CLUE-S model based on GIS applied to management strategies of territory with oil wells—Case study: Santa Elena, Ecuador

Gricelda Herrera-Franco , Paulo Escandón-Panchana , F.J. Montalván , Andrés Velastegui-Montoya

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (4) : 366 -378.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (4) :366 -378. DOI: 10.1016/j.geosus.2022.11.001
Original article
research-article

CLUE-S model based on GIS applied to management strategies of territory with oil wells—Case study: Santa Elena, Ecuador

Author information +
History +
PDF

Abstract

Some cities worldwide have oil wells directly affecting the management of the territory. For example, La Libertad and Salinas districts contain 467 oil wells in urban areas representing a major land-use planning challenge. The objective is to apply the CLUE-S land use model in coastal cities with oil wells (Salinas-La Libertad), using geographic information systems considering environmental and security characteristics for territorial development. The stages of the study are: i) classification and categorisation of oil wells; ii) application of the GIS-CLUE-S method and visualisation of land use dynamics; iii) use the SWOT-TOWS matrix, for the analysis of the situation and the main factors affecting the territory. The results indicate high vulnerability in many urban sectors and those close to the coastline. Furthermore, the CLUE-S analysis shows that the population growth in the urban sector is close to oil well areas, making it a complex pole of human-industry interaction that impacts the management of the territory. This study synthesises three technical aspects: some oil wells do not comply with municipal ordinance regulations; identification of vulnerable zones due to environmental and security factors, which recommends a territorial reordering policy; as well as an education plan for the application of territorial ordering policies, with awareness and sustainability projections.

Keywords

Land use / Vulnerability / Sustainability / GIS / Dinamica EGO

Cite this article

Download citation ▾
Gricelda Herrera-Franco, Paulo Escandón-Panchana, F.J. Montalván, Andrés Velastegui-Montoya. CLUE-S model based on GIS applied to management strategies of territory with oil wells—Case study: Santa Elena, Ecuador. Geography and Sustainability, 2022, 3(4): 366-378 DOI:10.1016/j.geosus.2022.11.001

登录浏览全文

4963

注册一个新账户 忘记密码

Ethical statement

This study did not require ethical approval. The research conducts following the principles of the Declaration of Helsinki regarding research with human subjects. With the respondents’ consent, participation in the survey was voluntary and anonymous. The data provided treat confidentially.

CRediT authorship contribution statement

Gricelda Herrera-Franco: Conceptualization, Investigation, Methodology, Supervision, Writing - original draft, Writing - review & editing, Validation, Project administration. Paulo Escandón-Panchana: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing, Validation, Formal analysis, Visualization, Software. F.J. Montalván: Investigation, Methodology, Validation. Andrés Velastegui-Montoya: Data curation, Methodology, Software, Writing - review & editing, Visualization, Validation.

Declaration of Competing Interests

The authors declare that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

Different projects contributed to the development of this research. (1) The project “Geoenvironmental factors of oil wells and their impact on territorial development in the Salinas and La Libertad districts of the Santa Elena Province”, Universidad Estatal Península de Santa Elena, code no: 91870000.0000.385428. (2) Projects of the ESPOL Polytechnic University such as “Registration of geological and mining heritage and its impact on the defence and preservation of geodiversity in Ecuador” with code CIPAT-01-2018.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.geosus.2022.11.001.

References

[1]

Abu-hashim, M., Mohamed, E., Belal, A.-E., 2015. Identification of potential soil water retention using hydric numerical model at arid regions by land-use changes. Int. Soil Water Conserv. Res. 3 (4), 305-315.

[2]

Acheampong, M., Yu, Q., Enomah, L.D., Anchang, J., Eduful, M., 2018. Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one - A remote sensing and GIS approach. Land Use Policy 73, 373-384.

[3]

Ajilowo, O., Adebayo, E., Odunwole, S., 2011. Environmental implications of oil exploration and exploitation in the coastal region of Ondo State, Nigeria: A regional planning appraisal. J. Reg. Geogr. Plan. 4 (3), 110-121.

[4]

Alawamy, J.S., Balasundram, S.K., Hanif, A.H.M., Sung, C.T.B., 2020. Detecting and analyzing land use and land cover changes in the region of Al-Jabal Al-Akhdar, Libya using time-series Landsat data from 1985 to 2017. Sustainability 12 (11), 4490.

[5]

Alcaraz-Quiles, F., Navarro-Galera, A., Ortiz-Rodríguez, D., 2015. Factors determining online sustainability reporting by local governments. Int. Rev. Admin. Sci. 81 (1), 79-109.

[6]

Ambituuni, A., Amezaga, J., Emeseh, E., 2014. Analysis of safety and environmental regulations for downstream petroleum industry operations in Nigeria: Problems and prospects. Environ. Dev. 9 (1), 43-60.

[7]

Andrews, N., Bennett, N.J., le Billon, P., Green, S.J., Cisneros-Montemayor, A.M., Amongin, S., Gray, N.J., Sumaila, U.R., 2021. Oil, fisheries and coastal communities: A review of impacts on the environment, livelihoods, space and governance. Energy Res. Soc. Sci. 75, 102009.

[8]

Azevedo, A., Fortunato, A.B., Epifânio, B., den Boer, S., Oliveira, E.R., Alves, F.L., de Jesus, G., Gomes, J.L., Oliveira, A., 2017. An oil risk management system based on high--resolution hazard and vulnerability calculations. Ocean Coast. Manage. 136, 1-18.

[9]

Bac ău, S., Domingo, D., Palka, G., Pellissier, L., Kienast, F., 2022. Integrating strategic planning intentions into land-change simulations: Designing and assessing scenarios for Bucharest. Sustain. Cities Soc. 76, 103446.

[10]

Bao, Q., Ding, J., Han, L., Li, J., Ge, X., 2022. Predicting land change trends and water consumption in typical arid regions using multi-models and multiple perspectives. Ecol. Indic. 141, 109110.

[11]

Benedictow, A., Fjærtoft, D., Løfsnæs, O., 2013. Oil dependency of the Russian economy: An econometric analysis. Econ. Model. 32 (1), 400-428.

[12]

Braimoh, A.K., Onishi, T., 2007. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 24 (2), 502-515.

[13]

Branch, M.C., 1972. Oil extraction, urban environment, and city planning. J. Am. Plan. Assoc. 38 (3), 140-154.

[14]

Brunnhofer, M., Gabriella, N., Schöggl, J.-P., Stern, T., Posch, A., 2020. The biorefinery transition in the European pulp and paper industry - A three-phase Delphi study including a SWOT-AHP analysis. For. Polic. Econ. 110, 101882.

[15]

Buenaño, E., Padilla, E., Alcántara, V., 2021. Relevant sectors in CO 2 emissions in Ecuador and implications for mitigation policies. Energy Policy 158, 112551.

[16]

Camacho-Sanabria, R., Camacho-Sanabria, J.M., Balderas-Plata, M.Á., Sánchez-López, M., 2017. Changes for coverage and land use: A case study in Progreso Hidalgo, State of Mexico. Wood For. 23 (3), 39-60 (in Spanish).

[17]

Câmara, S.F., Pinto, F.R., da Silva, F.R., Soares, M., de, O., de Paula, T.M., 2021. Socioeconomic vulnerability of communities on the Brazilian coast to the largest oil spill (2019-2020) in tropical oceans. Ocean Coastal Manage. 202, 105506.

[18]

Carrión Mero, P., Herrera Franco, G., Briones, J., Caldevilla, P., Domínguez-Cuesta, M., Berrezueta, E., 2018. Geotourism and local development based on geological and mining sites utilization, Zaruma-Portovelo, Ecuador. Geosciences 8 (6), 205.

[19]

Chen, J., Zhang, W., Wan, Z., Li, S., Huang, T., Fei, Y., 2019. Oil spills from global tankers: Status review and future governance. J. Clean. Prod. 227, 20-32.

[20]

Chen, W., Chen, W., Ning, S., Liu, E., Zhou, X., Wang, Y., Zhao, M., 2019. Exploring the industrial land use efficiency of China’s resource-based cities. Cities 93, 215-223.

[21]

Cihlar, J., Jansen, L., 2010. From land cover to land use: A methodology for efficient land use mapping over large areas. Prof. Geogr. 53 (2), 275-289.

[22]

Dai, X., Lv, J., Yan, G., Chen, C., Guo, S., Fu, P., 2020. Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. Bioresour. Technol. 309, 123305.

[23]

Dami, A., Odihi, J.O., Ayuba, H.K., 2014. Assessment of land use and land cover change in Kwale, Ndokwa-East Local Government Area, Delta State, Nigeria. Global. J. Hum. Soc. Sci. B 14 (6), 17-23.

[24]

Datta, K., 2020. Application of SWOT-TOWS matrix and analytical hierarchy process (AHP) in the formulation of geoconservation and geotourism development strategies for Mama Bhagne Pahar: an important geomorphosite in West Bengal, India. Geoheritage 12 (2), 45.

[25]

de Oliveira, B.R., da Costa, E.L., Carvalho-Ribeiro, S.M., Maia-Barbosa, P.M., 2020. Land use dynamics and future scenarios of the Rio Doce State Park buffer zone, Minas Gerais, Brazil. Environ. Monit. Assess. 192 (1), 39.

[26]

Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A.G., Mittal, N., Feliu, E., Faehnle, M., 2014. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manage. 146, 107-115.

[27]

Díaz, R., Bravo Peña, L.C., Alatorre Cejudo, L.C., Sánchez Flores, E., 2015. Geospatial analysis of the interaction between land and water use in the peri-urban area of Cuauhtémoc, Chihuahua. A socio-environmental study in northern Mexico. Investig. Geogr. (83) doi: 10.14350/rig.32694 (in Spanish).

[28]

Dumont, J.F., Santana, E., Bonnardot, M.A., Pazmiño, N., Pedoja, K., Scalabrino, B., 2014. Geometry of the coastline and morphology of the convergent continental margin of Ecuador. Geol. Soc. Mem. 41 (1), 327-338.

[29]

Egger, C., Plutzar, C., Mayer, A., Dullinger, I., Dullinger, S., Essl, F., Gattringer, A., Bohner, A., Haberl, H., Gaube, V., 2022. Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria). Ecol. Eco. 201, 107559.

[30]

el Hachem, K., Kang, M., 2022. Methane and hydrogen sulfide emissions from abandoned, active, and marginally producing oil and gas wells in Ontario, Canada. Sci. Total Environ. 823, 153491.

[31]

Elser, H., Goldman-Mellor, S., Morello-Frosch, R., Deziel, N.C., Ranjbar, K., Casey, J.A., 2020. Petro-riskscapes and environmental distress in West Texas: community perceptions of environmental degradation, threats, and loss. Energy Res. Soc. Sci. 70, 101798.

[32]

Elz, I., Tansey, K., Page, S.E., Trivedi, M., 2015. Modelling deforestation and land cover transitions of tropical peatlands in Sumatra, Indonesia using remote sensed land cover data sets. Land 4 (3), 670-687.

[33]

Erdogan, N., Nurlu, E., Erdem, Ü., 2011. Modelling land use changes in Karaburun by using CLUE-S. ITU A|Z 8 (2), 91-102.

[34]

Escandón-Panchana, J., Elao Vallejo, R., Escandón-Panchana, P., Velastegui-Montoya, A., Herrera-Franco, G., 2022. Spatial planning of the coastal marine socioecological system —Case study: Punta Carnero, Ecuador. Resources 11 (8), 74.

[35]

Estrada, J., 2011. Ancón 100 Years in The Oil History of Ecuador, second ed. Santa Elena Peninsula State University (UPSE), Guayaquil (in Spanish).

[36]

Ficcarelli, G., Coltorti, M., Moreno-Espinosa, M., Pieruccini, P.L., Rook, L., Torre, D., 2003. A model for the Holocene extinction of the mammal megafauna in Ecuador. J. South Am. Earth Sci. 15 (8), 835-845.

[37]

Fitzgerald, T., Kuwayama, Y., Olmstead, S., Thompson, A., 2020. Dynamic impacts of U.S. energy development on agricultural land use. Energy Policy 137, 111163.

[38]

Fry, M., 2013. Urban gas drilling and distance ordinances in the Texas Barnett Shale. Energy Policy 62, 79-89.

[39]

Gad Municipal del Cantón La Libertad 2009. The ordinance regulates land use and urban development in areas of hydrocarbon activity in the canton. https://www.registroficial.gob.ec/index.php/registro-oficial-web/publicaciones/registro-oficial; https://sni.gob.ec/inicio (accessed 11 May 2022).

[40]

Gad Municipal del Cantón La Libertad 2014. Plan de desarrollo y ordenamiento territorial. http://app.sni.gob.ec/sni-link/sni/portal_sni/data_sigad_plus/sigadplusdiagnostico/0960006340001_diagnostico%20cant%c3%93n%20la%20libertad_14-03-2015_20-08-55.pdf (accessed 11 May 2022).

[41]

Gad Municipal del Cantón Salinas 2008. The ordinance regulates land use and urban development in areas of hydrocarbon activity in the canton. https://www.registroficial.gob.ec/index.php/registro-oficial-web/publicaciones/registro-oficial; https://sni.gob.ec/inicio (accessed 11 May 2022).

[42]

Gad Municipal del Cantón Salinas 2014. Plan de desarrollo y ordenamiento territorial del cantón salinas. http://app.sni.gob.ec/sni-link/sni/portal_sni/data_sigad_plus/sigadplusdocumentofinal/0960001380001_diagnostico%20pdot%202015%20marzo_13-03-2015_20-29-41.pdf (accessed 11 May 2022).

[43]

García-Garizábal, I., 2017. Rainfall variability and trend analysis in coastal arid Ecuador. Int. J. Clim. 37 (13), 4620-4630.

[44]

Getachew, B., Manjunatha, B.R., Bhat, H.G., 2021. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia. J. Hydrol. 595, 125974.

[45]

Gibreel, T.M., Herrmann, S., Berkhoff, K., Nuppenau, E.A., Rinn, A., 2014. Farm types as an interface between an agroeconomical model and CLUE-Naban land change model: Application for scenario modelling. Ecol. Indic. 36, 766-778.

[46]

Gobierno de la República del Ecuador 2012. Decreto_1227-26950. https://www.gob.ec/regulaciones/decreto-ejecutivo-244-reforma-al-decreto-ejecutivo-1227; https://www.gob.ec/regulaciones/decreto-ejecutivo-1227-crease-comite-interinstitucionalprevencion-asentamientos-humanos-irregulares-secretaria-tecnica-comiteinterinstitucional-prevencion-asentamientos-humanos-irregulares.(accessed 11 May 2022).

[47]

Golla, V., Arveti, N., Etikala, B., Sreedhar, Y., Narasimhlu, K., Harish, P., 2019. Data sets on spatial analysis of hydro geochemistry of Gudur area, SPSR Nellore district by using inverse distance weighted method in Arc GIS 10.1. Data Brief 22, 1003-1011.

[48]

Gollan, N., Voyer, M., Jordan, A., Barclay, K., 2019. Maximising community wellbeing: Assessing the threats to the benefits communities derive from the marine estate. Ocean Coastal Manage. 168, 12-21.

[49]

Graham, E., Ovadia, J.S., 2019. Oil exploration and production in Sub-Saharan Africa, 1990-present: Trends and developments. Extr. Ind. Soc. 6 (2), 593-609.

[50]

Haggerty, J.H., Kroepsch, A.C., Walsh, K.B., Smith, K.K., Bowen, D.W., 2018. Geographies of impact and the impacts of geography: Unconventional oil and gas in the American West. Extr. Ind. Soc. 5 (4), 619-633.

[51]

Hajizadeh, Y., 2019. Machine learning in oil and gas; a SWOT analysis approach. J. Pet. Sci. Eng. 176, 661-663.

[52]

Herrera-Franco, G., Erazo, K., Mora-Frank, C., Carrión-Mero, P., Berrezueta, E., 2021. Evaluation of a paleontological museum as geosite and base for geotourism. A case study. Heritage 4 (3), 1208-1227.

[53]

Herrera-Franco, G., Escandón-Panchana, P., Erazo, K., Mora-Frank, C., Berrezueta, E., 2021a. Geoenvironmental analysis of oil extraction activities in urban and rural zones of Santa Elena Province, Ecuador. Int. J. Energy Prod. Manage. 6 (3), 211-228.

[54]

Herrera-Franco, G., Montalván-Burbano, N., Mora-Frank, C., Moreno-Alcívar, L., 2021b. Research in petroleum and environment: A bibliometric analysis in South America. Int. J. Sustain. Dev. Plan. 16 (6), 1109-1116.

[55]

Herrera-Franco, G., Montalván, F.J., Velastegui-Montoya, A., Caicedo-Potosí J., 2022. Vulnerability in a populated coastal zone and its influence by oil wells in Santa Elena. Ecuador. Resources 11 (8), 70.

[56]

Hoffman, E.J., Latimer, J.S., Mills, G.L., Quinn, J.G., 1982. Petroleum hydrocarbons in urban runoff from a commerical land use area. J. Water Pollut. Control Fed. 54 (11), 1517-1525.

[57]

Huang, D., Huang, J., Liu, T., 2019. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Policy 82, 422-435.

[58]

Instituto Nacional de Estadísticas y Censos (INEC) 2010. Información Censal. https://www.ecuadorencifras.gob.ec/informacion-censal-cantonal/ (accessed 11 May 2022).

[59]

Instituto Nacional de Estadísticas y Censos (INEC) 2020. Proyecciones Poblacionales. Ecuadorencifras. https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/ (accessed 11 May 2022).

[60]

Jain, A.K., 2018. A fine balance: Lessons from India’s experience with petroleum subsidy reforms. Energy Policy 119, 242-249.

[61]

James, P., Holden, M., Lewin, M., Neilson, L., Oakley, C., Truter, A., Wilmoth, D., 2013. Managing metropolises by negotiating urban growth. In: Meig, H., Töpfer, K. (Eds.), Institutional and Social Innovation for Sustainable Urban Development. Routledge, London, pp. 217-232.

[62]

Kabuanga, J.M., Kankonda, O.M., Saqalli, M., Maestripieri, N., Bilintoh, T.M.M., Mweru, J.P.M., Liama, A.B., Nishuli, R., Mané L., 2021. Historical changes and future trajectories of deforestation in the ituri-epulu-aru landscape (Democratic Republic of the Congo). Land 10 (10), 1042.

[63]

Kamat, V.R., le Billon, P., Mwaipopo, R., Raycraft, J., 2019. Natural gas extraction and community development in Tanzania: Documenting the gaps between rhetoric and reality. Extr. Ind. Soc. 6 (3), 968-976.

[64]

Kilian, L., Murphy, D.P., 2014. The role of inventories and speculative trading in the global market for crude oil. J. Appl. Econ. 29 (3), 454-478.

[65]

Kok, K., Farrow, A., Veldkamp, A., Verburg, P.H., 2001. A method and application of multi-scale validation in spatial land use models. Agric. Ecosyst. Environ. 85 (1-3), 223-238.

[66]

Kucsicsa, G., Popovici, E.A., B ălteanu, D., Grigorescu, I., Dumitra ş cu, M., Mitric ă B., 2019. Future land use/cover changes in Romania: Regional simulations based on CLUE-S model and CORINE land cover database. Landsc. Ecol. Eng. 15 (1), 75-90.

[67]

Lambin, E.F., Rounsevell, M.D.A., Geist, H.J., 2000. Are agricultural land-use models able to predict changes in land-use intensity? Agric. Ecosyst. Environ. 82 (1-3), 321-331.

[68]

Lavasani, S.M., Ramzali, N., Sabzalipour, F., Akyuz, E., 2015. Utilisation of fuzzy fault tree analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Eng. 108, 729-737.

[69]

Lerma, A., Vásquez, J., Martínez, M., González, L., Coronado, J., Barraza, A., Mejía, M., Mercado, J., 2021. Manual of Nodal Topics of Quantitative Research. An Educational Approach. Pedagogical University of Durango, Mexico (in Spanish).

[70]

Li, Q., Vilela, P., Tariq, S., Nam, K., Yoo, C., 2022. Multiple land-use fugacity model to assess the transport and fate of polycyclic aromatic hydrocarbons in urban and suburban areas. Urban Clim. 45, 101263.

[71]

Lindsey, E., Lopez, E.X., Matzke, G.E., Rice, K.A., McDonald, H.G., 2020. A monodominant late-Pleistocene megafauna locality from Santa Elena, Ecuador: Insight on the biology and behavior of giant ground sloths. Palaeogeogr. Palaeoclimatol. Palaeoecol. 544, 109599.

[72]

Lindsey, E.L., López, R., 2015. Tanque Loma, a new late-Pleistocene megafaunal tar seep locality from southwest Ecuador. J. South Am. Earth Sci. 57, 61-82.

[73]

Llerena-Montoya, S., Velastegui-Montoya, A., Zhirzhan-Azanza, B., Herrera-Matamoros, V., Adami, M., de Lima, A., Moscoso-Silva, F., Encalada, L., 2021. Multitemporal analysis of land use and land cover within an oil block in the ecuadorian amazon. ISPRS Int. J. Geo-Inf. 10 (3), 191.

[74]

López, V., Espi ́ndola, F., Calles, J., Ulloa, J., 2010. Ecuadorian Amazon Under Pressure. FLACSO (in Spanish).

[75]

Luo, G., Yin, C., Chen, X., Xu, W., Lu, L., 2010. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 7 (2), 198-207.

[76]

Luzieux, L., Heller, F., Spikings, R., Vallejo, C.F., Winkler, W., 2006. Origin and cretaceous tectonic history of the coastal Ecuadorian forearc between 1°N and 3°S: Paleomagnetic, radiometric and fossil evidence. Earth Planet. Sci. Lett. 249 (3-4), 400-414.

[77]

Marinho, C., Nicolodi, J.L., Neto, J.A., 2021. Environmental vulnerability to oil spills in Itapuã State Park, Rio Grande do Sul, Brazil: An approach using two-dimensional numerical simulation. Environ. Pollut. 288, 117872.

[78]

Mas, J.F., Lemoine-Rodríguez, R., González-López, R., López-Sánchez, J., Piña-Garduño, A., Herrera-Flores, E., 2017. Land use/land cover change detection combining automatic processing and visual interpretation. Eur. J. Remote Sens. 50 (1), 626-635.

[79]

Matemilola, S., Adedeji, O.H., Enoguanbhor, E.C., 2018. Land use/land cover change in petroleum-producing regions of Nigeria. In: NdimeleP.E. (Ed.), The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem. Elsevier Inc, pp. 257-276.

[80]

Mayer, A., Olson-Hazboun, S.K., Malin, S., 2018. Fracking fortunes: Economic well-being and oil and gas development along the urban-rural Continuum. Rural. Sociol. 83 (3), 532-567.

[81]

Ministerio del Ambiente, A. y Transición E., 2022. Mapa Interactivo. http://ide.ambiente.gob.ec/mapainteractivo/ (accessed 6 June 2022).

[82]

Nelson, J.R., Grubesic, T.H., 2018. Oil spill modeling. Prog. Phys. Geogr.: Earth Environ. 42 (1), 112-127.

[83]

Osis, R., Laurent, F., Poccard-Chapuis, R., 2019. Spatial determinants and future land use scenarios of Paragominas municipality, an old agricultural frontier in Amazonia. J. Land Use Sci. 14 (3), 258-279.

[84]

Otchere-Darko, W., Ovadia, J.S., 2020. Incommensurable languages of value and petro- geographies: Land-use, decision-making and conflict in South-Western Ghana. Geoforum 113, 69-80.

[85]

Pauleit, S., Ennos, R., Golding, Y., 2005. Modeling the environmental impacts of urban land use and land cover change —A study in Merseyside, UK. Landsc. Urban Plan. 71 (2-4), 295-310.

[86]

Pearsall, D.M., Duncan, N., Jones, J.G., Friedel, D.E., Veintimilla, C.I., Neff, H., 2016. Human-environment interactions during the early mid-Holocene in coastal Ecuador as revealed by mangrove coring in Santa Elena Province. Holocene 26 (8), 1262-1289.

[87]

Peng, K., Jiang, W., Deng, Y., Liu, Y., Wu, Z., Chen, Z., 2020. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecol. Indic. 117, 106671.

[88]

Presidencia de la República del Ecuador 2010. Reglamento Ambiental de Actividades hidrocarburíferas. https://www.ambiente.gob.ec/wp-content/uploads/downloads/ 2012/09/raohe-decreto-ejecutivo-1215.pdf (accessed 6 june 2022)

[89]

Presidencia de la República del Ecuador2018. Reglamento de operaciones hidrocarburíferas. https://www.gob.ec/sites/default/files/regulations/2018-10/reglamento-de-operaciones-hidrocarburiferas.pdf (accessed 6 june 2022)

[90]

Rodríguez, D., Pilasagua, J., 2014. Feasibility study for implementing the progressive cavities pumps system in the “Gustavo Galindo Velasco ” field located in the province of Santa Elena. (in Spanish)

[91]

Piontekowski, V., Ribeiro, F., Matricardi, E., Lustosa, I., Bussinguer, A., Gatto, A., 2019. Modeling deforestation in the State of Rondônia. For. Environ. 26 (3), e20180441.

[92]

Saari, M.Y., Dietzenbacher, E., Los, B., 2016. The impacts of petroleum price fluctuations on income distribution across ethnic groups in Malaysia. Ecol. Econ. 130, 25-36.

[93]

Sahani, N., 2021. Application of hybrid SWOT-AHP-FuzzyAHP model for formulation and prioritization of ecotourism strategies in Western Himalaya. India. Int. J. Geoherit. Parks 9 (3), 349-362.

[94]

Salazar, E., Henríquez, C., Sliuzas, R., Qüense, J., 2020. Evaluating spatial scenarios for sustainable development in Quito, Ecuador. ISPRS Int. J. Geo-Inf. 9 (3), 141.

[95]

Santos, Y.L.F., Yanai, A.M., Ramos, C.J.P., Graça, P.M.L.A., Veiga, J.A.P., Correia, F.W.S., Fearnside, P.M., 2022. Amazon deforestation and urban expansion: Simulating future growth in the Manaus Metropolitan Region, Brazil. J. Environ. Manage. 304, 114279.

[96]

Schüngel, J., Stuch, B., Fohry, C., Schaldach, R., 2022. Effects of initialization of a global land-use model on simulated land change and loss of natural vegetation. Environ. Model. Softw. 148, 105287.

[97]

Semadeni-Davies, A., Jones-Todd, C., Srinivasan, M.S., Muirhead, R., Elliott, A., Shankar, U., Tanner, C., 2020. CLUES model calibration and its implications for estimating contaminant attenuation. Agric. Water Manage. 228, 105853.

[98]

Shu, H., Xiong, P.-P., 2019. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Yangtze River Delta. Land Use Policy 81, 604-623.

[99]

Soares, V., de Medeiros, L., Madureira, C., da Rocha, E., 2020. Modeling urban space dynamics using cell automatons - A predictive approach to 2030 in the planning area 4 /Rio de Janeiro. J. Conti. 17, 297-313 (in Portuguese).

[100]

Sui, D.Z., 2004. Tobler’s first law of geography: A big idea for a small world? Ann. Am. Assoc. Geogr. 94 (2), 267-277.

[101]

Taber, P., 2020. Environmental consulting as experimental system: Uncertainty and emergence in Ecuador’s oil sector, 1988-2001. Geoforum 108, 88-97.

[102]

Tobler, W.R., 1970. A Computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234-240.

[103]

Tran, K.V., Casey, J.A., Cushing, L.J., Morello-Frosch, R., 2020. Residential proximity to oil and gas development and birth outcomes in California: A retrospective cohort study of 2006-2015 births. Environ. Health. Perspect. 128 (6), 067001.

[104]

Tvinnereim, E., Lægreid, O.M., Fløttum, K., 2020. Who cares about Norway’s energy transition? A survey experiment about citizen associations and petroleum. Energy Res. Soc. Sci. 62, 101357.

[105]

Universidad Federal de Minas Gerais (UFMG) 2022. Dinamica Ego. https://dinamicaego.com/ (accessed 6 June 2022).

[106]

Uzoma, A.C., Mgbemena, O.O., 2015. Evaluation of some oil companies in the Niger Delta region of Nigeria: An environmental impact approach. Int. J. Environ. Pollut. Res. 3 (2), 13-31.

[107]

Varjani, S., Upasani, V.N., 2019. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J. Environ. Manage. 245, 358-366.

[108]

Verburg, P.H., Ellis, E.C., Letourneau, A., 2011. A global assessment of market accessibility and market influence for global environmental change studies. Environ. Res. Lett. 6 (3), 034019.

[109]

Verburg, P.H., Schulp, C.J.E., Witte, N., Veldkamp, A., 2006. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric. Ecosyst. Environ. 114 (1), 39-56.

[110]

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S.A., 2002. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manage. 30 (3), 391-405.

[111]

Waiyasusri, K., Yumuang, S., Chotpantarat, S., 2016. Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environ. Earth Sci. 75 (6), 533.

[112]

Wang, Q., Liu, R., Men, C., Guo, L., 2018. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. J. Hydrol. 560, 86-96.

[113]

Wang, Sulla-Menashe, D., Woodcock, C.E., Sonnentag, O., Keeling, R.F., Friedl, M.A., 2020. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Global Change Biol. 26 (2), 807-822.

[114]

Wang, Y., Chao, B., Dong, P., Zhang, D., Yu, W., Hu, W., Ma, Z., Chen, G., Liu, Z., Chen, B., 2021. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914.

[115]

Xu, L., Li, Z., Song, H., Yin, H., 2013. Land-use planning for urban sprawl based on the CLUE-S model: A case study of Guangzhou, China. Entropy 15 (9), 3490-3506.

[116]

Zare, M., Nazari Samani, A.A., Mohammady, M., Salmani, H., Bazrafshan, J., 2017. Investigating effects of land use change scenarios on soil erosion using CLUE-s and RUSLE models. Int. J. Environ. Sci. Technol. 14 (9), 1905-1918.

[117]

Zhang, P., Liu, Y., Pan, Y., Yu, Z., 2013. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Math. Comput. Model. 58 (3-4), 588-595.

[118]

Zhang, L-P.,Zhang, S.-W., Zhou, Z.-M., Hou, S., Huang, Y.-F., Cao, W.-D., 2016. Spatial distribution prediction and benefits assessment of green manure in the Pinggu District, Beijing, based on the CLUE-S model. J. Integr. Agric. 15 (2), 465-474.

[119]

Zhou, R., Zhang, H., Ye, X.Y., Wang, X.J., Su, H.L., 2016. The delimitation of urban growth boundaries using the clue-s land-use change model: Study on Xinzhuang town, Changshu City, China. Sustainability 8 (11), 1182.

[120]

Zuo, Y., Chen, H., Pan, J., Si, Y., Law, R., Zhang, M., 2021. Spatial distribution pattern and influencing factors of sports tourism resources in China. ISPRS Int. J. Geo-Inf. 10 (7), 428.

PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

/