Seeking sustainable solutions for human food systems

Zhiyuan Zhu , Jiajia Duan , Zhenzhong Dai , Yongzhong Feng , Gaihe Yang

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (3) : 183 -187.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (3) :183 -187. DOI: 10.1016/j.geosus.2023.04.001
Perspective
review-article

Seeking sustainable solutions for human food systems

Author information +
History +
PDF

Abstract

Sustainable food system development is the cornerstone of global human survival and development. This research briefly analyzes the challenges facing the current food system, summarizes the directions of food system transformation, expounds the role of geography in the transformation of food system, and discusses the future paths to promote the sustainable development of food system. The main conclusions are as follows: 1) The interaction of factors such as regional conflicts, climate change, slowdown in development, raging epidemics, and resource and environmental constraints pose multiple challenges to the global food system. 2) The food system should be high-quality, efficient, nutritious and healthy, green and low-carbon, inclusive and inclusive transformation. 3) Geography can provide solutions for the transformation of food systems. 4) The transformation paths of the food system includes: establishing a global food system with benefit sharing, cleaner production, and fair participation, improving the innovation capability of the food system, and establishing an effective organizational guarantee system.

Keywords

Food systems / Sustainable development / Solutions

Cite this article

Download citation ▾
Zhiyuan Zhu, Jiajia Duan, Zhenzhong Dai, Yongzhong Feng, Gaihe Yang. Seeking sustainable solutions for human food systems. Geography and Sustainability, 2023, 4(3): 183-187 DOI:10.1016/j.geosus.2023.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by Shaanxi Province’s 2022 Provincial Grain Special Project (Shaanxi Grain Reserve Safety Early Warning and Emergency Management Strategy Research), the 2022 Shaanxi Provincial Association for Science and Technology Decision-making Consulting Project (Research on the Industrial Model of Comprehensive Land Remediation in the Background of Rural Revitalization) and the Strategic Leading Special Science and Technology Program of the Chinese Academy of Sciences (Grant No. XDA20040202).

References

[1]

Abbass, K, Qasim, M. Z., Song, H, Murshed, M, Mahmood, H, Younis, I., 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res., 29(28), 42539-42559.

[2]

Al-Hanbali, A, Shibuta, K, Alsaaideh, B, Tawara, Y., 2022. Analysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process. Geo-Spatial Inf. Sci., 25(2), 212-228.

[3]

Alabi, M. O., Ngwenyama, O., 2023. Food security and disruptions of the global food supply chains during COVID-19: Building smarter food supply chains for post COVID-19 era. Br. Food J., 125(1), 167-185.

[4]

An, K, Xie, G. D., Leng, Y. F., Xiao, Y., 2003. Design of farmland GIS for precision agriculture. Chin. Geogr. Sci., 13(1), 20-24.

[5]

Azadi, H, Ghazali, S, Ghorbani, M, Tan, R, Witlox, F., 2022. Contribution of small-scale farmers to global food security: A meta-analysis. J. Sci. Food Agric., 103(6), 2715-2726.

[6]

Balbi, S, Alvarez-Rodriguez, U, Latora, V, Antonioni, A, Villa, F., 2020. A game theory model to explore the role of cooperation and diversity in community food security: The case of Southern Malawi. Reg. Environ. Change 20(2), 63.

[7]

Bender, K. E., Badiger, A, Roe, B. E., Shu, Y, Qi, D., 2022. Consumer behavior during the COVID-19 pandemic: An analysis of food purchasing and management behaviors in US households through the lens of food system resilience. Socio-Econ. Plan. Sci., 82, 101107.

[8]

Bharti, A, Paritosh, K, Mandla, V. R., Chawade, A, Vivekanand, V., 2021. GIS application for the estimation of bioenergy potential from agriculture residues: An overview. Energies 14(4), 898.

[9]

Bozdag, A, Yavuz, F, Gunay, A. S., 2016. AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ. Earth Sci., 75(9), 813.

[10]

Bukari, C, Aning-Agyei, M. A., Kyeremeh, C, Essilfie, G, Amuquandoh, K. F., Owusu, A. A., Otoo, I. C., Bukari, K. I., 2022. Effect of COVID-19 on household food insecurity and poverty: Evidence from Ghana. Soc. Indic. Res., 159(3), 991-1015.

[11]

Bulut, H., 2017. Managing catastrophic risk in agriculture through ex ante subsidized insurance or ex post disaster aid. J. Agric. Resour. Econ., 42(3), 406-426.

[12]

Chen, X, Cui, Z, Fan, M, Vitousek, P, Zhao, M, Ma, W, Wang, Z, Zhang, W, Yan, X, Yang, J, Deng, X, Gao, Q, Zhang, Q, Guo, S, Ren, J, Li, S, Ye, Y, Wang, Z, Huang, J, Tang, Q, Sun, Y, Peng, X, Zhang, J, He, M, Zhu, Y, Xue, J, Wang, G, Wu, L, An, N, Wu, L, Ma, L, Zhang, W, Zhang, F., 2014. Producing more grain with lower environmental costs. Nature 514(7523), 486-489.

[13]

de Roest, K, Ferrari, P, Knickel, K., 2018. Specialisation and economies of scale or diversification and economies of scope? Assessing different agricultural development pathways. J. Rural Stud., 59, 222-231.

[14]

Desiderio, E, Garcia-Herrero, L, Hall, D, Segre, A, Vittuari, M., 2022. Social sustainability tools and indicators for the food supply chain: A systematic literature review. Sustain. Prod. Consum., 30, 527-540.

[15]

Di Luzio, M, Arnold, J. G., Srinivasan, R., 2005. Effect of GIS data quality on small watershed stream flow and sediment simulations. Hydrol. Process., 19(3), 629-650.

[16]

Falkowski, J., 2018. Together we stand, divided we fall? Smallholders' access to political power and their place in Poland's agricultural system. J. Agrar. Change 18(4), 893-903.

[17]

Fang, F, Zhao, J, Di, J, Zhang, L., 2022. Spatial correlations and driving mechanisms of low-carbon agricultural development in China. Front. Environ. Sci., 10, 1014652.

[18]

Farooq, M. S., Uzair, M, Raza, A, Habib, M, Xu, Y, Yousuf, M, Yang, S. H., Ramzan Khan, M., 2022. Uncovering the research gaps to alleviate the negative impacts of climate change on food security: A review. Front. Plant Sci., 13, 927535.

[19]

Fu, B., 2020. Promoting Geography for sustainability. Geogr. Sustain., 1(1), 1-7.

[20]

Fu, B, Meadows, M. E., Zhao, W., 2022. Geography in the Anthropocene: Transforming our world for sustainable development. Geogr. Sustain., 3(1), 1-6.

[21]

Gersmehl, P., 2008. GIS applications in agriculture. Trans. GIS 12(2), 285-286.

[22]

Giller, K. E., Delaune, T, Silva, J. V., Descheemaeker, K, van de Ven, G, Schut, A. G. T., van Wijk, M, Hammond, J, Hochman, Z, Taulya, G, Chikowo, R, Narayanan, S, Kishore, A, Bresciani, F, Teixeira, H. M., Andersson, J. A., van Ittersum, M. K., 2021. The future of farming: Who will produce our food?. Food Secur., 13(5), 1073-1099.

[23]

Green, R, Scheelbeek, P, Bentham, J, Cuevas, S, Smith, P, Dangour, A. D., 2022. Growing health: Global linkages between patterns of food supply, sustainability, and vulnerability to climate change. Lancet Planet. Health 6(11), e901-e908.

[24]

Halpern, B. S., Frazier, M, Verstaen, J, P-Rayner, E, Clawson, G, Blanchard, J. L., Cottrell, R. S., Froehlich, H. E., Gephart, J. A., Jacobsen, N. S., Kuempel, C. D., McIntyre, P. B., Metian, M, Moran, D, Nash, K. L., Többen, J, Williams, D. R., 2022. The environmental footprint of global food production. Nat. Sustain., 5, 1027-1039.

[25]

Hart, T. G., Davids, Y. D., Rule, S, Tirivanhu, P, Mtyingizane, S., 2022. The COVID-19 pandemic reveals an unprecedented rise in hunger: The South African Government was ill-prepared to meet the challenge. Sci. Afr., 16, e01169.

[26]

Hassan, I, Javed, M. A., Asif, M, Luqman, M, Ahmad, S. R., Ahmad, A, Akhtar, S, Hussain, B., 2020. Weighted overlay based land suitability analysis of agriculture land in Azad Jammu and Kashmir using GIS and AHP. Pak. J. Agric. Sci., 57(6), 1509-1519.

[27]

Himmelgreen, D, Romero-Daza, N, Heuer, J, Lucas, W, Salinas-Miranda, A. A., Stoddard, T., 2022. Using syndemic theory to understand food insecurity and diet-related chronic diseases. Soc. Sci. Med., 295, 113124.

[28]

Jakku, E, Taylor, B, Fleming, A, Mason, C, Fielke, S, Sounness, C, Thorburn, P., 2019. “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS-Wagen. J. Life Sci., 90–91, Article 100285

[29]

Kramer, B, Hazell, P, Alderman, H, Ceballos, F, Kumar, N, Timu, A. G., 2022. Is agricultural insurance fulfilling its promise for the developing world? A review of recent evidence. Annu. Rev. Resour. Econ., 14, 291-311.

[30]

Kumareswaran, K, Jayasinghe, G. Y., 2022. Systematic review on ensuring the global food security and covid-19 pandemic resilient food systems: Towards accomplishing sustainable development goals targets. Discov. Sustain., 3(1), 29.

[31]

Leroy, J. L., Ruel, M, Frongillo, E. A., Harris, J, Ballard, T. J., 2015. Measuring the food access dimension of food security: A critical review and mapping of indicators. Food Nutr. Bull., 36(2), 167-195.

[32]

Li, K, Li, Q., 2022. Towards more efficient low-carbon agricultural technology extension in China: Identifying lead smallholder farmers and their behavioral determinants. Environ. Sci. Pollut. Res., 30, 27833-27845.

[33]

Li, Z. W., Pan, J. J., Zhang, J. B., 2005. Study on intelligent system of hyper-spectral data gathering based on GPS in farm machinery. Spectrosc. Spect. Anal., 25(6), 979-983.

[34]

Mantilla, J, Thomas, P, Stegelin, F, Houston, J, Chappel, M., 2010. Using GIS technology to evaluate transportation of ornamental crops in Georgia. Hortscience 45(4), 488.

[35]

Mathenge, M, Sonneveld, B. G. J. S., Broerse, J. E. W., 2022. Application of GIS in agriculture in promoting evidence-informed decision making for improving agriculture sustainability: A systematic review. Sustainability 14(16), 9974.

[36]

Mehrabi, Z, Delzeit, R, Ignaciuk, A, Levers, C, Braich, G, Bajaj, K, Amo-Aidoo, A, Anderson, W, Balgah, R. A., Benton, T. G., Chari, M. M., Ellis, E. C., Gahi, N. Z., Gaupp, F, Garibaldi, L. A., Gerber, J. S., Godde, C. M., Grass, I, Heimann, T, Hirons, M, Hoogenboom, G, Jain, M, James, D, Makowski, D, Masamha, B, Meng, S, Monprapussorn, S, Müller, D, Nelson, A, Newlands, N. K., Noack, F, Oronje, M, Raymond, C, Reichstein, M, Rieseberg, L. H., Rodriguez-Llanes, J. M., Rosenstock, O, Rowhani, P, Sarhadi, A, Seppelt, R, Sidhu, B. S., Sieglinde Snapp, S, Soma, T, Sparks, A. H., Teh, L, Tigchelaar, M, Vogel, M. M., West, P. C., Wittman, H, You, L., 2022. Research priorities for global food security under extreme events. One Earth 5(7), 756-766.

[37]

Mendas, A, Delali, A., 2012. Integration of multicriteria decision analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Comput. Electron. Agric., 83, 117-126.

[38]

Misra, N. N., Dixit, Y, Al-Mallahi, A, Bhullar, M. S., Upadhyay, R, Martynenko, A., 2022. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J., 9(9), 6305-6324.

[39]

Norris, S. A., Frongillo, E. A., Black, M. M., Dong, Y, Fall, C, Lampl, M, Liese, A. D., Naguib, M, Prentice, A, Rochat, T, Stephensen, C. B., Tinago, C. B., Ward, K. A., Wrottesley, S. V., Patton, G. C., 2022. Nutrition in adolescent growth and development. Lancet 399(10320), 172-184.

[40]

Pineiro, V, Melia-Marti, E, Garcia-Alvarez-Coque, J. M., 2021. Collaboration for social innovation in the agri-food system in Latin America and the Caribbean. Span. J. Agric. Res., 19(4), e0112.

[41]

Popp, A, Calvin, K, Fujimori, S, Havlik, P, Humpenoder, F, Stehfest, E, Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti, M, Hasegawa, T, Kyle, P, Obersteiner, M, Tabeau, A, Takahashi, K, Valin, H, Waldhoff, S, Weindl, I, Wise, M, Kriegler, E, Lotze-Campen, H, Fricko, O, Riahi, K, van Vuuren, D. P., 2017. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331-345.

[42]

Rao, M. N., Waits, D. A., Neilsen, M. L., 2000. A GIS-based modeling approach for implementation of sustainable farm management practices. Environ. Model. Softw., 15(8), 745-753.

[43]

Renard, D, Tilman, D., 2019. National food production stabilized by crop diversity. Nature 571(7764), 257-260.

[44]

Saboori, B, Radmehr, R, Zhang, Y. Y., Zekri, S., 2022. A new face of food security: A global perspective of the COVID-19 pandemic. Prog. Disaster Sci., 16, 100252.

[45]

Savary, S, Waddington, S, Akter, S, Almekinders, C. J. M., Harris, J, Korsten, L, Rötter, R. P., van den Broeck, G., 2022. Revisiting food security in 2021: An overview of the past year. Food Secur., 14(1), 1-7.

[46]

Serbu, R, Borza, S, Marza, B., 2013. Bio-eco-analysis for risk factors using GIS software. Int. J. Comput. Commun. Control 8(2), 304-311.

[47]

Sharma, R, Kamble, S. S., Gunasekaran, A., 2018. Big GIS analytics framework for agriculture supply chains: A literature review identifying the current trends and future perspectives. Comput. Electron. Agric., 155, 103-120.

[48]

Shepherd, M, Turner, J. A., Small, B, Wheeler, D., 2020. Priorities for science to overcome hurdles thwarting the full promise of the `digital agriculture' revolution. J. Sci. Food Agric., 100(14), 5083-5092.

[49]

Singh, A., 2018. Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecol. Indic., 89, 584-589.

[50]

Sohrabi, N, Chitsazan, M, Mirzae, Y, Bakhsha, F., 2013. Zonation of groundwater quality for agricultural purposes using GIS technology in Khouzestan - Avan plain. Minerva Biotecnol., 25(1), 31-35.

[51]

Ton, G, Vellema, W, Desiere, S, Weituschat, S, D’Haese, M., 2018. Contract farming for improving smallholder incomes: What can we learn from effectiveness studies?. World Dev., 104, 46-64.

[52]

Udmale, P, Pal, I, Szabo, S, Pramanik, M, Large, A., 2020. Global food security in the context of COVID-19: A scenario-based exploratory analysis. Prog. Disast. Sci., 7, 100120.

[53]

Upadhyay, P, Bisht, M. P. S., Uniyal, D., 2022. Multi-criteria decision analysis for site selection of apple crop cultivation: Case study of Nainital, Uttarakhand. J. Indian Soc. Remote Sens., 50(2), 347-358.

[54]

Vazquez-Quintero, G, Prieto-Amparan, J. A., Pinedo-Alvarez, A, Valles-Aragon, M. C., Morales-Nieto, C. R., Villarreal-Guerrero, F., 2020. GIS-based multicriteria evaluation of land suitability for grasslands conservation in Chihuahua, Mexico. Sustainability 12(1), 185.

[55]

Wang, X., 2022. Managing land carrying capacity: Key to achieving sustainable production systems for food security. Land 11(4), 484.

[56]

Wolfert, S, Ge, L, Verdouw, C, Bogaardt, M. J., 2017. Big data in smart farming - A review. Agric. Syst., 153, 69-80.

[57]

Zolekar, R. B., 2018. Integrative approach of RS and GIS in characterization of land suitability for agriculture: A case study of Darna catchment. Arab. J. Geosci., 11(24), 780.

PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

/