Human-environmental interaction with extreme hydrological events and climate change scenarios as background

Carlos Sánchez-García , Marcos Francos

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) : 232 -236.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) :232 -236. DOI: 10.1016/j.geosus.2022.08.002
Perspective
research-article

Human-environmental interaction with extreme hydrological events and climate change scenarios as background

Author information +
History +
PDF

Abstract

Climate change significantly impacts the lives of all people. Global change is composed of multiple factors that affect the population differently, having a very significant impact in the Mediterranean area. Human beings, through their actions, try to mitigate this impact and thus generate a more resilient society. Extreme hydrological events are affected by this climate change, with torrential rainfall events and severe droughts becoming frequent. Understanding these trends will allow us to better adapt to future conditions. This study aims to analyse catastrophic floods and severe droughts from paleo studies to studies that focus on future projections. For this purpose, a search for information has been carried out through other studies over the last five years to have a current perspective of this situation. Studies point to changes in the dynamics of floods and droughts, not only worsening the extremes but also affecting the average values of the records of each. In addition, the studies point out that anthropic action is accelerating the changes, with human beings and their capacity to adapt being inferior to the velocity of this global change. It is necessary to generate a paradigm shift in terms of global production by trying to adapt to future extreme flood and drought hazards.

Keywords

Climate change / Flood hazard / Human disaster management / Historical floods

Cite this article

Download citation ▾
Carlos Sánchez-García, Marcos Francos. Human-environmental interaction with extreme hydrological events and climate change scenarios as background. Geography and Sustainability, 2022, 3(3): 232-236 DOI:10.1016/j.geosus.2022.08.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare no competing interests.

References

[1]

Alcoforado, M.J., Silva, L.P., Amorim, I., Fragoso, M., Garcia, J.C., 2021. Historical floods of the Douro River in Porto, Portugal (1727-1799). Clim. Change 165, 17.

[2]

Alfieri, L., Dottori, F., Betts, R., Salamon, P., Feyen, L., 2018. Multi-model projections of river flood risk in Europe under global warming. Climate 6 (1), 16.

[3]

Almendra-Martín, L., Martínez-Fernández, J., González-Zamora, Á., Benito-Verdugo, P., Herrero-Jiménez, C.M., 2021. Agricultural drought trends on the Iberian Peninsula: An analysis using modeled and reanalysis soil moisture products. Atmosphere (Basel) 12 (2), 236.

[4]

Altolaguirre, Y., Bruch, A.A., Gibert, L., 2020. A long Early Pleistocene pollen record from Baza Basin (SE Spain): Major contributions to the palaeoclimate and palaeovegetation of Southern Europe. Quat. Sci. Rev. 231, 106199.

[5]

Bach, A.F., van der Schrier, G., Melsen, L.A., Tank, A.M.G.K., Teuling, A.J., 2018. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophys. Res. Lett. 45, 12312-12319.

[6]

Balasch, C., Pino, D., Ruiz-Bellet, J.L., Tuset, J., Barriendos, M., Peña, J.C., 2019. The extreme floods in the Ebro River basin since 1600 CE. Sci. Total Environ. 646, 645-660.

[7]

Baronetti, A., González-Hidalgo, J.C., Vicente-Serrano, S.M., Acquaotta, F., Fratianni, S., 2020. A weekly spatio-temporal distribution of drought events over the Po Plain (North Italy) in the last five decades. Int. J. Climat. 40 (10), 4463-4476.

[8]

Barriendos, M., Gil-Guirado, S., Pino, D., Tuset, J., Pérez-Morales, A., Alberola, A., Balasch, J.C., Castelltort, X., Mazón, J., Ruiz-Bellet, J.L., 2019. Climatic and social factors behind the Spanish Mediterranean flood event chronologies from documentary sources (14th-20th centuries). Global Planet. Change 182, 102997.

[9]

Beine, M., Jeusette, L., 2021. A meta-analysis of the literature on climate change and migration. J. Demogr. Econ. 87 (3), 293-344.

[10]

Bellos, V., Papageorgaki, I., Kourtis, I., Vangelis, H., Kalogiros, I., Tsakiris, G., 2020. Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm. Nat. Hazards 101 (3), 711-726.

[11]

Benestad, R.E., Lussana, C., Lutz, J., Dobler, A., Landgren, O., Haugen, J.E., Mezghani, A., Casati, B., Parding, K.M., 2022. Global hydro-climatological indicators and changes in the global hydrological cycle and rainfall patterns. PLoS Climate 1 (5), e0000029.

[12]

Benito, G., Thorndycraft, V.R., Rico, M., Sánchez-Moya, Y., Sopeña, A., 2008. Palaeoflood and floodplain records from Spain: Evidence for long-term climate variability and environmental changes. Geomorphology 101 (1-2), 68-77.

[13]

Bertola, M., Viglione, A., Lun, D., Hall, J., Blöschl, G., 2020. Flood trends in Europe: Are changes in small and big floods different? Hydrol. Earth Syst. Sci. 24 (4), 1805-1822.

[14]

Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O., Brázdil, R., Coeur, D., Demarée, G., Llasat, M.C., MacDonald, N., Restö D., Roald, L., Schmocker-Fackler, P., Amorim, I., Belinová M., Benito, G., Bertolin, C., Camuffo, D., Cornel, D., Doktor, R., Elleder, L., Enzi, S., García, J.C., Glaser, R., Hall, J., Haslinger, K., Hofstätter, M., Komma, J., Limanówka, D., Lun, D., Panin, A., Parajka, J., Petric, H., Rodrigo, F.S., Rohr, C., Schönbein, J., Chulte, L., Silva, L.P., Toonen, W.H.J., Valent, P., Wase, J., Wetter, O., 2020. Current European flood-rich period exceptional compared with past 500 years. Nature 583 (7817), 560-566.

[15]

Bravo-Paredes, N., Gallego, M.C., Vaquero, J.M., Trigo, R.M., 2021. The catastrophic floods in the Guadiana River basin since 1500 CE. Sci. Total Environ. 797, 149141.

[16]

Brázdil, R., Kiss, A., Luterbacher, J., Nash, D.J., Ř ezníčková L., 2018. Documentary data and the study of past droughts: A global state of the art. Clim. Past 14 (12), 1915-1960.

[17]

Brázdil, R., Kiss, A., Ř ezníčková L., Barriendos, M., 2020. Droughts in historical times in Europe, as derived from documentary evidence. In: HergetJ., FontanaA. (Eds.), Palaeohydrology, Geography of the Physical Environment. Springer, Cham, pp. 65-96.

[18]

Bui, D.T., Ngo, P.T.T., Pham, T.D., Jaafari, A., Minh, N.Q., Hoa, P.V., Samui, P., 2019. A novel hybrid approach based on a swarm intelligence optimised extreme learning machine for flash flood susceptibility mapping. Catena 179, 184-196.

[19]

Büntgen, U., Urban, O., Krusic, P.J., Rybníček, M., Kolář T., Kyncl, T., Ac, A., Konasova, E., Cáslavský J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný P., Cherubini, P., Reinig, F., Trnka, M., 2021. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14 (4), 190-196.

[20]

Caporali, E., Lompi, M., Pacetti, T., Chiarello, V., Fatichi, S., 2021. A review of studies on observed precipitation trends in Italy. Int. J. Climat. 41 (S1), E1-E25.

[21]

Cascalheira, J., Alcaraz-Castaño, M., Alcolea-González, J., de Andrés-Herrero, M., Arrizabalaga, A., Tortosa, J.E.A., García-Ibaibarriaga, N., Iriarte-Chiapusso, M.J., 2021. Paleoenvironments and human adaptations during the Last Glacial Maximum in the Iberian Peninsula: A review. Quatern. Int. 581-582, 28-51.

[22]

Castro, D., Souto, M., Fraga, M.I., García-Rodeja, E., Pérez-Díaz, S., Sáez, J.A.L., Pontevedra- Pombal, X., 2020. High-resolution patterns of palaeoenvironmental changes during the Little Ice Age and the Medieval Climate Anomaly in the northwestern Iberian Peninsula. Geosci. Front. 11 (5), 1461-1475.

[23]

Catullo, R.A., Llewelyn, J., Phillips, B.L., Moritz, C.C., 2019. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29 (19), R996-R1007.

[24]

Clark, G.A., Barton, C.M., Straus, L.G., 2019. Landscapes, climate change & forager mobility in the Upper Paleolithic of northern Spain. Quatern. Int. 515, 176-187.

[25]

Cook, B.I., Mankin, J.S., Anchukaitis, K.J., 2018. Climate change and drought: From past to future. Curr. Clim. Change Rep. 4 (2), 164-179.

[26]

Criado, M., Martínez-Graña, A., San Román, J.S., Santos-Francés, F., 2019. Flood risk evaluation in urban spaces: The study case of Tormes River (Salamanca, Spain). Int. J. Env. Re. Pub. He. 16 (1), 5.

[27]

De Souza, J.G., Robinson, M., Maezumi, S.Y., Capriles, J., Hoggarth, J.A., Lombardo, U., Novello, V.P., Apaéstegui, J., Whitney, B., Urrego, D., Alves, D.T., Rostain, S., Power, M.J., Mayle, F.E., da Cruz Jr, F.W., Hooghiemstre, H., Iriarte, J., 2019. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3 (7), 1007-1017.

[28]

Fernández, J., Moshenska, G., Iriarte, E., 2019. Archaeology and climate change: Evidence of a flash-flood during the LIA in Asturias (NW Spain) and its social consequences. Environ. Archaeol. 24 (1), 38-48.

[29]

Fragoso, M., Carraca, M.D.G., Alcoforado, M.J., 2018. Droughts in Portugal in the 18th century: A study based on newly found documentary data. Int. J. Climatol. 38 (15), 5522-5541.

[30]

García-Valdecasas, M., Romero-Jiménez, E., Rosa-Cánovas, J.J., Yeste, P., Castro-Díez, Y., Esteban-Parra, M.J., Vicente-Serrano, S.M., Gámiz-Fortis, S.R., 2021. Assessing future drought conditions over the Iberian Peninsula: The impact of using different periods to compute the SPEI. Atmosphere (Basel) 12 (8), 980.

[31]

Garnier, E., 2018. Historic drought from archives:Beyond the instrumental record. In: IglesiasA., AssimacopoulosD., Van LanenH.A.J. (Drought:Eds.), Science and Policy. John Wiley & Sons, Ltd, pp. 45-67.

[32]

Guerreiro, S.B., Dawson, R.J., Kilsby, C., Lewis, E., Ford, A., 2018. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13 (3), 034009.

[33]

Gil-García, M.J., Ruiz-Zapata, M.B., Rubio-Jara, S., Panera, J., Pérez-González, A., 2019. Landscape evolution during the Middle and Late Pleistocene in the Madrid Basin (Spain): Vegetation dynamics and human activity in the Jarama-Manzanares rivers (Madrid) during the Pleistocene. Quatern. Int. 520, 39-48.

[34]

Glaser, R., Kahle, M., 2020. Reconstructions of droughts in Germany since 1500 - Combining hermeneutic information and instrumental records in historical and modern perspectives. Clim. Past 16 (4), 1207-1222.

[35]

González-Cao, J., Fernández-Nóvoa, D., García-Feal, O., Figueira, J.R., Vaquero, J.M., Trigo, R.M., Gómez-Gesteira, M., 2021. Numerical reconstruction of historical extreme floods: The Guadiana event of 1876. J. Hydrol. 599, 126292.

[36]

Grillakis, M.G., 2019. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 660, 1245-1255.

[37]

Gudmundsson, L., Boulange, J., Do, H.X., Gosling, S.N., Grillakis, M.G., Koutroulis, A.G., Leonard, M., Liu, J., Schmied, H.M., Papadimitriou, L., Pokhrel, Y., Seneviratne, S.I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., Zhao, F., 2021. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371 (6534), 1159-1162.

[38]

Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý J., Kumar, R., 2018. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 8 (1), 9499.

[39]

Hosseini, F.S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., Haghighi, A.T., 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci. Total Environ. 711, 135161.

[40]

Ionita, M., Dima, M., Nagavciuc, V., Scholz, P., Lohmann, G., 2021. Past megadroughts in central Europe were longer, more severe and less warm than modern droughts. Comm. Earth Environ. 2 (1), 61.

[41]

Ionita, M., Nagavciuc, V., 2021. Changes in drought features at the European level over the last 120 years. Nat. Hazard. Earth Sys. 21 (5), 1685-1701.

[42]

IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the SixthAssessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

[43]

Jacobs, C., Berglund, M., Kurnik, B., Dworak, T., Marras, S., Mereu, V., Michetti, M., 2019. Climate change adaptation in the agriculture sector in Europe ( No. 4/2019). European Environment Agency (EEA), Copenhagen.

[44]

Kahn, M.E., 2020. The climate change adaptation literature. Rev. Environ. Econ. Policy 10 (1), 166-178.

[45]

Kam, P.M., Aznar-Siguan, G., Schewe, J., Milano, L., Ginnetti, J., Willner, S., Mc- Caughey, J.W., Bresch, D.N., 2021. Global warming and population change both heighten future risk of human displacement due to river floods. Environ. Res. Lett. 16 (4), 044026.

[46]

Kirchmeier-Young, M.C., Gillett, N.P., Zwiers, F.W., Cannon, A.J., Anslow, F.S., 2019. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7 (1), 2-10.

[47]

Kundzewicz, Z.W., Matczak, P., 2015. Extreme hydrological events and security. Proc. Int. Ass. Hydrol. Sci. 369, 181-187.

[48]

Ljungqvist, F.C., Piermattei, A., Seim, A., Krusic, P.J., Büntgen, U., He, M., Esper, J., 2020. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quaternary Sci. Rev. 230, 106074.

[49]

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M.G., Field, C.B., Knowlton, N., 2020. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B 375 (1794), 20190104.

[50]

Mas, B., Oms, F.X., Allué E., 2022. Anthropogenic impacts on vegetation landscapes and environmental implications during the Middle-Late Holocene in the Iberian Central Pre-Pyrenees: An anthracological approach. Rev. Palaeobot. Palyno. 300, 104624.

[51]

Masih, I., Maskey, S., Mussá F.E.F., Trambauer, P., 2014. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 18 (9), 3635-3649.

[52]

Milly, P.C., Dunne, K.A., Vecchia, A.V., 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438 (7066), 347-350.

[53]

Mosavi, A, Ozturk, P, Chau, K-w, 2018. Flood prediction using machine learning models: Literature review. Water 10 (11), 1536.

[54]

Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R.A., Carrao, H., Spinoni, J., Vogt, J.V., Feyen, L., 2018. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 45 (7), 3285-3296.

[55]

Naumann, G., Cammalleri, C., Mentaschi, L., Feyen, L., 2021. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Change 11 (6), 485-491.

[56]

Papadimitriou, L.V., Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., 2016. High-end climate change impact on European runoff and low flows - Exploring the effects of forcing biases. Hydrol. Earth Syst. Sci. 20 (5), 1785-1808.

[57]

Paprotny, D., Sebastian, A., Morales-Nápoles, O., Jonkman, S.N., 2018. Trends in flood losses in Europe over the past 150 years. Nat. Commun. 9 (1), 1985.

[58]

Peña, J.C., Schulte, L., 2020. Simulated and reconstructed atmospheric variability and their relation with large Pre-industrial summer floods in the Hasli-Aare catchment (Swiss Alps) since 1300 CE. Global Planet. Change 190, 103191.

[59]

Petterson, J.S., Stanley, L.D., Glazier, E., Philipp, J., 2006. A preliminary assessment of social and economic impacts associated with Hurricane Katrina. Am. Anthropol. 108 (4), 643-670.

[60]

Prudhomme, C., Giuntoli, I., Robinson, E.L., Clark, D.B., Arnell, N.W., Dankers, R., Fekete, B., Franssen, W., Gerten, D., Gosling, S.N., Hagermann, S., Hannah, D., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., Wisser, D., 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. U.S.A. 111 (9), 3262-3267.

[61]

Pulido-Calvo, I., Gutiérrez-Estrada, J.C., Sanz-Fernández, V., 2020. Drought and ecological flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula). Water (Basel) 12 (3), 677.

[62]

Revelles, J., Allué E., Alcolea, M., Antolín, F., Berihuete-Azorín, M., Expósito, I., Garay, B., Mas, B., Piqué R., Obea, L., Val. Peón, C., Burjachs, F., 2022. Site formation processes, human activities and palaeoenvironmental reconstructions from archaeobotanical records in cave and rock-shelter sites in NE Iberia. Rev. Palaeobot. Palyno. 299, 104612.

[63]

Ribas, A., Olcina, J., Sauri, D., 2020. More exposed but also more vulnerable? Climate change, high intensity precipitation events and flooding in Mediterranean Spain. Disaster Prev. Manag. 29 (3), 229-248.

[64]

Roces-Díaz, J.V., Jiménez-Alfaro, B., Chytrý M., Díaz-Varela, E.R., Álvarez-Álvarez, P., 2018. Glacial refugia and mid-Holocene expansion delineate the current distribution of Castanea sativa in Europe. Palaeogeogr. Palaeocl. 491, 152-160.

[65]

Romppainen-Martius, O., Viviroli, D., Rössler, O.K., Zischg, A.P., Röthlisberger, V.E., Aemisegger, F., Molnar, P., 2020. Understanding flood triggering mechanisms and flood risk changes. In: Ruiz-VillanuevaV., MolnarP. (Eds.), Past, Current, and Future Changes in Floods in Switzerland. Hydro-CH 2018 Project. ETH Zurich Research Collection, pp. 38-50.

[66]

Rozas-Davila, A., Correa-Metrio, A., McMichael, C.N., Bush, M.B., 2021. When the grass wasn’t greener: Megafaunal ecology and paleodroughts. Quaternary Sci. Rev. 266, 107073.

[67]

Sampériz, P.G., Montes, L., Aranbarri, J., Leunda, M., Domingo, R., Laborda, R., García- Ruiz, J.M., 2019. Scenarios, timing and paleo-environmental indicators for the identification of Anthropocene in the vegetal landscape of the Central Pyrenees (NE Iberia). Geophys. Res. Lett. 45 (1), 167-193 (in Spanish).

[68]

Sánchez-García, C., Schulte, L., Carvalho, F., Peña, J.C., 2019. A 500-year flood history of the arid environments of southeastern Spain. The case of the Almanzora River. Global Planet. Change 181, 102987.

[69]

Santisteban, J.I., Celis, A., Mediavilla, R., Gil-García, M.J., Ruiz-Zapata, B., Castaño, S., 2021. The transition from climate-driven to human-driven agriculture during the Little Ice Age in Central Spain: Documentary and fluvial records evidence. Palaeogeogr. Palaeocl. 562, 110153.

[70]

Schirrmacher, J., Kneisel, J., Knitter, D., Hamer, W., Hinz, M., Schneider, R.R., Weinelt, M., 2020. Spatial patterns of temperature, precipitation, and settlement dynamics on the Iberian Peninsula during the Chalcolithic and the Bronze Age. Quaternary Sci. Rev. 233, 106220.

[71]

Schulte, L., Schillereff, D., Santisteban, J.I., 2019. Pluridisciplinary analysis and multi- archive reconstruction of paleofloods: Societal demand, challenges and progress. Global Planet. Change 177, 225-238.

[72]

Serrano-Notivoli, R., 2017. Reconstrucción Climática Instrumental De La Precipitación Diaria En España: Ensayo Metodológico y Aplicaciones. Universidad de Zaragoza, Zaragoza.

[73]

Shamir, E., Tapia-Villaseñor, E.M., Cruz-Ayala, M.B., Megdal, S.B., 2021. A review of climate change impacts on the USA-Mexico transboundary Santa Cruz River Basin. Water (Basel) 13 (10), 1390.

[74]

Speight, L.J., Cranston, M.D., White, C.J., Kelly, L., 2021. Operational and emerging capabilities for surface water flood forecasting. Wires. Water 8 (3), e1517.

[75]

Stucki, P., Bandhauer, M., Heikkilä U., Rössler, O., Zappa, M., Pfister, L., Salvisberd, M., Froidevaux, P., Martius, O., Panziera, L., Brönnimann, S., 2018. Reconstruction and simulation of an extreme flood event in the Lago Maggiore catchment in 1868. Nat. Hazard. Earth Sys. 18 (10), 2717-2739.

[76]

Tabari, H., 2021. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 593, 125932.

[77]

Teuling, A.J., De Badts, E.A., Jansen, F.A., Fuchs, R., Buitink, J., Hoek van Dijke, A.J., Sterling, S.M., 2019. Climate change, reforestation/afforestation, and urbanisation impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 23 (9), 3631-3652.

[78]

UN, HABITAT, 2011. Cities and climate change:Global report on human settlements 2011. UN HABITAT, London and Washington D.C.

[79]

Vidal-Matutano, P., 2018. Anthracological data from Middle Palaeolithic contexts in Iberia: What do we know? Munibe Antropologia-Arkeologia 69, 5-20.

[80]

Wanders, N., Wada, Y., 2015. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 526, 208-220.

[81]

Zounemat-Kermani, M., Matta, E., Cominola, A., Xia, X., Zhang, Q., Liang, Q., Hinkelmann, R., 2020. Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects. J. Hydrol. 588, 125085.

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/