Drivers for decoupling carbon footprint pressure from economic growth in China’s provinces

Dongzhe Liang , Hongwei Lu , Yanlong Guan , Liyang Feng

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) : 258 -267.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) :258 -267. DOI: 10.1016/j.geosus.2022.08.003
research-article

Drivers for decoupling carbon footprint pressure from economic growth in China’s provinces

Author information +
History +
PDF

Abstract

A growing imbalance between energy carbon emissions and vegetation carbon sequestration is a major impediment to achieving Sustainable Development Goals. Decoupling the growing imbalance from economic growth needs a stringent and coordinated package of sustainable policies. Previously, enhancing efficiency and vegetation carbon sequestration were dominant drivers to decouple. However, the role and magnitude of restructurings in the energy sector and economy in decoupling were underestimated. In this context, China’s 30 provinces were selected as study areas. By employing a carbon footprint pressure (CFP) indicator to represent the imbalance, a widely decoupling method was adopted to describe the decoupling state and trend of CFP and economic growth. An extended IPAT equation and the Logarithmic Mean Divisia Index method were further used to reveal the role and magnitude of drivers on decoupling. The findings revealed that the CFP climbed significantly in 26 provinces between 2006 and 2015. We discovered that 22 provinces were working toward absolute decoupling, with 15 provinces achieving it during the 12-th Five-Year Plan. Our analysis revealed that improving energy efficiency was the primary driver of absolute decoupling, while substituting natural gas and oil for coal, reducing industry share, and enhancing carbon sequestration accelerated absolute decoupling. Considering the limited future role of improving energy efficiency and vegetation carbon sequestration, there is an urgent need to optimize and upgrade the structures of the energy sector and economy to mitigate the future climate risk.

Keywords

Carbon footprint pressure / Decoupling indicator / Decomposition analysis / China

Cite this article

Download citation ▾
Dongzhe Liang, Hongwei Lu, Yanlong Guan, Liyang Feng. Drivers for decoupling carbon footprint pressure from economic growth in China’s provinces. Geography and Sustainability, 2022, 3(3): 258-267 DOI:10.1016/j.geosus.2022.08.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that there is no conflict of interest.

Acknowledgements

We acknowledge Funding from the National Key Research and Development Program of China (Grant No. 2019YFC0507801), the National Natural Science Foundation of China (Grant No. 41890824), and the Chinese Academy of Sciences Interdisciplinary Innovation Team (Grant No. JCTD-2019-04).

References

[1]

Alcott, B., 2008. The sufficiency strategy: Would rich-world frugality lower environmental impact? Ecol. Econ. 64 (4), 770-786.

[2]

Álvarez-Berríos, N.L., Parés-Ramos, I.K., Aide, T.M., 2013. Contrasting patterns of urban expansion in Colombia, Ecuador, Peru, and Bolivia between 1992 and 2009. Ambio 42 (1), 29-40.

[3]

Ang, B.W., 2004. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 32 (9), 1131-1139.

[4]

Ang, B.W., Zhang, F.Q., Choi, K.H., 1998. Factorizing changes in energy and environmental indicators through decomposition. Energy 23 (6), 489-495.

[5]

Apeaning, R.W., 2021. Technological constraints to energy-related carbon emissions and economic growth decoupling: A retrospective and prospective analysis. J. Clean. Prod. 291 (1), 125706.

[6]

Baldocchi, D., Penuelas, J., 2019. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol. 25 (4), 1191-1197.

[7]

Bastin, J.F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M., Crowther, T.W., 2019. The global tree restoration potential. Science 364 (6448), 76-79.

[8]

Brizga, J., Feng, K., Hubacek, K., 2013. Drivers of CO 2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010. Energy 59, 743-753.

[9]

Cansino, J.M., Sánchez-Braza, A., Rodríguez-Arévalo, M.L., 2015. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renew. Sustain. Energy Rev. 48, 749-759.

[10]

Cao, M., Woodward, F.I., 1998. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob. Change Biol. 4, 185-198.

[11]

Casey, G., Galor, O., 2017. Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth. Environ. Res. Lett. 12, e12014003.

[12]

Cendrero, A., Forte, L.M., Remondo, J., Cuesta-Albertos, J.A., 2020. Anthropocene geomorphic change. climate or human activities? Earths Future 8 (5), e2019EF001305.

[13]

Chen, J., Fan, W., Li, D., Liu, X., Song, M., 2020. Driving factors of global carbon footprint pressure: based on vegetation carbon sequestration. Appl. Energy 267 (1), 114914.

[14]

Chen, Y., He, L., Li, J., Cheng, X., Lu, H., 2016. An inexact bi-level simulation-optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems. Appl. Energy 183 (1), 969-983.

[15]

Chen, Y., Qiao, Y., Yan, P., Lu, H., Yang, L., Xia, J., 2022. Spatial-temporal variation and nonlinear prediction of environmental footprints and comprehensive environmental pressure in urban agglomerations. J. Clean. Prod. 351 (1), 131556.

[16]

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R.R., Myneni, R.B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122-129.

[17]

Chu, S., 2009. Carbon capture and sequestration. Science 325 (5948), 1599.

[18]

Chunmei, L., Maosheng, D., Xiliang, Z., Jieting, Z., Lingling, Z., Guangping, H., 2011. Empirical research on the contributions of industrial restructuring to low-carbon development. Energy Procedia 5, 834-838.

[19]

Churkina, G., Organschi, A., Reyer, C.P.O., Ruff, A., Vinke, K., Liu, Z., Reck, B.K., Graedel, T.E., Schellnhuber, H.J., 2020. Buildings as a global carbon sink. Nat. Sustain. 3, 369-276.

[20]

Dietz, T., Rosa, E.A., 1997. Effects of population and affluence on CO 2 emissions. Proc. Natl. Acad. Sci. U.S.A. 94 (1), 175-179.

[21]

Dietz, T., Rosa, E.A., 1994. Rethinking the environmental impacts of population, affluence and technology. Hum. Ecol. Rev. 1 (2), 277-300.

[22]

Dogan, E., Seker, F., 2016. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 60, 1074-1085.

[23]

Ehrlich, P.R., Holdren, J.P., 1971. Impact of population growth. Science 171 (3977), 1212-1217.

[24]

Engström, G., Gars, J., Krishnamurthy, C., Spiro, D., Calel, R., Lindahl, T., Narayanan, B., 2020. Carbon pricing and planetary boundaries. Nat. Commun. 11, 4688.

[25]

Fang, D., Chen, B., Hubacek, K., Ni, R., Chen, L., Feng, K., Lin, J., 2019. Clean air for some: Unintended spillover effects of regional air pollution policies. Sci. Adv. 5 (4), eaav4707.

[26]

Farley, K.A., Jobbágy, E.G., Jackson, R.B., 2005. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Change Biol. 11, 1565-1576.

[27]

Feng, K., Davis, S.J., Sun, L., Li, X., Guan, D., Liu, W., Liu, Z., Hubacek, K., 2013. Outsourcing CO 2 within China. Proc. Natl. Acad. Sci. U.S.A. 110 (28), 11654-11659.

[28]

Forzieri, G., Dakos, V., McDowell, N.G., Ramdane, A., Cescatti, A., 2022. Emerging signals of declining forest resilience under climate change. Nature 608, 534-539.

[29]

Gill, A.R., Viswanathan, K.K., Hassan, S., 2018. A test of environmental Kuznets curve (EKC) for carbon emission and potential of renewable energy to reduce greenhouse gases (GHG) in Malaysia. Environ. Dev. Sustain. 20, 1103-1114.

[30]

Gingrich, S., Ku š ková P., Steinberger, J.K., 2011. Long-term changes in CO2 emissions in Austria and Czechoslovakia-Identifying the drivers of environmental pressures. Energy Policy 39 (2), 535-543.

[31]

Guan, Y., Liu, J., Chen, A., Li, D., Jiang, Y., Cui, W., Lu, H., Pellikka, P., Heiskanen, J., Maeda, E., 2022. Spatial aggregation of global dry and wet patterns based on the standard precipitation index. Earths Future 10 (5), e2022EF002720.

[32]

He, G., Kammen, D.M., 2016. Where, when and how much solar is available? A provincial- scale solar resource assessment for China. Renew. Energy 85, 74-82.

[33]

He, G., Kammen, D.M., 2014. Where, when and how much wind is available? A provincial- scale wind resource assessment for China. Energy Policy 74, 116-122.

[34]

Heck, V., Gerten, D., Lucht, W., Popp, A., 2018. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151-155.

[35]

Huang, Y., Yu, Q., Wang, R., 2021. Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production. Technol. Forecast. Soc. Change 167, 120722.

[36]

IPCC, 2006. IPCC guidelines for national greenhouse gas inventories. IPCC, Japan.

[37]

Isik, M., Dodder, R., Kaplan, P.O., 2021. Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates. Nat. Energy 6, 92-104.

[38]

Kaya, Y., 1990. Response Strategies Working Group. Paris, France.

[39]

Kitzes, J., Galli, A., Bagliani, M., Barrett, J., Dige, G., Ede, S., Erb, K., Giljum, S., Haberl, H., Hails, C., Jolia-Ferrier, L., Jungwirth, S., Lenzen, M., Lewis, K., Loh, J., Marchettini, N., Messinger, H., Milne, K., Moles, R., Monfreda, C., Moran, D., Nakano, K., Pyhälä A., Rees, W., Simmons, C., Wackernagel, M., Wada, Y., Walsh, C., Wiedmann, T., 2009. A research agenda for improving national ecological footprint accounts. Ecol. Econ. 68 (7), 1991-2007.

[40]

Lackner, K.S., 2003. A guide to CO2 sequestration. Science 300 (5626), 1677-1678.

[41]

Lasco, R.D., Lales, J.S., Arnuevo, M.T., Guillermo, I.Q., de Jesus, A.C., Medrano, R., Bajar, O.F., Mendoza, C.V., 2002. Carbon dioxide (CO2) storage and sequestration of land cover in the Leyte Geothermal Reservation. Renew. Energy 25 (2), 307-315.

[42]

Law, B.E., Waring, R.H., Anthoni, P.M., Aber, J.D., 2000. Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Glob. Change Biol. 6, 155-168.

[43]

Li, C., Wu, Y., Gao, B., Zheng, K., Wu, Y., Li, C., 2021. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 132, 108328.

[44]

Li, R., Li, L., Wang, Q., 2022. The impact of energy efficiency on carbon emissions: Evidence from the transportation sector in Chinese 30 provinces. Sustain. Cities Soc. 82, 103880.

[45]

Li, R., Wang, Q., Liu, Y., Jiang, R., 2021. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustain. Prod. Consum. 27, 1149-1164.

[46]

Li, X., Song, L., Xie, Z., Gao, T., Wang, T., Zheng, X., Liu, J., Liu, L., 2021. Assessment of ecological vulnerability on northern sand prevention belt of China based on the ecological pressure-sensibility-resilience model. Sustainability 13 (11), 6078.

[47]

Liang, S., Liu, Z., Crawford-Brown, D., Wang, Y., Xu, M., 2014. Decoupling analysis and socioeconomic drivers of environmental pressure in China. Environ. Sci. Technol. 48 (2), 1103-1113.

[48]

Liddle, B., 2015. What are the carbon emissions elasticities for income and population, Bridging STIRPAT and EKC via robust heterogeneous panel estimates. Glob. Environ. Change 31, 62-73.

[49]

Lima, M.A., Mendes, L.F.R., Mothé G.A., Linhares, F.G., de Castro, M.P.P., da Silva, M.G., Sthel, M.S., 2020. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environ. Dev. 33, 100504.

[50]

Liu, X., Pei, F., Wen, Y., Li, X., Wang, S., Wu, C., Cai, Y., Wu, J., Chen, J., Feng, K., Liu, J., Hubacek, K., Davis, S.J., Yuan, W., Yu, L., Liu, Z., 2019. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 10, 5558.

[51]

Liu, Z., Deng, Z., Zhu, B., Ciais, P., Davis, S.J., Tan, J., Andrew, R.M., Boucher, O., Arous, S.Ben, Canadell, J.G., Dou, X., Pierre Friedlingstein, P.G., Guo, R., Hong, C., Jackson, R.B., Kammen, D.M., Piyu Ke, C., Sun, T., Schellnhuber, H.J., 2022. Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nat. Geosci. 15, 615-620.

[52]

Mancini, M.S., Galli, A., Niccolucci, V., Lin, D., Bastianoni, S., Wackernagel, M., Marchettini, N., 2016. Ecological footprint: Refining the carbon footprint calculation. Ecol. Indic. 61 (2), 390-403.

[53]

Mi, Z.F., Pan, S.Y., Yu, H., Wei, Y.M., 2015. Potential impacts of industrial structure on energy consumption and CO2 emission: A case study of Beijing. J. Clean. Prod. 103 (15), 455-462.

[54]

Mira deEspindola, G.,Lívio Neves da Costa Carneiro, E., Cardoso Façanha, A., 2017. Four decades of urban sprawl and population growth in Teresina, Brazil. Appl. Geogr. 79, 73-83.

[55]

Mitchell, R.B., 2012. Technology is not enough: Climate change, population, affluence, and consumption. J. Environ. Dev. 21 (1), 24-27.

[56]

O’Neill, B.C., Dalton, M., Fuchs, R., Jiang, L., Pachauri, S., Zigova, K., 2010. Global demographic trends and future carbon emissions. Proc. Natl. Acad. Sci. U.S.A. 107 (41), 17521-17526.

[57]

OECD, 2001. OECD environmental strategy for the first decade of the 21st century. OECD, Paris, France.

[58]

Oldfield, F., Barnosky, A.D., Dearing, J., Fischer-Kowalski, M., McNeill, J., Steffen, W., Zalasiewicz, J., 2014. The anthropocene review: Its significance, implications and the rationale for a new transdisciplinary journal. Anthr. Rev. 1 (1), 3-7.

[59]

Ortega-Ruiz, G., Mena-Nieto, A., García-Ramos, J.E., 2020. Is India on the right pathway to reduce CO 2 emissions? Decomposing an enlarged Kaya identity using the LMDI method for the period 1990-2016. Sci. Total Environ. 737 (1), 139638.

[60]

Oswald, Y., Owen, A., Steinberger, J.K., 2020. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5, 231-239.

[61]

Peng, X., Tao, X., Feng, K., Hubacek, K., 2020. Drivers toward a low-carbon electricity system in China’s provinces. Environ. Sci. Technol. 54 (9), 5774-5782.

[62]

Rhodes, E., Scott, W.A., Jaccard, M., 2021. Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis. Energy Policy 156, 112419.

[63]

Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., Deppermann, A., Doelman, J., Emmet-Booth, J., Engelmann, J., Fricko, O., Frischmann, C., Funk, J., Grassi, G., Griscom, B., Havlik, P., Hanssen, S., Humpenöder, F., Landholm, D., Lomax, G., Lehmann, J., Mesnildrey, L., Nabuurs, G.J., Popp, A., Rivard, C., Sanderman, J., Sohngen, B., Smith, P., Stehfest, E., Woolf, D., Lawrence, D., 2021. Land-based measures to mitigate climate change: Potential and feasibility by country. Glob. Change Biol. 27, 6025-6058.

[64]

Boden, T.A, Andres, R., Marland, G., 2017. Global, Regional, and National Fossil-Fuel CO 2 Emissions (1751-2014) (V. 2017). https://doi.org/10.3334/CDIAC/00001_V2017.[Dataset].

[65]

Running, S.W., Zhao, M., 2015. User Guide Daily GPP and Annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS Land Algorithm (User’s guide V3).

[66]

Sage, R.F., 2020. Global change biology: A primer. Glob. Change Biol. 26, 3-30.

[67]

Sarwar, S., Streimikiene, D., Waheed, R., Mighri, Z., 2021. Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions. Sustain. Dev. 29 (2), 419-440.

[68]

Schwärzel, K., Zhang, L., Montanarella, L., Wang, Y., Sun, G., 2020. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Glob. Change Biol. 26, 944-959.

[69]

Semieniuk, G., Taylor, L., Rezai, A., Foley, D.K., 2021. Plausible energy demand patterns in a growing global economy with climate policy. Nat. Clim. Change 11, 313-318.

[70]

Shan, Y., Guan, D., Zheng, H., Ou, J., Li, Y., Meng, J., Mi, Z., Liu, Z., Zhang, Q., 2018. China CO 2 emission accounts 1997-2015. Sci. Data 5, 170201.

[71]

Skjærseth, J.B., 2021. Towards a European Green Deal: The evolution of EU climate and energy policy mixes. Int. Environ. Agreem. P. 21, 25-41.

[72]

Soergel, B., Kriegler, E., Weindl, I., Rauner, S., Dirnaichner, A., Ruhe, C., Hofmann, M., Bauer, N., Bertram, C., Bodirsky, B.L., Leimbach, M., Leininger, J., Levesque, A., Luderer, G., Pehl, M., Wingens, C., Baumstark, L., Beier, F., Dietrich, J.P., Humpenöder, F., von Jeetze, P., Klein, D., Koch, J., Pietzcker, R., Strefler, J., Lotze-Campen, H., Popp, A., 2021. A sustainable development pathway for climate action within the UN 2030 agenda. Nat. Clim. Change 11, 656-664.

[73]

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., Ludwig, C., 2015. The trajectory of the anthropocene: The great acceleration. Anthr. Rev. 2 (1), 81-98.

[74]

Tapio, P., 2005. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 12 (2), 137-151.

[75]

Tian, P., Lu, H., Reinout, H., Li, D., Zhang, K., Yang, Y., 2022. Water-energy-carbon nexus in China’s intra and inter-regional trade. Sci. Total Environ. 806, 150666.

[76]

Venetoulis, J., Talberth, J., 2008. Refining the ecological footprint. Environ. Dev. Sustain. 10, 441-469.

[77]

Wackernagel, M., Onisto, L., Bello, P., Linares, A.C., Falfán, I.S.L., García, J.M., Guerrero, A.I.S., Guerrero, M.G.S., 1999. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 29 (3), 375-390.

[78]

Wackernagel, M., Rees, W., 1996. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers, Philadelphia.

[79]

Wang, Q., Su, M., 2020. A preliminary assessment of the impact of COVID-19 on environment - A case study of China. Sci. Total Environ. 728, 138915.

[80]

Wang, Q., Zhang, F., 2021a. What does the China’s economic recovery after COVID-19 pandemic mean for the economic growth and energy consumption of other countries? J. Clean. Prod. 295, 126265.

[81]

Wang, Q., Zhang, F., 2021b. The effects of trade openness on decoupling carbon emissions from economic growth - evidence from 182 countries. J. Clean. Prod. 279, 123838.

[82]

Weinzettel, J., Hertwich, E.G., Peters, G.P., Steen-Olsen, K., Galli, A., 2013. Affluence drives the global displacement of land use. Glob. Environ. Change 23, 433-438.

[83]

While, A., Eadson, W., 2022. Zero carbon as economic restructuring: Spatial divisions of labour and just transition. New Polit. Econ. 27, 385-402.

[84]

Wolfram, P., Wiedmann, T., Diesendorf, M., 2016. Carbon footprint scenarios for renewable electricity in Australia. J. Clean. Prod. 124, 236-245.

[85]

Xue, Y., Lu, H., Guan, Y., Tian, P., Yao, T., 2021. Impact of thermal condition on vegetation feedback under greening trend of China. Sci. Total Environ. 785, 147380.

[86]

Yang, Y., Cai, Z., 2020. Ecological security assessment of the Guanzhong Plain urban agglomeration based on an adapted ecological footprint model. J. Clean. Prod. 260, 120973.

[87]

Yang, Y., Meng, G., 2019. The decoupling effect and driving factors of carbon footprint in megacities: the case study of Xi’an in western China. Sustain. Cities Soc. 44, 783-792.

[88]

York, R., Rosa, E.A., Dietz, T., 2003. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 46 (3), 351-365.

[89]

Zaman, K., Moemen, M.A., 2017. Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew. Sustain. Energy Rev. 74, 1119-1130.

[90]

Zhang, X., Brandt, M., Tong, X., Ciais, P., Yue, Y., Xiao, X., Zhang, W., Wang, K., Fensholt, R., 2022. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 5, 321-328.

[91]

Zheng, H., Long, Y., Wood, R., Moran, D., Zhang, Z., Meng, J., Feng, K., Hertwich, E., Guan, D., 2022. Ageing society in developed countries challenges carbon mitigation. Nat. Clim. Change 12, 241-248.

PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

/