Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data

Linlin Zhao , Kun Jia , Xin Liu , Jie Li , Mu Xia

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (2) : 100 -111.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (2) :100 -111. DOI: 10.1016/j.geosus.2023.01.003
research-article

Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data

Author information +
History +
PDF

Abstract

Achieving land degradation neutrality (LDN) worldwide is a significant target of the Sustainable Development Goal (SDG15.3). Inner Mongolia, as a typical dryland region in northern China, has carried out several large-scale ecological restoration programs to combat land degradation. However, there is a lack of comprehensive assessment of its land degradation situation after ecological programs implementation, which is of great significance to supporting SDG15.3 in China. This study analyzed the land degradation situation using the improved SDG15.3.1 calculation framework based on fine resolution data in Inner Mongolia from 2000 to 2020, and finally comprehensively evaluated the land status of the whole region and those subject to ecological programs. The results show that net land restoration proportion of various ecological project regions and whole region continues to increase. The scope of the Grain for Green Program (GGP) had the largest proportion of net land restoration while the Natural Reserve Program (NRP) had the lowest proportion from 2000 to 2020. The net land restoration area of Inner Mongolia during 2000-2010 and 2010-2020 was 35,800 km² and 65,300 km², respectively. Overall, Inner Mongolia has achieved statistically zero growth in land degradation under the governance of ecological restoration programs. Therefore, reasonable planning, well monitoring, and timely assessment of ecological restoration programs are crucial to support SDG15.3.

Keywords

SDG15.3 / Land degradation neutrality (LDN) / Land degradation / Ecological programs / Inner Mongolia

Cite this article

Download citation ▾
Linlin Zhao, Kun Jia, Xin Liu, Jie Li, Mu Xia. Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data. Geography and Sustainability, 2023, 4(2): 100-111 DOI:10.1016/j.geosus.2023.01.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 41991232 and 42171318) and the Fundamental Research Funds for the Central Universities.

References

[1]

Akinyemi, F.O., Ghazaryan, G., Dubovyk, O., 2021. Assessing UN indicators of land degradation neutrality and proportion of degraded land for Botswana using remote sensing based national level metrics. Land Degrad. Dev. 32 (1), 158-172.

[2]

Bryan, B.A., Gao, L., Ye, Y., Sun, X., Connor, J.D., Crossman, N.D., Stafford-Smith, M., Wu, J., He, C., Yu, D., Liu, Z., Li, A., Huang, Q., Ren, H., Deng, X., Zheng, H., Niu, J., Han, G., Hou, X., 2018. China’s response to a national land-system sustainability emergency. Nature 559 (7713), 193-204.

[3]

Chen, J., Liao, A.P., Cao, X., Chen, L.J., Chen, X.H., He, C.Y., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., Mills, J., 2015a. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Rem. Sens. 103, 7-27.

[4]

Chen, Y.P., Wang, K.B., Lin, Y.S., Shi, W.Y., Song, Y., He, X.H., 2015b. Balancing green and grain trade. Nat. Geosci. 8 (10), 739-741.

[5]

Cheng, J., Jing, G., Wei, L., Jing, Z., 2016. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China. Ecol. Eng. 97, 170-178.

[6]

Cui, Y.R., Li, X.S., 2022. A new global land productivity dynamic product based on the consistency of various vegetation biophysical indicators. Big Earth Data 6 (1), 36-53.

[7]

Dai, Y., Tian, L., Zhu, P., Dong, Z., Zhang, R., 2022. Dynamic aeolian erosion evaluation and ecological service assessment in Inner Mongolia, northern China. Geoderma 406, 115518.

[8]

Defries, R.S., Ellis, E.C., Stuart, C.F., Matson, P.A., Turner, B.L., Agrawal, A., Crutzen, P.J., Field, C., Gleick, P., Kareiva, P.M., Lambin, E., Liverman, D., Ostrom, E., Sanchez, P.A., Syvitski, J., 2012. Planetary opportunities: A social contract for global change science to contribute to a sustainable future. Bioscience 62 (6), 603-606.

[9]

Estoque, R. C., Pontius, R. G., Murayama, Y., Hou, H., Thapa, R. B., Lasco, R. D., Villar, M. A., 2018. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests. Int. J. Appl. Earth Obs. Geoinf. 67, 123-134.

[10]

Fang, L., Tao, S., Zhu, J., Liu, Y., 2018. Impacts of climate change and irrigation on lakes in arid northwest China. J. Arid. Environ. 154, 34-39.

[11]

Folberth, C., Skalský R., Moltchanova, E., Balkovi č J., Azevedo, L.B., Obersteiner, M., van der Velde, M., 2016. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7, 11872.

[12]

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X., 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114 (1), 168-182.

[13]

Giuliani, G., Chatenoux, B., Benvenuti, A., Lacroix, P., Santoro, M., Mazzetti, P., 2020. Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG 15 - Exploring the potential of data cube. Big Earth Data 4 (1), 3-22.

[14]

Yin, H., Li, Z.G., Wang, Y.L., Cai, F., 2011. Assessment of desertification using time series analysis of hyper-temporal vegetation indicator in Inner Mongolia. Acta Geogr. Sin. 66 (5), 653-661 (in Chinese).

[15]

Holm, A.McR., Cridland, S.W., Roderick, M.L., 2003. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sens. Environ. 85 (2), 145-158.

[16]

Hu, Q., Xiang, M., Chen, D., Zhou, J., Wu, W., Song, Q., 2020. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 746, 141035.

[17]

Ivits, E., Cherlet, M., 2016. Land productivity dynamics: Towards integrated assessment of land degradation at global scales. Joint Research Centre (European Commission), Luxembourg.

[18]

Jia, K., Liang, S., Liu, S., Li, Y., Xiao, Z., Yao, Y., Jiang, B., Zhao, X., Wang, X., Xu, S., Cui, J., 2015. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Rem. Sens. 53 (9), 4787-4796.

[19]

Jia, K., Liang, S.L., Wei, X.Q., Yao, Y.J., Yang, L.Q., Zhang, X.T., Liu, D., 2018. Validation of global land surface satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Rem. Sens. Lett. 9 (9), 847-856.

[20]

Jia, K., Yang, L.Q., Liang, S.L., Xiao, Z.Q., Zhao, X., Yao, Y.J., Zhang, X., Jiang, B., Liu, D., 2019. Long-term global land surface satellite (GLASS) fractional vegetation cover product derived from MODIS and AVHRR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12 (2), 508-518.

[21]

Jiang, C., Zhang, H.Y., Zhao, L.L., Yang, Z.Y., Wang, X.C., Yang, L., Wen, M., Geng, S., Zeng, Q., Wang, J., 2020. Unfolding the effectiveness of ecological restoration programs in combating land degradation: Achievements, causes, and implications. Sci. Total Environ. 748, 141552.

[22]

Deng, L., Liu, G.-B., Shangguan, Z.-P., 2014. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Change Biol. 20 (11), 3544-3556.

[23]

Li, C., Fu, B., Wang, S., Stringer, L.C., Wang, Y., Li, Z., Liu, Y., Zhou, W., 2021. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2 (12), 858-873.

[24]

Li, M., Liu, A., Zou, C., Xu, W., Shimizu, H., Wang, K., 2012. An overview of the “Three- North ” Shelterbelt project in China. For. Stud. China 14 (1), 70-79.

[25]

Liu, D., Jia, K., Wei, X., Xia, M., Zhang, X., Yao, Y., Zhang, X., Wang, B., 2019. Spatiotemporal comparison and validation of three global-scale fractional vegetation cover products. Remote Sens. 11 (21), 2524.

[26]

Li, M., Liu, A., Zou, C., Xu, W., Shimizu, H., Wang, K., 2012. An overview of the “Three-North ” Shelterbelt project in China. For. Stud. China 14 (1), 70-79.

[27]

Liu, Y.Y., Evans, J.P., McCabe, M.F., de Jeu, R.A.M., van Dijk, A.I.J.M., Dolman, A.J., Saizen, I., 2013. Changing climate and overgrazing are decimating Mongolian steppes. PLoS One 8 (2), e57599.

[28]

Jiang, L.L., Bao, A.M., jiapaer, G., Liu, R., Yuan, Y., Yu, T., 2021. Monitoring land degradation and assessing its drivers to support Sustainable Development Goal 15.3 in Central Asia. Sci. Total Environ. 807, 150868.

[29]

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13 (3), 245-259.

[30]

Mattina, D., Erdogan, H.E., Wheeler, I., Crossman, N., 2018. Default data:Methods and interpretation. A guidance document for 2018 UNCCD reporting. United Nations Convention to Combat Desertification (UNCCD), Bonn, Germany. Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington D.C.

[31]

Meyn, S.P., Tweedie, R.L., 1993. Markov Chains and Stochastic Stability. Springer, London.

[32]

Miao, L., Luan, Y., Luo, X., Liu, Q., Moore, J., Nath, R., He, B., Zhu, F., Cui, X., 2013. Analysis of the phenology in the Mongolian Plateau by inter-comparison of global vegetation datasets. Remote Sens. 5 (10), 5193-5208.

[33]

Minelli, S. 2016. Land degradation neutrality target setting programme-land degradation neutrality target setting. United Nations Convention to Combat Desertification, Boon. Moonrut, N., Takrattanasaran, N., Khamkajorn, T., Chaikaew, P., 2021. Integrated remote sensing and GIS approaches for land degradation neutrality (LDN) assessment in the agricultural area. IOP Conf. Ser.: Earth Environ. Sci. 626 (1), 012025.

[34]

Mu, S., Li, J., Chen, Y., Gang, C., Zhou, W., Ju, W., 2012. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010. Acta Geogr. Sin. 67 (9), 1255-1268.

[35]

Piao, S., Fang, J., Ciais, P., Peylin, P., Huang, Y., Sitch, S., Wang, T., 2010. The carbon balance of terrestrial ecosystems in China. Nature 458 (7241), 1009-1013.

[36]

Piao, S.L., Wang, X.H., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A., Ciais, P., Tømmervik, H., Nemani, R.R., Myneni, R.B., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1 (1), 14-27.

[37]

Pr, ăv ălie, R., 2016. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259-278.

[38]

Prince, S.D., Wessels, K.J., Tucker, C.J., Nicholson, S.E., 2007. Desertification in the Sahel: A reinterpretation of a reinterpretation. Glob. Change Biol. 13 (7), 1308-1313.

[39]

Reith, J., Ghazaryan, G., Muthoni, F., Dubovyk, O., 2021. Assessment of land degradation in semiarid Tanzania - Using multiscale remote sensing datasets to support Sustainable Development Goal 15.3. Rem. Sens. 13 (9), 1754.

[40]

Reynolds, J.F., Stafford Smith, D.M., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S.P.J., Downing, T.E., Dowlatabadi, H., Fernández, R.J., Herrick, J.E., Huber- Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F.T., Ayarza, M., Walker, B., 2007. Global desertification: Building a science for dryland development. Science 316 (5826), 847-851.

[41]

Rudke, A.P., Fujita, T., Almeida, D.S.D., Eiras, M.M., Xavier, A.C.F., Rafee, S.A.A., Santos, E.B., Morais, M.V.B.D., Martins, L.D., Souza, R.V.A.D., Souza, R.A.F., Hallak, R., Freitas, E.D.D., Uvo, C.B., Martins, J.A., 2019. Land cover data of Upper Parana River Basin, South America, at high spatial resolution. Int. J. Appl. Math. Comput. Sci. 83, 101926.

[42]

Sanchez, P.A., Ahamed, S., Carre, F., Hartemink, A.E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A.B., McKenzie, N.J., De, Lourdes, Mendonça-Santos, M., Minasny, B., Montanarella, L., Okoth, P., Palm, C.A., Sachs, J.D., Shepherd, K.D., Vågen, T.-G., Vanlauwe, B., Walsh, M.G., Winowiecki, L.A., 2009. Digital soil map of the world. Science 325 (5941), 680-681.

[43]

Sharma, C., Ojha, C.S., 2019. Changes of annual precipitation and probability distributions for different climate types of the world. Water (Basel) 11 (10), 2092.

[44]

Sims, N.C., Green, C., Newnham, G.J., England, J.R., Held, A., Wulder, M.A., Herold, M., Cox, M.A., Huete, A.R., Kumar, L., Viscarra-Rossel, R.A., Roxburgh, S.H., McKenzie, N.J., 2017. Good practice guidance. SDG indicator 15.3.1: Proportion of land that is degraded over total land area, Version 1.0. United Nations Convention to Combat Desertification (UNCCD), Bonn, Germany.

[45]

Sims, N.C., England, J.R., Newnham, G.J., Alexander, S., Green, C., Minelli, S., Held, A., 2019. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 92, 349-355.

[46]

Sims, N.C., Newnham, G.J., England, J., Guerschman, J., Cox, S., Roxburgh, S.H., Viscarra Rossel, R., Fritz, S., Wheler, I., 2021. Good practice guidance. SDG Indicator 15.3.1: Proportion of land that is degraded over total land area, Version 2.0. United Nations Convention to Combat Desertification, Bonn, Germany.

[47]

Tao, S., Fang, J., Ma, S., Cai, Q., Xiong, X., Tian, D., Zhao, X., Fang, L., Zhang, H., Zhu, J., Zhao, S., 2020. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 7 (1), 132-140.

[48]

Tao, S., Fang, J., Zhao, X., Zhao, S., Shen, H., Hu, H., Tang, Z., Wang, Z., Guo, Q., Turner, B.L., 2015. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. U.S.A. 112 (7), 2281-2286.

[49]

Van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., Randerson, J.T., 2009. CO2 emissions from forest loss. Nat. Geosci. 2 (11), 737-738.

[50]

Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., Marques Da Silva, J.R., Merckx, R., 2007. The impact of agricultural soil erosion on the global carbon cycle. Science 318 (5850), 626-629.

[51]

Wang, J., Wei, H., Cheng, K., Ochir, A., Davaasuren, D., Li, P., Shun Chan, F.K., Nasanbat, E., 2020. Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environ. Dev. 34, 100497.

[52]

Wang, J., Li, B., Yu, W., 2012. Analysis of vegetation trend and their causes during recent 30 years in Inner Mongolia Autonomous Region. J. Arid Land Res. Environ. 26 (2), 132-138.

[53]

Xia, M., Jia, K., Zhao, W., Liu, S., Wei, X., Wang, B., 2021. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 123, 107274.

[54]

Xie, H., Tong, X.H., Meng, W., Liang, D., Wang, Z.H., Shi, W.Z., 2015. A multilevel stratified spatial sampling approach for the quality assessment of remote-sensing-derived products. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8 (10), 4699-4713.

[55]

Xie, H., Zhang, Y., Wu, Z., Lv, T., 2020. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 9 (1), 28.

[56]

Xiong, D., Shi, P., Zhang, X., Zou, C. B., 2016. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China —A meta-analysis. Ecol. Eng. 94, 647-655.

[57]

Yang, Y.K., Xiao, P.F., Feng, X.Z., Li, H.X., 2017. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Rem. Sens. 125, 156-173.

[58]

Yue, X.F., Zhang, T.H., Zhao, X.Y., Liu, X.P., Ma, Y.H., 2016. Effects of rainfall patterns on annual plants in Horqin Sandy Land, Inner Mongolia of China. J. Arid Land 8 (3), 389-398.

[59]

Yin, H., Pflugmacher, D., Li, A., Li, Z., Hostert, P., 2018. Land use and land cover change in Inner Mongolia —Understanding the effects of China’s re-vegetation programs. Rem. Sens. Environ. 204, 918-930.

[60]

Yu, Q., Hu, Q., van Vliet, J., Verburg, P. H., Wu, W., 2018. GlobeLand 30 shows little cropland area loss but greater fragmentation in China. Int. J. Appl. Earth Obs. Geoinf. 66, 37-45.

[61]

Yuan, S., Cheng, L.-L., Xu, J., Lu, Q., 2022. Evaluation of land degradation neutrality in Inner Mongolia combined with ecosystem services. Land 11 (7), 971.

[62]

Zhang, Y., Peng, C.H., Li, W.Z., Tian, L.X., Zhu, Q.Q., Chen, H., Fang, X.Q., Zhang, G., Liu, G.B., Mu, X.M., Li, Z.B., Li, S.Q., Yang, Y.Z., Wang, J., Xiao, X.M., 2016. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 61, 404-412.

PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

/