Comparing the climate change mitigation potentials of alternative land uses: Crops for biofuels or biochar vs. natural regrowth

Anne Cecilie Løvenskiold , Xiangping Hu , Wenwu Zhao , Francesco Cherubini

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (4) : 347 -357.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (4) :347 -357. DOI: 10.1016/j.geosus.2022.11.004
Original article
research-article

Comparing the climate change mitigation potentials of alternative land uses: Crops for biofuels or biochar vs. natural regrowth

Author information +
History +
PDF

Abstract

Using biomass from dedicated crops for energy production and natural vegetation regrowth are key elements in future climate change mitigation scenarios. However, there are still uncertainties about the mitigation potentials that can be achieved by the different land-based systems and how they perform relative to each other. In this study, we use harmonized future land use datasets to identify global land areas dedicated to second generation bioenergy crop production in 2050 under different climate scenarios. We then assess the global climate change mitigation potentials of using biomass for producing bioethanol with (BECCS) or without carbon capture and storage, biochar, or a synthetic fuel (e-methanol). For the latter, the electricity required to produce hydrogen for e-methanol synthesis is sourced from either wind power or the projected average electricity mix in 2050. Mitigation potential from natural regrowth on the identified land is also quantified. For all the cases, we modelled emissions of greenhouse gases from the life-cycle stages and use parameterized models to estimate local biomass growth rates. The identified land areas range from 1.95 to 13.8 million hectares and can provide from 30 to 178 mega ton (Mt) dry biomass annually from dedicated crops. Climate change mitigation potentials range from 11 to 257 MtCO2-eq. yr−1, depending on technological option and land availability. The largest mitigation is delivered by BECCS, but e-methanol can achieve similar findings when hydrogen is sourced from wind power. If hydrogen is produced from grid electricity, e-methanol can result in net positive emissions. E-methanol can also deliver more final energy than bioethanol (4.04 vs. 1.27 EJ yr−1). Natural vegetation regrowth can generally achieve higher mitigation than bioethanol, but less than biochar. An optimal combination of BECCS and natural vegetation regrowth can achieve a larger mitigation, up to 281 MtCO2-eq. yr−1, indicating that integrated solutions can help to achieve successful land management strategies for climate change mitigation.

Keywords

Negative emission technologies / Natural regrowth / Land management / Bioenergy systems / Carbon neutrality

Cite this article

Download citation ▾
Anne Cecilie Løvenskiold, Xiangping Hu, Wenwu Zhao, Francesco Cherubini. Comparing the climate change mitigation potentials of alternative land uses: Crops for biofuels or biochar vs. natural regrowth. Geography and Sustainability, 2022, 3(4): 347-357 DOI:10.1016/j.geosus.2022.11.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declarations of Competing Interests

The authors declare that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgments

X.H. and F.C. thank the support of the Norwegian Research Council through the projects Mitistress (Grant No. 286773) and BEST (Grant No. 288047), W.Z. of the National Natural Science Foundation of China (Grant No. 42271292) and State Key Laboratory of Earth Surface Processes and Resource Ecology (Grant No. 2022-ZD-08).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.geosus.2022.11.004.

References

[1]

Albanito, F., Beringer, T., Corstanje, R., Poulter, B., Stephenson, A., Zawadzka, J., Smith, P., 2016. Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: A global assessment. GCB Bioenergy 8, 81-95.

[2]

Alexander, P., Prestele, R., Verburg, P.H., Arneth, A., Baranzelli, C., Batista e Silva, F., Brown, C., Butler, A., Calvin, K., Dendoncker, N., Doelman, J.C., Dunford, R., Engström, K., Eitelberg, D., Fujimori, S., Harrison, P.A., Hasegawa, T., Havlik, P., Holzhauer, S., Humpenöder, F., Jacobs-Crisioni, C., Jain, A.K., Krisztin, T., Kyle, P., Lavalle, C., Lenton, T., Liu, J., Meiyappan, P., Popp, A., Powell, T., Sands, R.D., Schaldach, R., Stehfest, E., Steinbuks, J., Tabeau, A., van Meijl, H., Wise, M.A., Rounsevell, M.D.A., 2017. Assessing uncertainties in land cover projections. Glob. Change Biol. 23, 767-781.

[3]

Bauer, N., Calvin, K., Emmerling, J., Fricko, O., Fujimori, S., Hilaire, J., Eom, J., Krey, V., Kriegler, E., Mouratiadou, I., Sytze de Boer, H., van den Berg, M., Carrara, S., Daioglou, V., Drouet, L., Edmonds, J.E., Gernaat, D., Havlik, P., Johnson, N., Klein, D., Kyle, P., Marangoni, G., Masui, T., Pietzcker, R.C., Strubegger, M., Wise, M., Riahi, K., van Vuuren, D.P., 2017. Shared socio-economic pathways of the energy sector - Quantifying the narratives. Glob. Environ. Change 42, 316-330.

[4]

Bauer, N., Klein, D., Humpenöder, F., Kriegler, E., Luderer, G., Popp, A., Strefler, J., 2020. Bio-energy and CO2 emission reductions: An integrated land-use and energy sector perspective. Clim. Change 163, 1675-1693.

[5]

Borisut, P., Nuchitprasittichai, A., 2019. Methanol production via CO2 hydrogenation: Sensitivity analysis and simulation —Based optimization. Front. Energy Res. 7, 81.

[6]

Boysen, L.R., Lucht, W., Gerten, D., 2017. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303-4317.

[7]

Brockway, P.E., Sorrell, S., Semieniuk, G., Heun, M.K., Court, V., 2021. Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications. Renew. Sust. Energy Rev. 141, 110781.

[8]

Brown, C., Holman, I., Rounsevell, M., 2021. How modelling paradigms affect simulated future land use change. Earth Syst. Dynam. 12, 211-231.

[9]

Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., Wise, M., 2017. The SSP4: A world of deepening inequality. Glob. Environ. Change 42, 284-296.

[10]

Chen, M., Vernon, C.R., Graham, N.T., Hejazi, M., Huang, M., Cheng, Y., Calvin, K., 2020. Global land use for 2015-2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320.

[11]

Cook-Patton, S.C., Leavitt, S.M., Gibbs, D., Harris, N.L., Lister, K., Anderson-Teixeira, K.J., Briggs, R.D., Chazdon, R.L., Crowther, T.W., Ellis, P.W., Griscom, H.P., Herrmann, V., Holl, K.D., Houghton, R.A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi, Y., Paquette, A., Parker, J.D., Paul, K., Routh, D., Roxburgh, S., Saatchi, S., van den Hoogen, J., Walker, W.S., Wheeler, C.E., Wood, S.A., Xu, L., Griscom, B.W., 2020. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545-550.

[12]

Doelman, J.C., Stehfest, E., Tabeau, A., van Meijl, H., Lassaletta, L., Gernaat, D.E.H.J., Hermans, K., Harmsen, M., Daioglou, V., Biemans, H., van der Sluis, S., van Vuuren, D.P., 2018. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48, 119-135.

[13]

Doelman, J.C., Stehfest, E., van Vuuren, D.P., Tabeau, A., Hof, A.F., Braakhekke, M.C., Gernaat, D.E.H.J., van den Berg, M., van Zeist, W.J., Daioglou, V., van Meijl, H., Lucas, P.L., 2020. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576-1591.

[14]

Don, A., Osborne, B., Hastings, A., Skiba, U., Carter, M.S., Drewer, J., Flessa, H., Freibauer, A., Hyvönen, N., Jones, M.B., Lanigan, G.J., Mander, Ü., Monti, A., Djomo, S.N., Valentine, J., Walter, K., Zegada-Lizarazu, W., Zenone, T., 2012. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4, 372-391.

[15]

Fazio, S., Monti, A., 2011. Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass Bioenergy 35, 4868-4878.

[16]

Field, J.L., Richard, T.L., Smithwick, E.A.H., Cai, H., Laser, M.S., LeBauer, D.S., Long, S.P., Paustian, K., Qin, Z., Sheehan, J.J., Smith, P., Wang, M.Q., Lynd, L.R., 2020. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl. Acad. Sci. U.S.A. 117 (36), 21968-21977.

[17]

Gomes, E., Inácio, M., Bogdzevi č K., Kalinauskas, M., Karnauskaitė D., Pereira, P., 2021. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 781, 146716.

[18]

Hanssen, S.V., Daioglou, V., Steinmann, Z.J.N., Doelman, J.C., Van Vuuren, D.P., Huijbregts, M.A.J., 2020. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Change 10 (11), 1023-1029.

[19]

Harper, R.J., Sochacki, S.J., McGrath, J.F., 2017. The development of reforestation options for dryland farmland in south-western Australia: A review. South. For. J. For. Sci. 79, 185-196.

[20]

Hayek, M.N., Harwatt, H., Ripple, W.J., Mueller, N.D., 2021. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21-24.

[21]

Hepburn, C., Adlen, E., Beddington, J., Carter, E.A., Fuss, S., Mac Dowell, N., Minx, J.C., Smith, P., Williams, C.K., 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87-97.

[22]

Hong, S., Yin, G., Piao, S., Dybzinski, R., Cong, N., Li, X., Wang, K., Peñuelas, J., Zeng, H., Chen, A., 2020. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694-700.

[23]

Hurtt, G.C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B.L., Calvin, K., Doelman, J.C., Fisk, J., Fujimori, S., Goldewijk, K.K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J., Kennedy, J., Kristzin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F.N., van Vuuren, D.P., Zhang, X., 2020. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13 (11), 5425-5464.

[24]

IEA, 2021. Global Energy Review 2021. IEA, Paris.

[25]

IRENA and Methanol Institute, 2021. Innovation Outlook : Renewable Methanol. International Renewable Energy Agency, Abu Dhabi.

[26]

Jackson, S., Brodal, E., 2019. Optimization of the energy consumption of a carbon capture and sequestration related carbon dioxide compression processes. Energies 12 (9), 1603.

[27]

Krzy ż aniak, M., Stolarski, M.J., Warmi ń ski, K., 2020. Life cycle assessment of giant miscanthus: production on marginal soil with various fertilisation treatments. Energies 13 (8), 1931.

[28]

Kuang, B., Lu, X., Zhou, M., Chen, D., 2020. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Change 151, 119874.

[29]

Lask, J., Wagner, M., Trindade, L.M., Lewandowski, I., 2019. Life cycle assessment of ethanol production from miscanthus: A comparison of production pathways at two European sites. GCB Bioenergy 11, 269-288.

[30]

Lehmann, J., Cowie, A., Masiello, C.A., Kammann, C., Woolf, D., Amonette, J.E., Cayuela, M.L., Camps-Arbestain, M., Whitman, T., 2021. Biochar in climate change mitigation. Nat. Geosci. 14, 883-892.

[31]

Li, W., Ciais, P., Stehfest, E., van Vuuren, D., Popp, A., Arneth, A., Di Fulvio, F., Doelman, J., Humpenöder, F., Harper, A.B., Park, T., Makowski, D., Havlik, P., Obersteiner, M., Wang, J., Krause, A., Liu, W., 2020. Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth Syst. Sci. Data 12, 789-804.

[32]

Manouchehrinejad, M., Mani, S., 2019. Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels. Energy Conver. Manage. X 1, 100008.

[33]

Minx, J.C., Lamb, W.F., Callaghan, M.W., Fuss, S., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., Garcia, W.d.O., Hartmann, J., Khanna, T., Lenzi, D., Luderer, G., Nemet, G.F., Rogelj, J., Pete, S., Vicente, J.L.V., Wilcox, J., Dominguez, M.M.Z., 2018. Negative emissions —Part 1: Research landscape and synthesis. Environ. Res. Lett. 13, 063001.

[34]

Monti, A., Fazio, S., Venturi, G., 2009. Cradle-to-farm gate life cycle assessment in perennial energy crops. Eur. J. Agron. 31, 77-84.

[35]

Morales, M., Aroca, G., Rubilar, R., Acuña, E., Mola-Yudego, B., González-García, S., 2015. Cradle-to-gate life cycle assessment of Eucalyptus globulus short rotation plantations in Chile. J. Clean. Prod. 99, 239-249.

[36]

Morales, M., Arvesen, A., Cherubini, F., 2021. Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance. Bioresour. Technol. 328, 124833.

[37]

Njakou Djomo, S., El Kasmioui, O., De Groote, T., Broeckx, L.S., Verlinden, M.S., Berhongaray, G., Fichot, R., Zona, D., Dillen, S.Y., King, J.S., Janssens, I.A., Ceulemans, R., 2013. Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation. Appl. Energy 111, 862-870.

[38]

Nolan, C.J., Field, C.B., Mach, K.J., 2021. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2, 436-446.

[39]

Næss, J.S., Cavalett, O., Cherubini, F., 2021. The land-energy-water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 4, 525-536.

[40]

Næss, J.S., Hu, X., Gvein, M.H., Iordan, C.M., Cavalett, O., Dorber, M., Giroux, B., Cherubini, F., 2023. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries. J. Environ. Manage. 325, 116474.

[41]

Næss, J.S., Iordan, C.M., Muri, H., Cherubini, F., 2022. Energy potentials and water requirements from perennial grasses on abandoned land in the former Soviet Union. Environ. Res. Lett. 17, 045017.

[42]

Pan, H., Page, J., Cong, C., Barthel, S., Kalantari, Z., 2021. How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene 35, 100297.

[43]

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B.L., Dietrich, J.P., Doelmann, J.C., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin, H., Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H., Fricko, O., Riahi, K., Vuuren, D.P.V., 2017. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331-345.

[44]

Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Ro șca, B., Dumitraşcu, M., Nita, I.A., Săvulescu, I., Birsan, M.V., Bandoc, G., 2021. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 194, 110697.

[45]

Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L.A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., 2017. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153-168.

[46]

Robertson, G.P., Hamilton, S.K., Barham, B.L., Dale, B.E., Izaurralde, R.C., Jackson, R.D., Landis, D.A., Swinton, S.M., Thelen, K.D., Tiedje, J.M., 2017. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 356 (6345), eaal2324.

[47]

Robinson, D.T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C.M., Brown, D.G., Kettner, A., Lemmen, C., O’Neill, B.C., Janssen, M., Pugh, T.A.M., Rabin, S.S., Rounsevell, M., Syvitski, J.P., Ullah, I., Verburg, P.H., 2018. Modelling feedbacks between human and natural processes in the land system. Earth Syst. Dynam. 9, 895-914.

[48]

Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., Hausfather, Z., Havlík, P., House, J., Nabuurs, G.J., Popp, A., Sánchez, M.J.S., Sanderman, J., Smith, P., Stehfest, E., Lawrence, D., 2019. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817-828.

[49]

Sanscartier, D., Deen, B., Dias, G., MacLean, H.L., Dadfar, H., McDonald, I., Kludze, H., 2014. Implications of land class and environmental factors on life cycle GHG emissions of Miscanthus as a bioenergy feedstock. GCB Bioenergy 6, 401-413.

[50]

Schmidt, H.P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T.D., Sánchez Monedero, M.A., Cayuela, M.L., 2021. Biochar in agriculture - A systematic review of 26 global meta-analyses. GCB Bioenergy 13, 1708-1730.

[51]

Seddon, N., Smith, A., Smith, P., Key, I., Chausson, A., Girardin, C., House, J., Srivastava, S., Turner, B., 2021. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518-1546.

[52]

Sipilä K., Wiltshire, R., 2016. 3 - Cogeneration, biomass, waste to energy and industrial waste heat for district heating. In: Advanced District Heating and Cooling (DHC) Systems. Woodhead Publishing, Oxford, pp. 45-73.

[53]

Smith, P., 2016. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315-1324.

[54]

Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., Lwasa, S., McElwee, P., Nkonya, E., Saigusa, N., Soussana, J.F., Taboada, M.A., Manning, F.C., Nampanzira, D., Arias-Navarro, C., Vizzarri, M., House, J., Roe, S., Cowie, A., Rounsevell, M., Arneth, A., 2020. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 26, 1532-1575.

[55]

Tisserant, A., Cherubini, F., 2019. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 8, 179 (Basel).

[56]

Tisserant, A., Morales, M., Cavalett, O., O’Toole, A., Weldon, S., Rasse, D.P., Cherubini, F., 2021. Life-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agriculture. Resour. Conserv. Recycl., 106030.

[57]

Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., Luderer, G., 2021. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Change 11, 384-393.

[58]

Valente, A., Iribarren, D., Dufour, J., 2020. Prospective carbon footprint comparison of hydrogen options. Sci. Total Environ. 728, 138212.

[59]

van Vuuren, D.P., Stehfest, E., Gernaat, D.E.H.J., Doelman, J.C., van den Berg, M., Harmsen, M., de Boer, H.S., Bouwman, L.F., Daioglou, V., Edelenbosch, O.Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P.L., van Meijl, H., Müller, C., van Ruijven, B.J., van der Sluis, S., Tabeau, A., 2017. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237-250.

[60]

Vaughan, N.E., Gough, C., Mander, S., Littleton, E.W., Welfle, A., Gernaat, D.E.H.J., Vuuren, D.P.V., 2018. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ. Res. Lett. 13, 044014.

[61]

Vera, I., Wicke, B., Lamers, P., Cowie, A., Repo, A., Heukels, B., Zumpf, C., Styles, D., Parish, E., Cherubini, F., Berndes, G., Jager, H., Schiesari, L., Junginger, M., Brandão, M., Bentsen, N.S., Daioglou, V., Harris, Z., van der Hilst, F., 2022. Land use for bioenergy: Synergies and trade-offs between sustainable development goals. Renew. Sustain. Energy Rev. 161, 112409.

[62]

Werling, B.P., Dickson, T.L., Isaacs, R., Gaines, H., Gratton, C., Gross, K.L., Liere, H., Malmstrom, C.M., Meehan, T.D., Ruan, L., Robertson, B.A., Robertson, G.P., Schmidt, T.M., Schrotenboer, A.C., Teal, T.K., Wilson, J.K., Landis, D.A., 2014. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl. Acad. Sci. U.S.A. 111, 1652-1657.

[63]

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., 2016. The ecoinvent database version 3 (part I):Overview and methodology. Int. J. Life Cycle Assess. 21, 1218-1230.

[64]

Whitaker, J., Field, J.L., Bernacchi, C.J., Cerri, C.E.P., Ceulemans, R., Davies, C.A., DeLucia, E.H., Donnison, I.S., McCalmont, J.P., Paustian, K., Rowe, R.L., Smith, P., Thornley, P., McNamara, N.P., 2018. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy 10, 150-164.

[65]

Yang, Y., Tilman, D., Lehman, C., Trost, J.J., 2018. Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat. Sustain. 1, 686-692.

[66]

Yao, Y., Pan, H., Cui, X., Wang, Z., 2022. Do compact cities have higher efficiencies of agglomeration economies? A dynamic panel model with compactness indicators. Land Policy 115, 106005.

PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

/