Vegetation phenology and its ecohydrological implications from individual to global scales

Shouzhi Chen , Yongshuo H. Fu , Fanghua Hao , Xiaoyan Li , Sha Zhou , Changming Liu , Jing Tang

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (4) : 334 -338.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (4) :334 -338. DOI: 10.1016/j.geosus.2022.10.002
research-article

Vegetation phenology and its ecohydrological implications from individual to global scales

Author information +
History +
PDF

Abstract

The Earth is experiencing unprecedented climate change. Vegetation phenology has already showed strong response to the global warming, which alters mass and energy fluxes on terrestrial ecosystems. With technology and method developments in remote sensing, computer science and citizen science, many recent phenology-related studies have been focused on macrophenology. In this perspective, we 1) reviewed the responses of vegetation phenology to climate change and its impacts on carbon cycling, and reported that the effect of shifted phenology on the terrestrial carbon fluxes is substantially different between spring and autumn; 2) elaborated how vegetation phenology affects ecohydrological processes at different scales, and further listed the key issues for each scale, i.e., focusing on seasonal effect, local feedbacks and regional vapor transport for individual, watershed and global respectively); 3) envisioned the potentials to improve current hydrological models by coupling vegetation phenology-related processes, in combining with machine learning, deep learning and scale transformation methods. We propose that comprehensive understanding of climate-macrophenology-hydrology interactions are essential and urgently needed for enhancing our understanding of the ecosystem response and its role in hydrological cycle under future climate change.

Keywords

Global warming / Marcophenology / Carbon balance / Ecohydrology

Cite this article

Download citation ▾
Shouzhi Chen, Yongshuo H. Fu, Fanghua Hao, Xiaoyan Li, Sha Zhou, Changming Liu, Jing Tang. Vegetation phenology and its ecohydrological implications from individual to global scales. Geography and Sustainability, 2022, 3(4): 334-338 DOI:10.1016/j.geosus.2022.10.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

YHF conceived the ideas and designed methodology. SZC drew the figures of this perspective. YHF led the writing of the manuscript in corporation with SZC. All authors contributed critically to the drafts and gave final approval for publication.

Declaration of Competing Interests

The authors declare that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

This perspective article was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 42025101), International Cooperation and Exchanges NSFC-STINT (Grant No. 42111530181).

References

[1]

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., Van Liew, M.W., 2012. SWAT: Model use, calibration, and validation. Trans. ASABE 55 (4), 1491-1508.

[2]

Augspurger, C.K., 2009. Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 23 (6), 1031-1039.

[3]

Bai, P., Liu, X., Zhang, Y., Liu, C., 2020. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water Resour. Res. 56 (10), e2019WR027019.

[4]

Bonan, G.B., 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320 (5882), 1444-1449.

[5]

Buermann, W., Bikash, P.R., Jung, M., Burn, D.H., Reichstein, M., 2013. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 8 (2), 024027.

[6]

Chen, S., Fu, Y.H., Geng, X., Hao, Z., Tang, J., Zhang, X., Xu, Z., Hao, F., 2022. Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient. Front. Plant Sci. 12 (2980), 802664.

[7]

Fu, Y., Li, X., Zhou, X., Geng, X., Guo, Y., Zhang, Y., 2020. Progress in plant phenology modeling under global climate change. Sci. China Earth Sci. 63 (9), 1237-1247.

[8]

Fu, Y.H., Piao, S., Delpierre, N., Hao, F., Hänninen, H., Geng, X., Peñuelas, J., Zhang, X., Janssens, I.A., Campioli, M., 2019. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39 (8), 1277-1284.

[9]

Gallinat, A.S., Ellwood, E.R., Heberling, J.M., Miller-Rushing, A.J., Pearse, W.D., Primack, R.B., 2021. Macrophenology: Insights into the broad-scale patterns, drivers, and consequences of phenology. Am. J. Bot. 108 (11), 2112-2126.

[10]

Geng, X., Zhou, X., Yin, G., Hao, F., Zhang, X., Hao, Z., Singh, V.P., Fu, Y.H., 2020. Extended growing season reduced river runoff in Luanhe River basin. J. Hydrol. 582, 124538.

[11]

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., Sitch, S., 2004. Terrestrial vegetation and water balance —Hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286 (1-4), 249-270.

[12]

Glasius, M., Goldstein, A.H., 2016. Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol. 50, 2754-2764.

[13]

Gordo, O., Mori, T., Kubo, M.T., 2017. A macroecological perspective for phenological research under climate change. Ecol. Res. 32 (5), 633-641.

[14]

Huang, M., Piao, S., Janssens, I.A., Zhu, Z., Wang, T., Wu, D., Ciais, P., Myneni, R.B., Peaucelle, M., Peng, S., 2017. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1 (11), 1649-1654.

[15]

Hufkens, K., Friedl, M.A., Keenan, T.F., Sonnentag, O., Bailey, A., O’Keefe, J., Richardson, A.D., 2012. Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Change Biol. 18 (7), 2365-2377.

[16]

Huntington, T.G., 2008. CO2 -induced suppression of transpiration cannot explain increasing runoff. Hydrol. Process. 22 (2), 311-314.

[17]

IPCC, 2021. Climate change 2021:The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

[18]

Jeong, S.J., Ho, C.H., Gim, H.J., Brown, M.E., 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17 (7), 2385-2399.

[19]

Keenan, T.F., Gray, J., Friedl, M.A., Toomey, M., Bohrer, G., Hollinger, D.Y., Munger, J.W., O’Keefe, J., Schmid, H.P., SueWing, I., Yang, B., Richardson, A.D., 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4 (7), 598-604.

[20]

Kim, J.H., Hwang, T., Yang, Y., Schaaf, C.L., Boose, E., Munger, J.W., 2018. Warming-induced earlier greenup leads to reduced stream discharge in a temperate mixed forest catchment. J. Geophys. Res. 123 (6), 1960-1975.

[21]

Kulmala, M., Suni, T., Lehtinen, K., Dal Maso, M., Boy, M., Reissell, A., Rannik, Ü., Aalto, P., Keronen, P., Hakola, H., 2004. A new feedback mechanism linking forests, aerosols, and climate. Atmos. Chem. Phys. 4 (2), 557-562.

[22]

Li, Y., Piao, S., Li, L.Z., Chen, A., Wang, X., Ciais, P., Huang, L., Lian, X., Peng, S., Zeng, Z., 2018. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4 (5), eaar4182.

[23]

Lian, X., Piao, S., Li, L.Z., Li, Y., Huntingford, C., Ciais, P., Cescatti, A., Janssens, I.A., Peñuelas, J., Buermann, W., 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6 (1), eaax0255.

[24]

Liu, L., Wallach, D., Li, J., Liu, B., Zhang, L., Tang, L., Zhang, Y., Qiu, X., Cao, W., Zhu, Y., 2018a. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. Eur. J. Agron. 94, 46-53.

[25]

Liu, Q., Fu, Y.H., Liu, Y., Janssens, I.A., Piao, S., 2018b. Simulating the onset of spring vegetation growth across the Northern Hemisphere. Glob. Change Biol. 24 (3), 1342-1356.

[26]

Liu, Q., Piao, S., Janssens, I.A., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni, R.B., Peñuelas, J., Wang, T., 2018c. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9 (1), 1-8.

[27]

Ma, T., Duan, Z., Li, R., Song, X., 2019. Enhancing SWAT with remotely sensed LAI for improved modelling of ecohydrological process in subtropics. J. Hydrol. 570, 802-815.

[28]

Makarieva, A.M., Gorshkov, V.G., 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci. 11 (2), 1013-1033.

[29]

Menzel, A., Fabian, P., 1999. Growing season extended in Europe. Nature 397 (6721), 659.

[30]

Moore, K.E., Fitzjarrald, D.R., Sakai, R.K., Goulden, M.L., Munger, J.W., Wofsy, S.C., 1996. Seasonal variation in radiative and turbulent exchange at a deciduous forest in central Massachusetts. J. Appl. Meteorol. Climatol. 35 (1), 122-134.

[31]

Peñuelas, J., Rutishauser, T., Filella, I., 2009. Phenology feedbacks on climate change. Science 324 (5929), 887-888.

[32]

Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H., Fang, J., Barr, A., Chen, A., 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451 (7174), 49-52.

[33]

Piao, S., Friedlingstein, P., Ciais, P., Viovy, N., Demarty, J., 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21 (3), GB3018.

[34]

Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., Zhu, X., 2019. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25 (6), 1922-1940.

[35]

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A., Ciais, P., Tømmervik, H., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1 (1), 14-27.

[36]

Savenije, H.H., 2004. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18 (8), 1507-1511.

[37]

Sellars, S., Kawzenuk, B., Nguyen, P., Ralph, F., Sorooshian, S., 2017. Genesis, pathways, and terminations of intense global water vapor transport in association with large-scale climate patterns. Geophys. Res. Lett. 44 (24), 12465-12475.

[38]

Sheil, D., Murdiyarso, D., 2009. How forests attract rain: An examination of a new hypothesis. Bioscience 59 (4), 341-347.

[39]

Smith, B., 2001. LPJ-GUESS —An ecosystem modelling framework. Department of Physical Geography and Ecosystems Analysis, INES, Sölvegatan 12, 22362.

[40]

Sporre, M.K., Blichner, S.M., Karset, I.H., Makkonen, R., Berntsen, T.K., 2019. BVOC-aerosol-climate feedbacks investigated using NorESM. Atmos. Chem. Phys. 19 (7), 4763-4782.

[41]

Strauch, M., Volk, M., 2013. SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol. Modell. 269, 98-112.

[42]

Trumbore, S., Brando, P., Hartmann, H., 2015. Forest health and global change. Science 349 (6250), 814-818.

[43]

Vitasse, Y., Baumgarten, F., Zohner, C., Rutishauser, T., Pietragalla, B., Gehrig, R., Dai, J., Wang, H., Aono, Y., Sparks, T., 2022. The great acceleration of plant phenological shifts. Nat. Clim. Change 12, 300-302.

[44]

Waliser, D., Guan, B., 2017. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 10 (3), 179-183.

[45]

Wood, E.F., Lettenmaier, D.P., Zartarian, V.G., 1992. A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res. 97 (D3), 2717-2728.

[46]

Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Ning, D., Hou, Y., Liu, S., 2017. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 546, 44-59.

[47]

Zhang, Y., Commane, R., Zhou, S., Williams, A.P., Gentine, P., 2020. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10 (8), 739-743.

[48]

Zhou, X., Geng, X., Yin, G., Hänninen, H., Hao, F., Zhang, X., Fu, Y.H., 2020. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845.

[49]

Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T.A.M., Stocker, B.D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., Zeng, N., 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6 (8), 791-795.

PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

/