Abson, D. J., 2017. Refocusing ecosystem services towards sustainability. Ecosyst. Serv., 25, 35-43.

[122]

Soliveres, S, van der Plas, F, Manning, P, Prati, D, Gossner, M. M., Renner, S. C., Alt, F, Arndt, H, Baumgartner, V, Binkenstein, J, Birkhofer, K, Blaser, S, Bluthgen, N, Boch, S, Bohm, S, Borschig, C, Buscot, F, Diekotter, T, Heinze, J, Holzel, N, Jung, K, Klaus, V. H., Kleinebecker, T, Klemmer, S, Krauss, J, Lange, M, Morris, E. K., Muller, J, Oelmann, Y, Overmann, J, Pasalic, E, Rillig, M. C., Schaefer, H. M., Schloter, M, Schmitt, B, Schoning, I, Schrumpf, M, Sikorski, J, Socher, S. A., Solly, E. F., Sonnemann, I, Sorkau, E, Steckel, J, Steffan-Dewenter, I, Stempfhuber, B, Tschapka, M, Turke, M, Venter, P. C., Weiner, C. N., Weisser, W. W., Werner, M, Westphal, C, Wilcke, W, Wolters, V, Wubet, T, Wurst, S, Fischer, M, Allan, E., 2016. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536(7617), 456-459.

[123]

Spinoni, J, Vogt, J. V., Naumann, G, Barbosa, P, Dosio, A., 2018. Will drought events become more frequent and severe in Europe?. Int. J. Climatol., 38(4), 1718-1736.

[124]

Steudel, B, Hector, A, Friedl, T, Lofke, C, Lorenz, M, Wesche, M, Kessler, M., 2012. Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol. Lett., 15(12), 1397-1405.

[125]

Su, J. S., Zhao, Y. J., Xu, F. W., Bai, Y. F., 2022. Multiple global changes drive grassland productivity and stability: A meta-analysis. J. Ecol., 110(12), 2850-2869.

[126]

Tardy, V, Mathieu, O, Lévêque, J, Terrat, S, Chabbi, A, Lemanceau, P, Ranjard, L, Maron, P. A., 2014. Stability of soil microbial structure and activity depends on microbial diversity. Env. Microbiol. Rep., 6(2), 173-183.

[127]

Terrer, C, Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C, Vicca, S, Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A., 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9(9), 684-689.

[128]

Thakur, M. P., Del Real, I. M., Cesarz, S, Steinauer, K, Reich, P. B., Hobbie, S, Ciobanu, M, Rich, R, Worm, K, Eisenhauer, N., 2019. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem., 135, 184-193.

[129]

Thakur, M. P., van der Putten, W. H., Wilschut, R. A., Veen, G. C., Kardol, P, van Ruijven, J, Allan, E, Roscher, C, van Kleunen, M, Bezemer, T. M., 2021. Plant–soil feedbacks and temporal dynamics of plant diversity–productivity relationships. Trends Ecol. Evol., 36, 651-661.

[130]

Thebault, A, Mariotte, P, Lortie, C. J., MacDougall, A. S., 2014. Land management trumps the effects of climate change and elevated CO2 on grassland functioning. J. Ecol., 102(4), 896-904.

[131]

Thompson, P. L., Kefi, S, Zelnik, Y. R., Dee, L. E., Wang, S. P., de Mazancourt, C, Loreau, M, Gonzalez, A., 2021. Scaling up biodiversity-ecosystem functioning relationships: The role of environmental heterogeneity in space and time. Proc. R. Soc. B-Biol. Sci., 288(1946), 20202779.

[132]

Tilman, D., 1999. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80(5), 1455-1474.

[133]

Tilman, D, Reich, P. B., Knops, J. M., 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441(7093), 629-632.

[134]

Tilman, D, Isbell, F, Cowles, J. M., 2014. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst., 45, 471-493.

[135]

Tilman, D, Reich, P. B., Knops, J, Wedin, D, Mielke, T, Lehman, C., 2001. Diversity and productivity in a long-term grassland experiment. Science 294(5543), 843-845.

[136]

Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T., Lehman, C., 2001. Diversity and productivity in a long-term grassland experiment. Science 294 (5543), 843–845.

[137]

UNEP, 2010. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets.

[138]

van der Plas, F, Manning, P, Soliveres, S, Allan, E, Scherer-Lorenzen, M, Verheyen, K, Wirth, C, Zavala, M. A., Ampoorter, E, Baeten, L, Barbaro, L, Bauhus, J, Benavides, R, Benneter, A, Bonal, D, Bouriaud, O, Bruelheide, H, Bussotti, F, Carnol, M, Castagneyroli, B, Charbonnier, Y, Coomes, D. A., Coppi, A, Bestias, C. C., Dawud, S. M., De Wandeler, H, Domisch, T, Finer, L, Gessler, A, Granier, A, Grossiord, C, Guyot, V, Hattenschwiler, S, Jactel, H, Jaroszewicz, B, Joly, F. X., Jucker, T, Koricheva, J, Milligan, H, Mueller, S, Muys, B, Nguyen, D, Pollastrini, M, Ratcliffe, S, Raulund-Rasmussen, K, Selvi, F, Stenlid, J, Valladares, F, Vesterdal, L, Zielinski, D, Fischer, M., 2016. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl. Acad. Sci. U.S.A., 113(13), 3557-3562.

[139]

Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M, Yuan, S, Dominguez-Castro, F., 2020. A review of environmental droughts: Increased risk under global warming?. Earth Sci. Rev., 201, 102953.

[140]

Wagg, C, Bender, S. F., Widmer, F, van der Heijden, M. G. A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A., 111(14), 5266-5270.

[141]

Wagg, C, Schlaeppi, K, Banerjee, S, Kuramae, E. E., van der Heijden, M. G., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun., 10, 4841.

[142]

Wan, S, Hui, D, Wallace, L, Luo, Y., 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycles 19(2), GB2014.

[143]

Wang, B, Chen, W, Dai, J, Li, Z, Fu, Z, Sarmah, S, Luo, Y, Niu, S., 2022. Dryness controls temperature-optimized gross primary productivity across vegetation types. Agric. For. Meteorol., 323, 109073.

[144]

Wang, J, Song, B, Ma, F, Tian, D, Li, Y, Yan, T, Quan, Q, Zhang, F, Li, Z, Wang, B., 2019. Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Funct. Ecol., 33(11), 2239-2253.

[145]

Wang, L, Delgado-Baquerizo, M, Wang, D, Isbell, F, Liu, J, Feng, C, Liu, J, Zhong, Z, Zhu, H, Yuan, X., 2019. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl. Acad. Sci. U.S.A., 116(13), 6187-6192.

[146]

Wang, S. P., Loreau, M., 2016. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett., 19(5), 510-518.

[147]

Wang, S. P., Loreau, M, de Mazancourt, C, Isbell, F, Beierkuhnlein, C, Connolly, J, Deutschman, D. H., Dolezal, J, Eisenhauer, N, Hector, A, Jentsch, A, Kreyling, J, Lanta, V, Leps, J, Polley, H. W., Reich, P. B., van Ruijven, J, Schmid, B, Tilman, D, Wilsey, B, Craven, D., 2021. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology 102(6), e03332.

[148]

Wang, Y., Fu, Z., Hu, Z., Niu, S., 2022b. Tracking global patterns of drought-induced productivity loss along severity gradient. J. Geophys. Res. Biogeosci. 127 (6) e2021JG006753.

[149]

Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21(2-3), 213-251.

[150]

Willig, M. R., 2011. Biodiversity and productivity. Science 333(6050), 1709-1710.

[151]

Wu, Z, Dijkstra, P, Koch, G. W., Peñuelas, J, Hungate, B. A., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol., 17(2), 927-942.

[152]

Xu, Z, Shimizu, H, Yagasaki, Y, Ito, S, Zheng, Y, Zhou, G., 2013. Interactive effects of elevated CO2, drought, and warming on plants. J. Plant Growth Regul., 32(4), 692-707.

[153]

Xue, K, Yuan, M. M., Shi, Z. J., Qin, Y, Deng, Y, Cheng, L, Wu, L, He, Z, Van Nostrand, J. D., Bracho, R, Natali, S, Schuur, E. A. G., Luo, C, Konstantinidis, K. T., Wang, Q, Cole, J. R., Tiedje, J. M., Luo, Y, Zhou, J., 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6(6), 595-600.

[154]

Yachi, S, Loreau, M., 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. U.S.A., 96(4), 1463-1468.

[155]

Yan, Y, Zhang, Q, Buyantuev, A, Liu, Q, Niu, J., 2020. Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. Sci. Total Environ., 726, 138529.

[156]

Yan, Y, Wang, J, Tian, D, Luo, Y, Xue, X, Peng, F, J-He, S, Liu, L, Jiang, L, Wang, X., 2022. Sustained increases in soil respiration accompany increased carbon input under long-term warming across global grasslands. Geoderma 428, 116157.

[157]

Yin, J, Guo, S, Yang, Y, Chen, J, Gu, L, Wang, J, He, S, Wu, B, Xiong, J., 2022. Projection of droughts and their socioeconomic exposures based on terrestrial water storage anomaly over China. Sci. China Earth Sci., 65(9), 1772-1787.

[158]

Yue, K, Peng, Y, Peng, C, Yang, W, Peng, X, Wu, F., 2016. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: A meta-analysis. Sci. Rep., 6(1), 19895.

[159]

Yue, K, Fornara, D. A., Yang, W, Peng, Y, Peng, C, Liu, Z, Wu, F., 2017. Influence of multiple global change drivers on terrestrial carbon storage: Additive effects are common. Ecol. Lett., 20(5), 663-672.

[160]

Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A., Field, C. B., 2003. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl. Acad. Sci. U.S.A., 100(13), 7650-7654.

[161]

Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Thomas, B. D., Cleland, E. E., Field, C. B., Mooney, H. A., 2003. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr., 73(4), 585-604.

[162]

Zhang, F, Quan, Q, Ma, F, Tian, D, Zhou, Q, Niu, S., 2019. Differential responses of ecosystem carbon flux components to experimental precipitation gradient in an alpine meadow. Funct. Ecol., 33(5), 889-900.

[163]

Zhang, R, Wang, J, Niu, S., 2021. Toward a sustainable grazing management based on biodiversity and ecosystem multifunctionality in drylands. Curr. Opin. Environ. Sustain., 48, 36-43.

[164]

Zhang, R, Wang, Z, Niu, S, Tian, D, Wu, Q, Gao, X, Schellenberg, M. P., Han, G., 2021. Diversity of plant and soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. Sci. Total Environ., 776, 145730.

[165]

Zhang, R, Schellenberg, M. P., Tian, D, Ma, F, Zhang, T, Wang, H, Wu, Q, Bai, Y, Han, G, Niu, S., 2021. Shifting community composition determines the biodiversity-productivity relationship under increasing precipitation and N deposition. J. Veg. Sci., 32(2), e12998.

[166]

Zhang, R. Y., Tian, D. S., Chen, H. Y. H., Seabloom, E. W., Han, G. D., Wang, S. P., Yu, G. R., Li, Z. L., Niu, S. L., 2021. Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global meta-analysis. Glob. Ecol. Biogeogr., 31(1), 155-167.

[167]

Zhang, R. Y., Tian, D. S., Wang, J. S., Pan, J. X., Zhu, J. T., Li, Y, Yan, Y. J., Song, L, Wang, S, Chen, C, Niu, S. L., 2022. Dryness weakens the positive effects of plant and fungal beta diversities on above- and belowground biomass. Glob. Change Biol., 28(22), 6629-6639.

[168]

Zhao, J, Luo, T, Wei, H, Deng, Z, Li, X, Li, R, Tang, Y., 2019. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol., 279, 107761.

[169]

Zhou, G, Luo, Q, Chen, Y, Hu, J, He, M, Gao, J, Zhou, L, Liu, H, Zhou, X., 2019. Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: A global synthesis. J. Appl. Ecol., 56(8), 2007-2019.

[170]

Zhou, Z. H., Wang, C. K., Luo, Y. Q., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun., 11(1), 3072.

[171]

Zhu, C, Ma, Y, Wu, H, Sun, T, La Pierre, K. J., Sun, Z, Yu, Q., 2016. Divergent effects of nitrogen addition on soil respiration in a semiarid grassland. Sci. Rep., 6(1), 33541.

[172]

Zhu, J, Zhang, Y, Yang, X, Chen, N, Jiang, L., 2020. Synergistic effects of nitrogen and CO2 enrichment on alpine grassland biomass and community structure. New Phytol., 228(4), 1283-1294.

[173]

Zuo, X, Zhang, J, Lv, P, Wang, S, Yang, Y, Yue, X, Zhou, X, Li, Y, Chen, M, Lian, J, Qu, H, Liu, L, Ma, X., 2018. Effects of plant functional diversity induced by grazing and soil properties on above- and belowground biomass in a semiarid grassland. Ecol. Indic., 93, 555-561.

PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

/