Climate change and water security in the northern slope of the Tianshan Mountains

Qiuhong Tang , Xingcai Liu , Yuanyuan Zhou , Puyu Wang , Zhongqin Li , Zhixin Hao , Suxia Liu , Gang Zhao , Bingqi Zhu , Xinlin He , Fadong Li , Guang Yang , Li He , Haoxin Deng , Zongxia Wang , Xiang Ao , Zhi Wang , Paul P.J. Gaffney , Lifeng Luo

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) : 246 -257.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) :246 -257. DOI: 10.1016/j.geosus.2022.08.004
research-article

Climate change and water security in the northern slope of the Tianshan Mountains

Author information +
History +
PDF

Abstract

Water security is under threat worldwide from climate change. A warming climate would accelerate evaporation and cryosphere melting, leading to reduced water availability and unpredictable water supply. However, the water crisis in the Northern Slope of Tianshan Mountains (NSTM) faces dual challenges because water demands for fast-growing urban areas have put heavy pressure on water resources. The mountain-oasis-desert system features glacier-fed rivers that sustain intensive water use in the oasis and end in the desert as fragile terminal lakes. The complex balance between water conservation and economic development is subtle. This paper investigates changes in hydroclimatic variables and water security-related issues on the NSTM. The spatiotemporal variations in glaciers, climatic variables, rivers, lakes and reservoirs, groundwater, surface water, human water use, and streamflow were analyzed for the past four decades. The results show that temperature in the NSTM exhibited an apparent upward trend with a more significant warming rate in the higher altitude regions. Glacier mass loss and shrinkage was strong. The average annual streamflow increased from 1980-1989 to 2006-2011 at most hydrological stations. The monthly dynamics of surface water area showed notable variability at both inter-annual and seasonal scales, revealing the impacts of both natural and anthropogenic drivers on surface water availability in the region. The terrestrial water storage anomaly showed a decreasing trend, which might be related to groundwater pumping for irrigation. Human water use for agriculture and industry grew with the increase in cultivated land area and gross domestic product (GDP). The increased agricultural water use was strongly associated with the expansion of oases. It is unclear whether water availability would remain high under future climatic and hydrological uncertainties, posing challenges to water management. In the context of rapid urban growth and climate change, balancing water for humans and nature is vital in achieving the Sustainable Development Goals (SDGs) in NSTM. This study provides a baseline understanding of the interplay among water, climate change, and socio-economic development in NSTM. It would also shed light on wise water management under environmental changes for other rapidly developing mountain-oasis-desert systems worldwide.

Keywords

Tianshan Mountains / Climate change / Water security / Water resources / Human water use

Cite this article

Download citation ▾
Qiuhong Tang, Xingcai Liu, Yuanyuan Zhou, Puyu Wang, Zhongqin Li, Zhixin Hao, Suxia Liu, Gang Zhao, Bingqi Zhu, Xinlin He, Fadong Li, Guang Yang, Li He, Haoxin Deng, Zongxia Wang, Xiang Ao, Zhi Wang, Paul P.J. Gaffney, Lifeng Luo. Climate change and water security in the northern slope of the Tianshan Mountains. Geography and Sustainability, 2022, 3(3): 246-257 DOI:10.1016/j.geosus.2022.08.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The author declares that no known competing financial interests or personal relationships influenced the work reported in this paper.

Acknowledegments

This work is supported by the Third Xinjiang Scientific Expedition Program (Grant No. 2021xjkk0800). Thanks to Professor Lu Zhang for his valuable comments.

References

[1]

Amjad, M., Yilmaz, M., Yucel, I., Yilmaz, K., 2020. Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography. J. Hydrol. 584, 124707.

[2]

Bolch, T., Peters, J., Yegorov, A., Pradhan, B., Buchroithner, M., Blagoveshchensky, V., Pradhan, B., Buchroithner, M., 2012. Identification of potentially dangerous glacial lakes in the northern Tian Shan. In: In: Pradhan, B., BuchroithnerM. (TerrigenousMass Movements.Eds.), Springer, Berlin, Heidelberg, pp. 369-398.

[3]

Chen, H., Chen, Y., Li, W., Li, Z., 2019. Quantifying the contributions of snow/glacier meltwater to river runoff in the Tianshan Mountains, Central Asia. Global Planet. Change 174, 47-57.

[4]

Chen, X., Luo, G., Xia, J., Zhou, K., Lou, S., Ye, M., 2005. Ecological response to the climate change on the northern slope of the Tianshan Mountains in Xinjiang. Sci. China Ser. D 48 (6), 765-777.

[5]

Chen, Y., Li, B., Fan, Y., Sun, C., Fang, G., 2019. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. J. Arid Land 11, 161-179.

[6]

Dai, S., Li, L., Xu, H., 2017. Simulation of water scarcity in a leap-forward developing arid region: A system dynamics model of Xinjiang Uygur autonomous region. Water Policy 19 (4), 741-757.

[7]

Deng, H., Chen, Y., Wang, H., Zhang, S., 2015. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Global Planet. Change 135, 28-37.

[8]

Deng, M., 2020. Development pattern of production-living-ecological spaces and construction of a smart water network system for the economic belt on the North Slope of the Tianshan Mountains. Arid Land Geogr. 43 (5), 1155-1168 (in Chinese).

[9]

Deng, S., Liu, S., Mo, X., 2021. Assessment and attribution of China’s droughts using an integrated drought index derived from GRACE and GRACE-FO data. J. Hydrol. 603, 127170.

[10]

Deng, X., Deng, L., Hu, Y., 2015. The evaluation of Angu Hydropower Station Habitat and analysis on its influencing factors. Adv. Mat. Res. 1065-1069, 3272-3276.

[11]

Dieter, C., Maupin, M., Caldwell, R., Harris, M., Ivahnenko, T., Lovelace, J., Barber, N., Linsey, K., 2018. In: Estimated Use of Water in the United States in 2015, 1441. U.S. Geological Survey Circular, p. 65p. doi: 10.3133/cir1441 [Supersedes USGS Open-File Report 2017-1131.].

[12]

Ding, Q., Zhou, J., Du, M., Wang, X., Zhang, S., Gao, Q., 2022. Spatiotemporal variation of groundwater table from 2016 to 2020 in Shihezi-Changji of Xinjiang. J. Irrig. Drain. 41 (2), 109-117 (in Chinese).

[13]

Fan, B., Luo, G., Zhang, C., Hu, Z., Li, C., Wang, Y., Bai, L., 2013. Evaluation of summer precipitation of CFSR, ERA-Interim and MERRA reanalyses in Xinjiang. Geogr. Res. 32 (9), 1602-1612.

[14]

Fan, M., Xu, J., Chen, Y., Li, D., Tian, S., 2020. How to sustainably use water resources —A case study for decision support on the water utilization of Xinjiang, China. Water 12 (12), 3564.

[15]

Fang, C., Gao, Q., Zhang, X., Cheng, W., 2019. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: Case study on the northern slope of the Tianshan Mountains. Sci. China Earth Sci. 62 (9), 1461-1472.

[16]

Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., Vorogushyn, S., Güntner, A., 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 8, 716-722.

[17]

Gao, Z., 2016. Influence of sediment deposition on Kensiwat Project. China Water Resour. 28-30 (in Chinese).

[18]

Gleick, P.H., Cooley, H., 2021. Freshwater scarcity. Annu. Rev. Env. Resour. 46 (1), 319-348.

[19]

Gosling, S.N., Arnell, N.W., 2016. A global assessment of the impact of climate change on water scarcity. Clim. Change 134 (3), 371-385.

[20]

Guo, X., Feng, Q., Si, J., Xi, H., Zhao, Y., 2019. Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. J. Hydrol. 579, 124212.

[21]

Han, Y., Jia, S., 2022. An assessment of the water resources carrying capacity in Xinjiang. Water 14 (9), 1510.

[22]

Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z., Wada, Y., Wisser, D., 2014. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U. S. A. 111 (9), 3251-3256.

[23]

Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., Kanae, S., 2013. A global water scarcity assessment under shared socio-economic pathways-part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci. 17 (7), 2393-2413.

[24]

Jiang, N., 1997. Reservoir deposition in China. Lake Sci. (1) 1-5 (in Chinese).

[25]

Lei, J., Dong, W., Yang, Y., Lu, J., Sterr, T., 2012. Interactions between water-land resources and oasis urban development at the northern slopes of the Tianshan Mountains, Xinjiang, China. J. Arid Land 4 (2), 221-229.

[26]

Li, A., Liu, Y., Chen, G., Hu, M., 2019. Scenario analysis of low-carbon development of energy industry with restriction of water resource in Xinjiang. J. Water Clim. Change 10, 263-275.

[27]

Li, W., Chen, Y., Hao, X., Huang, X., Chen, Y., 2007. Responses of streamflow to climate change in the northern slope of Tianshan Mountains in Xinjiang: A case study of the Toutun River basin. Sci. China Earth Sci. 50 (1), 42-48.

[28]

Li, F., Kusche, J., Chao, N., Wang, Z., Löcher, A., 2021. Long-term (1979-present) total water storage anomalies over the global land derived by reconstructing GRACE data. Geophys. Res. Lett. 48 (8), e2021GL093492.

[29]

Li, Z., Li, H., Xu, C., Jia, Y., Wang, F., Wang, P., Yue, X., 2020. 60-year changes and mechanisms of urumqi glacier No. 1 in the eastern Tianshan of China, Central Asia. Sci. Cold Arid. Reg. 12 (6), 380-388.

[30]

Ling, H., Xu, H., Fu, J., Zhang, Q., Xu, X., 2012a. Analysis of temporal-spatial variation characteristics of extreme air temperature in Xinjiang, China. Quat. Int. 282, 14-26.

[31]

Ling, H., Xu, H., Zhang, Q., 2012b. Nonlinear analysis of runoff change and climate factors in the headstream of Keriya River, Xinjiang. Geogr. Res. 31 (5), 792-802 (in Chinese).

[32]

Liu, Q., Liu, S., 2016. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim. Dyn. 46 (1), 303-316.

[33]

Liu, X., Liu, W., Yang, H., Tang, Q., Flörke, M., Masaki, Y., Schmied, H., Ostberg, S., Pokhrel, Y., Satoh, Y., Wada, Y., 2019. Multimodel assessments of human and climate impacts on mean annual streamflow in China. Hydrol. Earth Syst. Sci. 23 (3), 1245-1261.

[34]

Liu, X., Liu, W., Tang, Q., Liu, B., Wada, Y., Yang, H., 2022. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earths Future 10 (4), e2021EF002567.

[35]

Liu, Y., Jin, M., Wang, J., 2018b. Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin. Hydrol. Process. 32, 3108-3127.

[36]

Liu, Y., Xu, J., Lu, X., Nie, L., 2020. Assessment of glacier and snowmelt driven streamflow in the arid middle Tianshan Mountains of China. Hydrol. Process. 34 (12), 2750-2762.

[37]

Pekel, J., Cottam, A., Gorelick, N., Belward, A., 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540 (7633), 418-422.

[38]

Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W., Lo, M.H., 2018. Emerging trends in global freshwater availability. Nature 557 (7707), 651-659.

[39]

Qin, J., Liu, Y., Chang, Y., Liu, S., Pu, H., Zhou, J., 2016. Regional runoff variation and its response to climate change and human activities in Northwest China. Environ. Earth Sci. 75, 1366.

[40]

Reynard, E., Bonriposi, M., Graefe, O., Homewood, C., Huss, M., Kauzlaric, M., Liniger, H., Rey, E., Rist, S., Schadler, B., Schneider, F., Weingartner, R., 2014. Interdisciplinary assessment of complex regional water systems and their future evolution: How socioeconomic drivers can matter more than climate. WIREs Water 1 (4), 413-426.

[41]

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N., Clark, D., Dankers, R., Eisner, S., Fekete, B., Colon-Gonzalez, J., Gosling, S., Kim, H., Liu, X., Masaki, Y., Portmann, F.T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., Kabat, P., 2014. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. U. S. A. 111 (9), 3245-3250.

[42]

Schuur, E., McGuire, A., Schädel, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D., Natali, S., Olefeldt, D., Romanovsky, V., Schaefer, K., Turetsky, M., Treat, C., Vonk, J., 2015. Climate change and the permafrost carbon feedback. Nature 520 (7546), 171179.

[43]

Shang, H., Wang, W., Dai, Z., Duan, L., Zhao, Y., Zhang, J., 2016. An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China. J. Hydrol. 543, 386-394.

[44]

Shen, Y., Chen, Y., Liu, C., Smettem, K., 2013a. Ecohydrology of the inland river basins in the Northwestern Arid Region of China. Ecohydrology 6, 905-908.

[45]

Shen, Y., Li, S., Chen, Y., Qi, Y., Zhang, S., 2013b. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989-2010. Agric. Water Manag. 128, 55-64.

[46]

Sun, C., Yang, J., Chen, Y., Li, X., Yang, Y., Zhang, Y., 2016. Comparative study of streamflow components in two inland rivers in the Tianshan Mountains, Northwest China. Environ. Earth Sci. 75 (9), 727.

[47]

Tang, Q., 2020. Global change hydrology: Terrestrial water cycle and global change. Sci. China Earth Sci. 63 (3), 459-462.

[48]

United, Nations, 2022. The Sustainable Development Goals Report 2022. United Nations, New York.

[49]

Veldkamp, T., Wada, Y., Aerts, J., Doll, P., Gosling, S., Liu, J., Masaki, Y., Oki, T., Ostberg, S., Pokhrel, Y., Satoh, Y., Kim, H., Ward, P., 2017. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697.

[50]

Waller, R.I., Murton, J.B., Kristensen, L., 2012. Glacier-permafrost interactions: Processes, products and glaciological implications. Sediment. Geol. 255-256, 1-28.

[51]

Wang, L., Bai, C., Ming, J., 2021. Current status and variation since 1964 of the glaciers around the Ebi Lake Basin in the warming climate. Remote Sens. 13, 497.

[52]

Wang, J., Liang, X., Ma, B., Liu, Y., Jin, M., Knappett, P., Liu, Y., 2021. Using isotopes and hydrogeochemistry to characterize groundwater flow systems within intensively pumped aquifers in an arid inland basin Northwest China. J. Hydrol. 595, 126048.

[53]

Wang, L., Liu, H.L., Bao, A.M., Pan, X.L., Chen, X., 2016. Estimating the sensitivity of runoff to climate change in an alpine-valley watershed of Xinjiang, China. Hydrol. Sci. J. 61 (6), 1069-1079.

[54]

Wang, L., Wang, S., Zhang, L., Salahou, M., Sang, H., 2020. Assessing the spatial pattern of irrigation demand under climate change in arid area. ISPRS Int. J. Geo-Inf. 9 (9), 506.

[55]

Wang, P., Li, Z., Li, H., Wang, W., Yao, H., 2014. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No. 1, Tian Shan, Central Asia. Glob. Planet. Change 114, 14-22.

[56]

Wang, P., Li, Z., Li, H., Yao, H., Xu, C., Zhou, P., Jin, S., Wang, W., 2016. Analyses of recent observations of Urumqi Glacier No. 1, Chinese Tianshan Mountains. Environ. Earth Sci. 75 (8), 720.

[57]

Wang, P., Li, Z., Zhang, Z., Yue, X., 2020. Glaciers in Xinjiang, China: Past changes and current status. Water 12 (9), 2367.

[58]

Wang, S., Zhang, M., Li, Z., Wang, F., Li, H., Li, Y., Huang, X., 2011. Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960. J. Geogr. Sci. 21 (2), 263-273.

[59]

Water Resources Department of Xinjiang Uygur Autonomous Region (WRDXJ).2020. The Xinjiang Water Resources Bulletin (2001-2020). WRDXJ, Urumqi. (in Chinese).

[60]

Wang, X., Liu, L., Zhao, L., Wu, T., Li, Z., Liu, G., 2017. Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry. Cryosphere 11, 997-1014.

[61]

Xiao, C., 2010. Upgrading and transformation of resource-based industry cluster in Xinjiang under the constraints of resources and environment. Ecol. Econ. (8) 103-107 (in Chinese).

[62]

Xinjiang Bureau of Statistics (XBS) 2022. Xinjiang Statistical Yearbook (2007-2020). China Statistical Press, Beijing. (in Chinese).

[63]

Xu, C., Chen, Y., Yang, Y., Hao, X., Shen, Y., 2010. Hydrology and water resources variation and its response to regional climate change in Xinjiang. J. Geogr. Sci. 20 (4), 599-612.

[64]

Xu, C., Li, Z., Li, H., Wang, F., Zhou, P., 2019. Long-range terrestrial laser scanning measurements of annual and intra-annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China. Cryosphere 13, 2361-2383.

[65]

Xu, M., Kang, S., Wu, H., Yuan, X., 2018. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 203, 141-163.

[66]

Xu, O., 2013. Study on government regulation of coal chemical industry in Xinjiang under strong restriction of water resources. Xinjiang State Farms Econ. (7) 52-57 (in Chinese).

[67]

Xu, R., Wu, Y., Wang, G., Zhang, X., Wu, W., Xu, Z., 2019. Evaluation of industrial water use efficiency considering pollutant discharge in China. PLoS One 14 (8), e0221363.

[68]

Xue, H., Guo, L., 2021. Study on dynamic change characteristics of ground water level in Changji city. Ground Water 43 (5), 65-67 (in Chinese).

[69]

Yan, R., Huang, J., Wang, Y., Gao, J., Qi, L., 2016. Modeling the combined impact of future climate and land use changes on streamflow of Xinjiang Basin, China. Hydrol. Res. 47 (2), 356-372.

[70]

Yang, M., Liu, G., Chen, T., Xia, C., 2020. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China. Atmos. Res. 246, 105101.

[71]

Yang, Y., Liu, Y., Jin, F., Dong, W., Li, L., 2012. Spatio-temporal variation of land and water resources benefit of north slope of Tianshan Mountains under the background of urbanization. Geogr. Res. 31 (7), 1185-1198.

[72]

Yao, J., Zhao, Q., Liu, Z., 2015. Effect of climate variability and human activities on runoff in the Jinghe River Basin, Northwest China. J. Mt. Sci. 12, 358-367.

[73]

Yuan, F., Zhang, L., Win, K., Ren, L., Zhao, C., Zhu, Y., Jiang, S., Liu, Y., 2017. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar. Remote Sens. 9 (3), 302.

[74]

Zemp, M., Huss, M., Thibert, E., Eckert, N., Mcnabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., Cogley, J.G., 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568 (7752), 382-386.

[75]

Zhang, H., Ouyang, Z., Zheng, H., Wang, X., 2009. Recent climate trends on the northern slopes of the Tianshan Mountains, Xinjiang, China. J. Mt. Sci. 6 (3), 255-265.

[76]

Zhang, L., Brutsaert, W., Crosbie, R., Potter, N., 2014. Long-term annual groundwater storage trends in Australian catchments. Adv. Water Resour. 74, 156-165.

[77]

Zhang, Q., Xu, C., Tao, H., Jiang, T., Chen, Y., 2010. Climate changes and their impacts on water resources in the arid regions: A case study of the Tarim River basin, China. Stoch. Environ. Res. Risk Assess. 24 (3), 349-358.

[78]

Zhao, G., Gao, H., 2018. Automatic correction of contaminated images for assessment of reservoir surface area dynamics. Geophys. Res. Lett. 45 (12), 6092-6099.

[79]

Zhou, H., Liu, S., Shi, H., Mo, X., 2021. Retrieving dynamics of the surface water extent in the upper reach of Yellow River. Sci. Total Environ. 800, 149348.

[80]

Zhou, L., Shi, Y., 1986. Xinjiang scientific expedition. Resour. Sci. 8 ( 3), 48-53 + 15 (in Chinese)

PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

/