The indispensable role of resilience in rational landslide risk management for social sustainability

Naiman Tian , Hengxing Lan

Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (1) : 70 -83.

PDF
Geography and Sustainability ›› 2023, Vol. 4 ›› Issue (1) :70 -83. DOI: 10.1016/j.geosus.2022.11.007
research-article

The indispensable role of resilience in rational landslide risk management for social sustainability

Author information +
History +
PDF

Abstract

Landslide disasters reflect the conflict between human society and the natural environment, posing challenges to the sustainable development of mountain regions. Identification of potential landslides, estimation of the degree of damage and potential losses of elements at risk, and control of the loss are the major tasks of landslide risk management. Resilience is defined as a social system’s comprehensive abilities to cope with disasters, including the abilities to prepare, anticipate, preserve, absorb, respond, resist, recover, mitigate, learn, and adapt. As an indispensable role, resilience enables more rational landslide risk management for social sustainability. However, quantitative landslide risk management does not pay sufficient attention to the role of resilience. Hence, in this paper, the role of resilience in a landslide risk management framework is systematically discussed. A quantitative landslide risk management framework consists of hazard analysis, exposure analysis, risk estimation, risk evaluation, and risk control. In hazard analysis, resilience assessment could help identify potential landslides that could cause significant damage due to the poor resilience of the elements at risk. Resilience assessment in exposure analysis might aid in identifying the most vulnerable elements or regions to certain landslides. Consideration of resilience in risk estimation aids in the calculation of indirect losses and improves the results of direct losses analysis. In risk evaluation, resilience as a disaster-coping ability will impact the social system's landslide risk tolerance threshold. Enhancing resilience is an essential strategy to reduce the vulnerability of social systems. We also proposed that the efficient use of risk information will increase the accuracy of landslide resilience assessments.

Keywords

Landslide / Risk management / Resilience / Vulnerability / Social sustainability

Cite this article

Download citation ▾
Naiman Tian, Hengxing Lan. The indispensable role of resilience in rational landslide risk management for social sustainability. Geography and Sustainability, 2023, 4(1): 70-83 DOI:10.1016/j.geosus.2022.11.007

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants No. 42041006, 41941019), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No. XDA23090301), and the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant No. 2019QZKK0904).

References

[1]

Adger, W.N., 2000. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 24 (3), 347-364.

[2]

Adger, W.N., 2006. Vulnerability. Glob. Environ. Change 16 (3), 268-281.

[3]

Adger, W.N., Hughes, T.P., Folke, C., Carpenter, S.R., Rockstrom, J., 2005. Social-ecological resilience to coastal disasters. Science 309 (5737), 1036-1039.

[4]

Aldunce, P., Beilin, R., Howden, M., Handmer, J., 2015. Resilience for disaster risk management in a changing climate: Practitioners’ frames and practices. Glob. Environ. Change 30, 1-11.

[5]

Alexander, D.E., 2005. Vulnerability to landslides. In: GladeT., AndersonM., CrozierM.J. (LandslideHazard and Risk.Eds.), John Wiley and Sons Ltd, West Sussex, England, pp. 175-198.

[6]

Alimohammadlou, Y., Najafi, A., Yalcin, A., 2013. Landslide process and impacts: A proposed classification method. Catena 104, 219-232.

[7]

Alshehri, S.A., Rezgui, Y., Li, H., 2015. Disaster community resilience assessment method: A consensus-based Delphi and AHP approach. Nat. Hazards 78 (1), 395-416.

[8]

Angeler, D.G., Allen, C.R., Garmestani, A.S., Pope, K.L., Twidwell, D., Bundschuh, M., 2018. Resilience in environmental risk and impact assessment: Concepts and measurement. Bull. Environ. Contam. Toxicol. 101 (5), 543-548.

[9]

Antronico, L., De Pascale, F., Coscarelli, R., Gullà G., 2020. Landslide risk perception, social vulnerability and community resilience: The case study of Maierato (Calabria, southern Italy). Int. J. Disaster Risk Reduct. 46, 101529.

[10]

Ardinugroho, N.S., Handayani, W., 2020. Landslide community resilience: An examination of six neighborhoods in Sukorejo, Semarang. IOP Conf. Ser.: Earth Environ. Sci. 447, 012015.

[11]

ARUP and Rockefeller Foundation, 2014. City Resilience Framework. Ove ARUP & Partners International, London.

[12]

Aven, T., 2017. How some types of risk assessments can support resilience analysis and management. Reliab. Eng. Syst. Saf. 167, 536-543.

[13]

Aydin, N.Y., Duzgun, H.S., Heinimann, H.R., Wenzel, F., Gnyawali, K.R., 2018. Framework for improving the resilience and recovery of transportation networks under geohazard risks. Int. J. Disaster Risk Reduct. 31, 832-843.

[14]

Bera, S., Guru, B., Chatterjee, R., Shaw, R., 2020. Geographic variation of resilience to landslide hazard: A household-based comparative studies in Kalimpong hilly region, India. Int. J. Disaster Risk Reduct. 46, 101456.

[15]

Berkes, F., 2007. Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking. Nat. Hazards 41 (2), 283-295.

[16]

Blaikie, P., Cannon, T., Davis, I., Wisner, B., 1994. At Risk: Natural Hazards, People’s Vulnerability, and Disasters. Routledge, London.

[17]

Birkmann, J., 2005. Danger Need Not Spell Disaster But How Vulnerable Are We?. Research Brief Number I. United Nations University, Tokyo.

[18]

Birkmann, J., 2006. Measuring vulnerability to promote disaster-resilient societies:Conceptual frameworks and definitions. In: BirkmannJ. (Ed.), Measuring Vulnerability to Natural Hazards:Towards Disaster Resilient Societies. United Nations University Press, Tokyo, Japan, pp. 9-54.

[19]

Birkmann, J., 2007. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environ. Hazards 7 (1), 20-31.

[20]

Bogardi, J.J., Fekete, A., 2018. Disaster-related resilience as ability and process: A concept guiding the analysis of response behavior before, during and after extreme events. Am. J. Clim. Change 7 (1), 54-78.

[21]

Canadian Standards Association (CSA) 1997. Risk Management: Guideline for Decision- makers — A National Standard of Canada ( No. CAN/CSA-Q850-97). Canadian Standards Association, Ottawa.

[22]

Cerè G., Rezgui, Y., Zhao, W., 2019. Urban-scale framework for assessing the resilience of buildings informed by a Delphi expert consultation. Int. J. Disaster Risk Reduct. 36, 101079.

[23]

Chacowry, A., Mcewen, L.J., Lynch, K., 2018. Recovery and resilience of communities in flood risk zones in a small island developing state: A case study from a suburban settlement of Port Louis, Mauritius. Int. J. Disaster Risk Reduct. 28, 826-838.

[24]

Chen, S.C., Ferng, J.W., Wang, Y.T., Wu, T.Y., Wang, J.J., 2008. Assessment of disaster resilience capacity of hillslope communities with high risk for geological hazards. Eng. Geol. 98 (3-4), 86-101.

[25]

Clague, J.J., Hungr, O., Morgenstern, N.R., VanDine, D.F., 2015. Cheekye River (Ch’kay Stakw) and Fan landslide risk tolerance criteria. Report prepared for the Province of British Columbia, Squamish Nation and its Partnership, and District of Squamish.

[26]

Cohen, O., Leykin, D., Lahad, M., Goldberg, A., Aharonson-Daniel, L., 2013. The conjoint community resiliency assessment measure as a baseline for profiling and predicting community resilience for emergencies. Technol. Forecast. Soc. Change 80 (9), 1732-1741.

[27]

Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M.G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., Smith, J.T., 2014. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 73, 209-263.

[28]

Crozier, M.J., 2010. Deciphering the effect of climate change on landslide activity: A review. Geomorphology 124 (3-4), 260-267.

[29]

Crozier, M.J., Glade, T., 2005. Landslide hazard and risk:Issues, concepts and approach. In: GladeT., AndersonM., CrozierM. (LandslideHazard and Risk.Eds.), Wiley, Chichester, pp. 1-40.

[30]

Cruden, D.M., 1991. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 43 (1), 27-29.

[31]

Cruden, D.M., Varnes, D.J., 1996. Landslide types and processes. In: TurnerA.T., SchusterR.L. (Landslides—Investigation and Mitigation. TransportationResearch Board, SpecialReport No. 247.National Academy Press, WashingtonD.C.,Eds.), pp.36-75.

[32]

Cui, P., Zhou, G.G., Zhu, X.H., Zhang, J.Q., 2013. Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 182, 173-189.

[33]

Cruden, D.M., Lan, H.X., 2015. Using the working classification of landslides to assess the danger from a natural slope. In: Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N. (Eds.), Engineering Geology for Society and Territory —Volume 2. Springer, Cham, pp. 3-12.

[34]

Cui, Y., Cheng, D., Choi, C.E., Jin, W., Lei, Y., Kargel, J.S., 2019. The cost of rapid and haphazard urbanization: Lessons learned from the Freetown landslide disaster. Landslides 16 (6), 1167-1176.

[35]

Cutter, S.L., 2016. The landscape of disaster resilience indicators in the USA. Nat. Hazards 80, 741-758.

[36]

Cutter, S.L., Ash, K.D., Emrich, C.T., 2014. The geographies of community disaster resilience. Glob. Environ. Change 29, 65-77.

[37]

Cutter, S.L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., Webb, J., 2008. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Change 18, 598-606.

[38]

Cutter, S.L., Boruff, B.J., Shirley, W.L., 2012. Social vulnerability to environmental hazards. In: CutterS.L. (Ed.), Hazards Vulnerability and Environmental Justice. Routledge, pp. 143-160.

[39]

Cutter, S.L., Burton, C.G., Emrich, C.T., 2010. Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manage. 7 (1), 51.

[40]

Dai, F.C., Lee, C.F., Ngai, Y.Y., 2002. Landslide risk assessment and management: An overview. Eng. Geol. 64 (1), 65-87.

[41]

Delaney, K.B., Evans, S.G., 2015. The 2000 Yigong landslide (Tibetan Plateau), rockslide- dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology 246, 377-393.

[42]

Dou, J., Yunus, A.P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.W., Khosravi, K., Yang, Y., Pham, B.T., 2019a. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 662, 332-346.

[43]

Dou, J., Yunus, A.P., Tien Bui, D., Sahana, M., Chen, C.-W., Zhu, Z., Wang, W., Pham, B.T., 2019b. Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the LiDAR DEM. Remote Sens. 11, 638.

[44]

Fan, X., Scaringi, G., Korup, O., West, A.J., Westen, C.J., Tanyas, H., Hovius, N., Hales, T.C., Jibson, R.W., Allstadt, K.E., Zhang, L., Evans, S.G., Xu, C., Li, G., Pei, X., Xu, Q., Huang, R., 2019. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 57 (2), 421-503.

[45]

Farhan, A.R., Lim, S., 2011. Resilience assessment on coastline changes and urban settlements: A case study in Seribu Islands, Indonesia. Ocean Coastal Manage. 54, 391-400.

[46]

Fekete, A., 2018. Societal resilience indicator assessment using demographic and infrastructure data at the case of Germany in context to multiple disaster risks. Int. J. Disaster Risk Reduct. 31, 203-211.

[47]

Fell, R., 1994. Landslide risk assessment and acceptable risk. Can. Geotech. J. 31, 261-272.

[48]

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng. Geol. 102, 85-98.

[49]

Fell, R., Ho, K.K.S., Lacasse, S., Leroi, E., 2005. A framework for landslide risk assessment and management. In: HungrO., FellR., CoutureR., EberhardtE. (LandslideRisk Management.Eds.), Taylor and Francis, London, pp. 3-26.

[50]

Folke, C., 2006. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 16, 253-267.

[51]

Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C.S., Walker, B., 2002. Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio 31 (5), 437-440.

[52]

Fuchs, S., Birkmann, J., Glade, T., 2012. Vulnerability assessment in natural hazard and risk analysis: Current approaches and future challenges. Nat. Hazards 64 (3), 1969-1975.

[53]

Gallopín, G.C., 2006. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Change 16 (3), 293-303.

[54]

Gardner, J.S., Dekens, J., 2007. Mountain hazards and the resilience of social-ecological systems: Lessons learned in India and Canada. Nat. Hazards 41 (2), 317-336.

[55]

Geotechnical Engineering Office 1998. Landslides and boulder falls from natural terrain:Interim risk guidelines. Geotechnical Engineering Office, The Government of the Hong Kong Special Administrative Region GEO Report No.75.

[56]

Gibson, A.D., Culshaw, M.G., Dashwood, C., Pennington, C.V.L., 2013. Landslide management in the UK —The problem of managing hazards in a ‘low-risk’ environment. Landslides 10 (5), 599-610.

[57]

Gill, J.C., Malamud, B.D., 2014. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 52 (4), 680-722.

[58]

Glade, T., 2003a. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena 51 (3-4), 297-314.

[59]

Glade, T., 2003b. Vulnerability assessment in landslide risk analysis. Erde 134 (2), 123-146.

[60]

Glade, T., Crozier, M.J., 2005. A review of scale dependency in landslide hazard and risk analysis. In: GladeT., AndersonM., CrozierM.J. (LandslideHazard and Risk.Eds.), John Wiley and Sons Ltd, West Sussex, England, pp. 75-138.

[61]

Guillard-Gonçalves, C., Zêzere, J., 2018. Combining social vulnerability and physical vulnerability to analyse landslide risk at the municipal scale. Geosciences (Basel) 8 (8), 294.

[62]

Guo, J., Cui, P., Qin, M., Wang, J., Li, Y., Wang, C., 2022. Response of ancient landslide stability to a debris flow: A multi-hazard chain in China. Bull. Eng. Geol. Environ. 81 (7), 1-17.

[63]

Haimes, Y.Y., 2009. On the definition of resilience in systems. Risk Anal. 29 (4), 498-501.

[64]

Haque, U., Blum, P., Da Silva, P.F., Andersen, P., Pilz, J., Chalov, S.R., Malet, J.-P., Jemec Aufli č M., Andres, N., Poyiadji, E., Lamas, P.C., Zhang, W., Peshevski, I., Pétursson, H.G., Kurt, T., Dobrev, N., García-Davalillo, J.C., Halkia, M., Ferri, S., Gaprindashvili, G., Engström, J., Keellings, D., 2016. Fatal landslides in Europe. Landslides 13 (6), 1545-1554.

[65]

Herath, S., Wang, Y., 2009. Case studies and national experiences. In: SassaK., CanutiP. (Landslides-DisasterRisk Reduction.Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 475-497.

[66]

Holling, C.S., 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1-23.

[67]

Holling, C.S., 1996. Engineering resilience versus ecological resilience. In: SchulzeP.E. (Ed.), Engineering Within Ecological Constraints. National Academy Press, Washington D.C., pp. 31-43.

[68]

Hostettler, S., Jöhr, A., Montes, C., D’Acunzi, A., 2019. Community-based landslide risk reduction: A review of a Red Cross soil bioengineering for resilience program in Honduras. Landslides 16 (9), 1779-1791.

[69]

Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides 11, 167-194.

[70]

Jaiswal, P., Van Westen, C.J., Jetten, V., 2010. Quantitative assessment of direct and indirect landslide risk along transportation lines in southern India. Nat. Hazards Earth Syst. Sci. 10, 1253-1267.

[71]

Joyce, J., Chang, N.B., Harji, R., Ruppert, T., 2018. Coupling infrastructure resilience and flood risk assessment via copulas analyses for a coastal green-grey-blue drainage system under extreme weather events. Environ. Modell. Softw. 100, 82-103.

[72]

Kelman, I., Gaillard, J.C., Lewis, J., Mercer, J., 2016. Learning from the history of disaster vulnerability and resilience research and practice for climate change. Nat. Hazards 82, 129-143.

[73]

Kjekstad, O., Highland, L., 2009. Economic and social impacts of landslides. In: SassaK., CanutiP. (Landslides-DisasterRisk Reduction.Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 573-587.

[74]

Korup, O., Clague, J.J., 2009. Natural hazards, extreme events, and mountain topography. Quat. Sci. Rev. 28 (11-12), 977-990.

[75]

Lacasse, S., Nadim, F., 2009. Landslide risk assessment and mitigation strategy. In: SassaK., CanutiP. (Landslides- Disaster Risk Reduction.Eds.), Springer Verlag, Berlin Heidelberg, pp. 31-61.

[76]

Lan, H., Martin, C.D., Lim, C.H., 2007. RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput. Geosci. 33, 262-279.

[77]

Lan, H.X., Peng, J.B., Zhu, Y.B., Li, L.P., Pan, B.T., Huang, Q.B., Li, J.H., Zhang, Q., 2022. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin. Sci. China-Earth Sci. 65 (2), 234-256.

[78]

Lan, H., Tian, N., Li, L., Liu, H., Peng, J., Cui, P., Zhou, C., Macciotta, R., Clague, J.J., 2022a. Poverty control policy may affect the transition of geological disaster risk in China. Hum. Soc. Sci. Commun. 9, 80.

[79]

Lan, H., Tian, N., Li, L., Wu, Y., Macciotta, R., Clague, J.J., 2022b. Kinematic-based landslide risk management for the Sichuan-Tibet Grid Interconnection Project (STGIP) in China. Eng. Geol. 308, 106823.

[80]

Lan, H.X., Li, L.P., Zhang, Y.S., Gao, X., Liu, H.J., 2013. Risk assessment of debris flow in Yushu seismic area in China: A perspective for the reconstruction. Nat. Hazards Earth Syst. Sci. 13, 2957-2968.

[81]

Lan, H.X., Martin, C.D., Zhou, C.H., Lim, C.H., 2010. Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology 118, 213-223.

[82]

Lan, H.X., Wu, F.Q., Zhou, C.H., Wang, L.J., 2003. Spatial hazard analysis and prediction on rainfall-induced landslide using GIS. Chin. Sci. Bull. 48, 703-708.

[83]

Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y., Li, R.H., 2004. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng. Geol. 76, 109-128.

[84]

Le Breton, M., Bontemps, N., Guillemot, A., Baillet, L., Larose, É., 2021. Landslide monitoring using seismic ambient noise correlation: Challenges and applications. Earth-Sci. Rev. 216, 103518.

[85]

Li, G., Lei, Y., Yao, H., Wu, S., Ge, J., 2017. The influence of land urbanization on landslides: An empirical estimation based on Chinese provincial panel data. Sci. Total Environ. 595, 681-690.

[86]

Li, L., Lan, H., 2015. Probabilistic modeling of rockfall trajectories: A review. Bull. Eng. Geol. Environ. 74, 1163-1176.

[87]

Li, L.P., Lan, H.X., Guo, C.B., Zhang, Y.S., Li, Q.W., Wu, Y.M., 2017. A modified frequency ratio method for landslide susceptibility assessment. Landslides 14, 727-741.

[88]

Li, Y., Mo, P., 2019. A unified landslide classification system for loess slopes: A critical review. Geomorphology 340, 67-83.

[89]

Li, Z., Zhou, F., Han, X., Chen, J., Li, Y., Zhai, S., Han, M., Bao, Y., 2021. Numerical simulation and analysis of a geological disaster chain in the Peilong valley, SE Tibetan Plateau. Bull. Eng. Geol. Environ. 80 (4), 3405-3422.

[90]

Lin, K.H.E., Lee, H.C., Lin, T.H., 2017. How does resilience matter? An empirical verification of the relationships between resilience and vulnerability. Nat. Hazards 88, 1229-1250.

[91]

Lorenz, D.F., 2013. The diversity of resilience: Contributions from a social science perspective. Nat. Hazards 67 (1), 7-24.

[92]

Macciotta, R., Lefsrud, L., 2018. Framework for developing risk to life evaluation criteria associated with landslides in Canada. Geoenviron. Disasters 5 (1), 10.

[93]

Mahmoudi, H., Sayahnia, R., Esmaeilzadeh, H., Azadi, H., 2018. Integrating resilience assessment in environmental impact assessment. Integr. Environ. Assess. Manage. 14 (5), 567-570.

[94]

Manyena, B., Machingura, F., O’Keefe, P., 2019. Disaster Resilience Integrated Framework for Transformation (DRIFT): A new approach to theorising and operationalising resilience. World Dev. 123, 104587.

[95]

Manyena, S.B., 2006. The concept of resilience revisited. Disasters 30 (4), 434-450.

[96]

Menoni, S., Molinari, D., Parker, D., Ballio, F., Tapsell, S., 2012. Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Nat. Hazards 64 (3), 2057-2082.

[97]

Merghadi, A., Yunus, A.P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D.T., Avtar, R., Abderrahmane, B., 2020. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 207, 103225.

[98]

Miller, F., Osbahr, H., Boyd, E., Thomalla, F., Bharwani, S., Ziervogel, G., Walker, B., Birkmann, J., van der Leeuw, S., Rockstr €om, J., Hinkel, J., Downing, T., Folke, C., Nelson, D., 2010. Resilience and vulnerability: Complementary or conflicting concepts? Ecol. Soc. 15 (3), 11.

[99]

Mitchell, T., Harris, K., 2012. Resilience: A risk management approach. ODI Background Note. Overseas Development Institute, London.

[100]

Newmark, N.M., 1965. Effect of earthquake on dams and embankments. Geotechnique 15 (2), 139-160.

[101]

Ongkowijoyo, C.S., Doloi, H., 2018. Risk-based resilience assessment model focusing on urban infrastructure system restoration. Procedia Eng. 212, 1115-1122.

[102]

Orencio, P.M., Fujii, M., 2013. A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP). Int. J. Disaster Risk Reduct. 3, 62-75.

[103]

Ouyang, C., He, S., Xu, Q., Luo, Y., Zhang, W., 2013. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput. Geosci. 52, 1-10.

[104]

Papathoma-Köhle, M., 2016. Vulnerability curves vs. vulnerability indicators: Application of an indicator-based methodology for debris-flow hazards. Nat. Hazards Earth Syst. Sci. 16, 1771-1790.

[105]

Papathoma-Köhle, M., Gems, B., Sturm, M., Fuchs, S., 2017. Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Sci. Rev. 171, 272-288.

[106]

Paton, D., Smith, L., Violanti, J., 2000. Disaster response: Risk, vulnerability and resilience. Disaster Prev. Manage. 9 (3), 173-180.

[107]

Peacock, W.G., 2010. Advancing resilience of coastal localities: Developing, implementing, and sustaining the use of coastal resilience indicators: A final report. Hazard Reduction and Recovery Center, Texas A&M University School of Architecture.

[108]

Pecoraro, G., Calvello, M., Piciullo, L., 2019. Monitoring strategies for local landslide early warning systems. Landslides 16, 213-231.

[109]

Pendall, R., Foster, K.A., Cowell, M., 2010. Resilience and regions: Building understanding of the metaphor. Camb. J. Reg. Econ. Soc. 3, 71-84.

[110]

Peng, J., Wang, S., Wang, Q., Zhuang, J., Huang, W., Zhu, X., Leng, Y., Ma, P., 2019. Distribution and genetic types of loess landslides in China. J. Asian Earth Sci. 170, 329-350.

[111]

Petley, D.N., Hearn, G.J., Hart, A., Rosser, N.J., Dunning, S.A., Oven, K., Mitchell, W.A., 2007. Trends in landslide occurrence in Nepal. Nat. Hazards 43 (1), 23-44.

[112]

Piciullo, L., Calvello, M., Cepeda, J.M., 2018. Territorial early warning systems for rainfall- induced landslides. Earth-Sci. Rev. 179, 228-247.

[113]

Pilone, E., Demichela, M., Baldissone, G., 2019. The multi-risk assessment approach as a basis for the territorial resilience. Sustainability 11 (9), 2612.

[114]

Porter, M.J., Morgenstern, N.R., 2012. Landslide risk evaluation in Canada. Joint XIth International and 2nd North America Symposium on Landslides.

[115]

Ran, J., MacGillivray, B.H., Gong, Y., Hales, T.C., 2020. The application of frameworks for measuring social vulnerability and resilience to geophysical hazards within developing countries: A systematic review and narrative synthesis. Sci. Total Environ. 711, 134486.

[116]

Remondo, J., Bonachea, J., Cendrero, A., 2008. Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94, 496-507.

[117]

Roberts, N.J., Nadim, F., Kalsnes, B., 2009. Quantification of vulnerability to natural hazards. Georisk 3 (3), 164-173.

[118]

Rus, K., Kilar, V., Koren, D., 2018. Resilience assessment of complex urban systems to natural disasters: A new literature review. Int. J. Disaster Risk Reduct. 31, 311-330.

[119]

Saja, A.A., Goonetilleke, A., Teo, M., Ziyath, A.M., 2019. A critical review of social resilience assessment frameworks in disaster management. Int. J. Disaster Risk Reduct. 35, 101096.

[120]

Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A.A., Guzzetti, F., 2018. Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Sci. Total Environ. 610, 867-879.

[121]

Sapountzaki, K., 2012. Vulnerability management by means of resilience. Nat. Hazards 60 (3), 1267-1285.

[122]

Scholz, R.W., Blumer, Y.B., Brand, F.S., 2012. Risk, vulnerability, robustness, and resilience from a decision-theoretic perspective. J. Risk Res. 15, 313-330.

[123]

Sekhri, S., Kumar, P., Fürst, C., Pandey, R., 2020. Mountain specific multi-hazard risk management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate change risk in the Indian Himalayan Region. Ecol. Indic. 118, 106700.

[124]

Shang, Y., Yang, Z., Li, L., Liao, Q., Wang, Y., 2003. A super-large landslide in Tibet in 2000: Background, occurrence, disaster, and origin. Geomorphology 54, 225-243.

[125]

Shinoda, M., Miyata, Y., 2017. Regional landslide susceptibility following the Mid NIIGATA prefecture earthquake in 2004 with NEWMARK’S sliding block analysis. Landslides 14, 1887-1899.

[126]

Shinohara, Y., Kume, T., 2022. Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Sci. Total Environ. 827, 154392.

[127]

Sikula, N.R., Mancillas, J.W., Linkov, I., McDonagh, J.A., 2015. Risk management is not enough: A conceptual model for resilience and adaptation-based vulnerability assessments. Environ. Syst. Decis. 35 (2), 219-228.

[128]

Sim, K.B., Lee, M.L., Wong, S.Y., 2022. A review of landslide acceptable risk and tolerable risk. Geoenviron. Disasters 9 (1), 3.

[129]

Smith, K., 1996. Environmental Hazards-assessing Risk and Reducing Disaster. Routledge, London.

[130]

Strouth, A., McDougall, S., 2021a. Historical landslide fatalities in British Columbia, Canada: Trends and implications for risk management. Front. Earth Sci. 9, 606854.

[131]

Strouth, A., McDougall, S., 2021b. Societal risk evaluation for landslides: Historical synthesis and proposed tools. Landslides 18, 1071-1085.

[132]

Strouth, A., McDougall, S., 2022. Individual risk evaluation for landslides: Key details. Landslides 19, 977-991.

[133]

Sudmeier-Rieux, K., 2011. On Landslide Risk, Resilience and Vulnerability of Mountain Communities in Central-Eastern Nepal. Ph.D thesis, Université de Lausanne, Faculté des Géosciences et de l’Environnement, Lausanne.

[134]

Turner, B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Eckley, N., Kasperson, J.X., Luers, A., Martello, M.L., Polsky, C., Pulsipher, A., Schiller, A., 2003. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. U.S.A. 100 (14), 8074-8079.

[135]

UNISDR (United Nations International Strategy for Disaster Reduction), 2005. Hyogo Framework for Action 2005- 2015: Building the Resilience of Nations and Communities to Disasters. Extract from the final report of the World Conference on Disaster Reduction (A/CONF. 206/6).

[136]

UNISDR (United Nations International Strategy for Disaster Reduction), 2015. Sendai Framework for Disaster Risk Reduction 2015-2030. UNISDR, Geneva.

[137]

United States National Research Council (US NRC) 2012. Disaster Resilience: A National Imperative. The National Academies Press, Washington, D.C.

[138]

Uzielli, M., Nadim, F., Lacasse, S., Kaynia, A.M., 2008. A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng. Geol. 102, 251-256.

[139]

van Westen, C.J., van Asch, T.W.J., Soeters, R., 2006. Landslide hazard and risk zonation- Why is it still so difficult? Bull. Eng. Geol. Environ. 65 (2), 167-184.

[140]

Varnes, D.J., 1978. Slope movement types and processes. In: SchusterR.L., KrizekR.J. (Eds.), Landslides, Analysis and Control. Transportation Research Board, Special Report No.176. National Academy of Sciences, pp. 11-33.

[141]

Varnes, D.J., 1984. Landslide Hazard zonation: A review of Principles and Practice (Natural Hazards No. 3). UNESCO, Paris.

[142]

Wamsler, C., Johannessen, Å., 2020. Meeting at the crossroads? Developing national strategies for disaster risk reduction and resilience: Relevance, scope for, and challenges to, integration. Int. J. Disaster Risk Reduct. 45, 101452.

[143]

Weichselgartner, J., 2001. Disaster mitigation: The concept of vulnerability revisited. Disaster Prev. Manage. 10, 85-95.

[144]

Winter, M.G., Dixon, N., Wasowski, J., Dijkstra, T.A., 2010. Introduction to land-use and climate change impacts on landslides. Q. J. Eng. Geol. Hydrogeol. 43, 367-370.

[145]

Wu, Y., Lan, H., 2020. Debris flow analyst (DA): A debris flow model considering kinematic uncertainties and using a GIS platform. Eng. Geol. 279, 105877.

[146]

Wu, Y.M., Lan, H.X., 2019. Landslide Analyst —A landslide propagation model considering block size heterogeneity. Landslides 16, 1107-1120.

[147]

Wu, Y.M., Lan, H.X., Gao, X., Li, L.P., Yang, Z.H., 2015. A simplified physically based coupled rainfall threshold model for triggering landslides. Eng. Geol. 195, 63-69.

[148]

Yang, Z.H., Lan, H.X., Liu, H.J., Li, L.P., Wu, Y.M., Meng, Y.S., Xu, L., 2015. Post-earthquake rainfall-triggered slope stability analysis in the Lushan area. J. Mt. Sci. 12, 232-242.

[149]

Yao, J.M., Lan, H.X., Li, L.P., Cao, Y.M., Wu, Y.M., Zhang, Y.X., Zhou, C.D., 2022. Characteristics of a rapid landsliding area along Jinsha River revealed by multi-temporal remote sensing and its risks to Sichuan-Tibet railway. Landslides 19, 703-718.

[150]

Zhang, F., Peng, J., Huang, X., Lan, H., 2021. Hazard assessment and mitigation of non- seismically fatal landslides in China. Nat. Hazards 106, 785-804.

[151]

Zhang, Y.X., Lan, H.X., Li, L.P., Wu, Y.M., Chen, J.H., Tian, N.M., 2020. Optimizing the frequency ratio method for landslide susceptibility assessment: A case study of the Caiyuan Basin in the southeast mountainous area of China. J. Mt. Sci. 17 (2), 340-357.

[152]

Zhou, G.G., Cui, P., Chen, H.Y., Zhu, X.H., Tang, J.B., Sun, Q.C., 2013. Experimental study on cascading landslide dam failures by upstream flows. Landslides 10, 633-643.

[153]

Zhou, N.Q., Zhao, S., 2013. Urbanization process and induced environmental geological hazards in China. Nat. Hazards 67 (2), 797-810.

[154]

International Organization for Standardization2019. ISO 37123:2019 - Sustainable cities and communities —Indicators for resilient cities.

PDF

361

Accesses

0

Citation

Detail

Sections
Recommended

/