Viticulture in Argentina under extreme weather scenarios: Actual challenges, future perspectives

Eugenio Straffelini , Natalia Carrillo , Carlos Schilardi , Regina Aguilera , Maria Jimena Estrella Orrego , Paolo Tarolli

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (2) : 161 -169.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (2) :161 -169. DOI: 10.1016/j.geosus.2023.03.003
Perspective
research-article

Viticulture in Argentina under extreme weather scenarios: Actual challenges, future perspectives

Author information +
History +
PDF

Abstract

Viticulture in Argentina is an important socioeconomic sector, reflected in a significant wine market and tourism. However, climate change and related extreme events are serious concerns. The main issues are heatwaves, hailstorms, and heavy rainfall, resulting in damage to vineyards. While climate change impacts have already been discussed for regions such as the Mediterranean, the literature lacks an up-to-date overview of Argentine viticulture and potential mitigation solutions. In a country culturally and economically connected to the world of wine, it is strategic to bridge this gap to be prepared for a climatically adverse future. This perspective paper presents an overview of Argentine viticulture and its relationship to climate change. We focus on the Mendoza region, one of the most productive areas and home to cultural landscapes where internationally recognized wines are produced. Climate change is already occurring, a fact we observed by analyzing data from the past decades. We discussed how heatwaves in the lowlands drive farmers to move to the Andes slopes looking for more favorable conditions. But new threats arise, such as extreme rainfall. Due to surface hydrological processes, they can cause land degradation and compromise vineyards. We investigate these phenomena in detail, highlighting how they represent a growing challenge that must be addressed for the sustainable development of future viticulture in the area. Therefore, we propose mitigation strategies for more resilient production, drawing inspiration from the Sustainable Development Goals and suggesting a framework that can be extended to broader contexts worldwide.

Keywords

Viticulture / Wine / Climate change / Adaptation / Argentina / South America

Cite this article

Download citation ▾
Eugenio Straffelini, Natalia Carrillo, Carlos Schilardi, Regina Aguilera, Maria Jimena Estrella Orrego, Paolo Tarolli. Viticulture in Argentina under extreme weather scenarios: Actual challenges, future perspectives. Geography and Sustainability, 2023, 4(2): 161-169 DOI:10.1016/j.geosus.2023.03.003

登录浏览全文

4963

注册一个新账户 忘记密码

Author contributions

P.T., N.C, C.S., and E.S. conceived and designed the research; E.S. wrote the first draft, and edited the manuscript and figures; E.S. and R.A. performed the data analysis; N.C. C.S. R.A. M.J.E.O. performed literature analysis, co-wrote sections 1, 2, 3, 4, and reviewed the manuscript; P.T. reviewed and edited the final version of the manuscript, and supervised the entire research project.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was partly supported by Secretary of Research, International and Postgraduate (SIIP) project type 4 biennial 2022: “Climate change observatory of extreme phenomena in irrigated viticulture, Mendoza, Argentina”. Project financed by the SIIP of the National University of Cuyo, Mendoza, Argentina.

References

[1]

Alonso, R., Berli, F.J., Piccoli, P., Bottini, R., 2016. Ultraviolet-B radiation, water deficit and abscisic acid: A review of independent and interactive effects on grapevines. Theor. Exp. Plant Physiol. 28 (1), 11-22.

[2]

Babin, N., Guerrero, J., Rivera, D., Singh, A., 2022. Vineyard-specific climate projections help growers manage risk and plan adaptation in the Paso Robles AVA. Calif. Agric. 75 (3), 142-150.

[3]

Bai, H., Sun, Z., Yao, X., Kong, J., Wang, Y., Zhang, X., Chen, W., Fan, P., Li, S., Liang, Z., Liang, Z., Dai, Z., 2022. Viticultural suitability analysis based on multi-source data highlights climate-change-induced decrease in potential suitable areas: A case analysis in Ningxia, China. Remote Sens. 14 (15), 3717.

[4]

Barros, V.R., Boninsegna, J.A., Camilloni, I.A., Chidiak, M., Magrín, G.O., Rusticucci, M., 2015. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6 (2), 151-169.

[5]

Bechis, H., Galligani, V., Imaz, M.A., Cancelada, M., Simone, I., Piscitelli, F., Maldonado, P., Salio, P., Nesbitt, S.W., 2022. A case study of a severe hailstorm in Mendoza, Argentina, during the RELAMPAGO-CACTI field campaign. Atmos. Res. 271, 106127.

[6]

Bonada, M., Jefery, D.W., Petrie, P.R., Moran, M.A., Sadras, V.O., 2015. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust. J. Grape Wine Res. 21 (1), 240-253.

[7]

Cabré M.F., Quénol, H., Nuñez, M., 2016. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina. Int. J. Biometeorol. 60 (9), 1325-1340.

[8]

Cabré F., Nuñez, M., 2020. Impacts of climate change on viticulture in Argentina. Reg. Environ. Change 20 (1), 12.

[9]

Campos, C.G.C., Malinovski, L.I., Marengo, J.A., Oliveira, L.V., Vieira, H.J., Silva, A.L., 2017. The impact of climate projections when analyzing the risk of frost to viticulture in the southern region of Brazil. Acta Hortic. 1188, 165-172.

[10]

Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues, M.L., Lopes, C.M., 2010. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 105 (5), 661-676.

[11]

Chiriacò M.V., Belli, C., Chiti, T., Trotta, C., Sabbatini, S., 2019. The potential carbon neutrality of sustainable viticulture showed through a comprehensive assessment of the greenhouse gas (GHG) budget of wine production. J. Clean. Prod. 225, 435-450

[12]

Castex, V., Tejada, E.M., Beniston, M., 2015. Water availability, use and governance in the wine producing region of Mendoza, Argentina. Environ. Sci. Policy 48, 1-8.

[13]

Castino, F., Bookhagen, B., Strecker, M.R.,2017. Rainfall variability and trends of the past six decades (1950-2014) in the subtropical NW Argentine Andes. Clim. Dyn. 48 (3-4), 1049-1067.

[14]

de la, Torre, A., Pessano, H., Hierro, R., Santos, J., Llamedo, P., Alexander, P., 2015. The influence of topography on vertical velocity of air in relation to severe storms near the southern Andes mountains. Atmos. Res. 156 (1), 91-101.

[15]

Food and Agriculture Organization of the United Nations (FAO), 2023. Conservation Agriculture. https://www.fao.org/conservation-agriculture/en/ (accessed 24 January 2023).

[16]

Fraga, H., Pinto, J.G., Santos, J.A., 2019. Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: A multi-model assessment. Clim. Change 152 (1), 179-193.

[17]

Hierro, R., Pessano, H., Llamedo, P., de la Torre, A., Alexander, P., Odiard, A., 2013. Orographic effects related to deep convection events over the Andes region. Atmos. Res. 120-121, 216-225.

[18]

Hock, R., Bliss, A., Marzeion, B.E.N., Giesen, R.H., Hirabayashi, Y., Huss, M., Radic, V., Slangen, A.B.A., 2019. GlacierMIP - A model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol. 65 (251), 453-467.

[19]

Hu, Z., Liu, S., Zhong, G., Lin, H., Zhou, Z., 2020. Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrol. Sci. J. 65 (14), 2419-2438.

[20]

Instituto Nacional de Vitivinicultura (INV) 2022. Regiones vitivinícolas argentinas. Zona Valle de Uco. https://www.argentina.gob.ar/sites/default/files/2018/10/valle_de_uco_0.pdf (accessed 7 December 2022).

[21]

International Organisation of Vine and Wine (OIV), 2022. State of the World Vine and Wine Sector 2021. https://www.oiv.int/sites/default/files/documents/engstate-of-the-world-vine-and-wine-sector-april-2022-v6_0.pdf (accessed 7 December 2022).

[22]

Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., Cerdà A., 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997-1009.

[23]

Observatorio Vitivinícola Argentino (OVA) 2017. Impacto de la Vitivincultura en la Economía Argentina. https://fce.uncuyo.edu.ar/upload/presentacion-valoragregado-dr-001.pdf (accessed 7 December 2022).

[24]

Lal, R., 2001. Soil degradation by erosion. Land Degrad. Dev. 12 (6), 519-539.

[25]

Lopez-Fornieles, E., Brunel, G., Devaux, N., Roger, J.-M., Tisseyre, B., 2022. Is it possible to assess heatwave impact on grapevines at the regional level with time series of satellite images? Agronomy 12 (3), 563.

[26]

Maetens, W., Vanmaercke, M., Poesen, J., Jankauskas, B., Jankauskiene, G., Ionita, I., 2012. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. Prog. Phys. Geogr. 36 (5), 599-653.

[27]

Mezher, R.N., Doyle, M., Barros, V., 2012. Climatology of hail in Argentina. Atmos. Res 114-115, 70-82.

[28]

Mills-Novoa, M., Pszczólkowski, P., Meza, F., 2016. The impact of climate change on the viticultural suitability of Maipo Valley, Chile. Prof. Geogr. 68 (4), 561-573.

[29]

Penalba, O.C., Robledo, F.A., 2010. Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim. Change 98 (3), 531-550.

[30]

Pérez, R.C., Puliafito, E. 2006. Study of hailstorms cells producing big damages in Mendoza (Argentina). Fourth European Conference on Radar in Meteorology and Hydrology (ERAD 2006), Barcelona, Spain, pp.18-22. http://www.crahi.upc.edu/ERAD2006/proceedingsMask/00136.pdf (accessed 7 December 2022).

[31]

Pijl, A., Reuter, L.E.H., Quarella, E., Vogel, T.A., Tarolli, P., 2020. GIS-based soil erosion modelling under various steep-slope vineyard practices. Catena 193, 104604.

[32]

Ponte, J.R., 2006. Historia del regadío: Las acequias de Mendoza, Argentina. Scripta Nova - Revista Electrónica De Geografía Y Ciencias Sociales 218 (7) (in Spanish).

[33]

Rivera, J.A., Arnould, G.,2020. Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901-2014). Atmos. Res. 241, 104953.

[34]

Rivera, J.A., Otta, S., Lauro, C., Zazulie, N., 2021. A decade of hydrological drought in Central-Western Argentina. Front. Water 3, 28.

[35]

Rodrigo Comino, J., Senciales, J.M., Ramos, M.C., Martínez-Casasnovas, J.A., Lasanta, T., Brevik, E.C., Ries, J.B., Ruiz Sinoga, J.D., 2017. Understanding soil erosion processes in Mediterranean sloping vineyards ( Montes de Málaga, Spain). Geoderma 296, 47-59.

[36]

Secretaría de Ambiente y Desarrollo Sustentable de la Nación Argentina (SADS) 2015. Tercera comunicación nacional de la República Argentina a la convención marco de las Naciones Unidas sobre el cambio climático. Jefatura de Gabinete de ministros. Presidencia de la Nación. pp. 282 (in Spanish).

[37]

Sonnenberg, R., Bransby, M.F., Bengough, A.G., Hallett, P.D., Davies, M.C.R., 2012. Centrifuge modelling of soil slopes containing model plant roots. Can. Geotech. J. 49 (1), 1-17.

[38]

Straffelini, E., Pijl, A., Otto, S., Marchesini, E., Pitacco, A., Tarolli, P., 2022. A high-resolution physical modelling approach to assess runoff and soil erosion in vineyards under different soil managements. Soil Tillage Res. 222, 105418.

[39]

Trenberth, K.E., Dai, A., van der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J., 2014. Global warming and changes in drought. Nat. Clim. Change 4 (1), 17-22.

[40]

Valenzuela, L., Ortega, R., Moscovici, D., Gow, J., Alonso Ugaglia, A., Mihailescu, R., 2022. Consumer willingness to pay for sustainable wine —The Chilean case. Sustainability 14, 10910.

[41]

Vich, A.I.J., Rodríguez, M.L., Lauro, C., Vaccarino, E., 2014. Proposals for flashflood management in Western Argentina. Case study: The metropolitan area of Greater Mendoza. Curr. Urban Stud. 2, 37-48.

[42]

Villalba, R., Boninsegna, J.A., Masiokas, M.H., Cara, L., Salomón, M., Pozzoli, J., 2016. Cambio climático y recursos hídricos. El caso de las tierras secas del oeste argentino. Ciencia Hoy 25, 48-55 (in Spanish).

[43]

Vinet, F., 2002. Climatic risk in agriculture: The case of hail falls in France (La question du risque climatique en agriculture: Le cas de la grêle en France). Annales de Géographie 627-628, 592-613 (in French).

[44]

Wang, W., Fang, N., Shi, Z., Lu, X., 2018. Prevalent sediment source shift after revegetation in the Loess Plateau of China: Implications from sediment fingerprinting in a small catchment. Land Degrad. Dev. 29 (11), 3963-3973.

[45]

Wang, W., Straffelini, E., Pijl, A., Tarolli, P., 2022a. Sustainable water resource management in steep-slope agriculture. Geogr. Sustain. 3 (3), 214-219.

[46]

Wang, W., Pijl, A., Tarolli, P., 2022b. Future climate-zone shifts are threatening steep-slope agriculture. Nat. Food 3, 193-196.

[47]

Xiong, M., Sun, R., Chen, L., 2018. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 645, 753-760.

[48]

Zazulie, N., Rusticucci, M., Raga, G.B., 2018. Regional climate of the Subtropical Central Andes using high-resolution CMIP 5 models. Part II: Future projections for the twenty- first century. Clim. Dyn. 51, 2913-2925.

PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

/