An insight to calculate soil conservation service

Shaojuan Lu , Xingwu Duan , Shengzhao Wei , Honghong Lin

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) : 237 -245.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) :237 -245. DOI: 10.1016/j.geosus.2022.08.001
research-article

An insight to calculate soil conservation service

Author information +
History +
PDF

Abstract

Quantifying soil conservation service is critical for sustainable land management. However, the traditional algorithm includes a gap between barren land and real soil erosion (BSERef), and its paradox is that a mass of barren land rarely exists in ecologically adaptable areas with fertile soils, which might overestimate soil conservation service. This study suggests a practical algorithm to effectively evaluate soil conservation service of different ecosystems. We propose a new algorithm based on the difference between cropland without control practices and real soil erosion (CSERef), which is compared with the BSERef algorithm. Our results show that: (1) a nearly five times smaller mean soil conservation amount of cropland occurred in the CSERef algorithm (3.76×106 t·yr-1) than in the BSERef algorithm (20.04×106 t·yr-1); (2) land use has higher explanatory power for the spatial differentiation of soil conservation rate in the CSERef algorithm (15.93% - 46.34%) than in the BSERef algorithm (5.95% - 44.49%). Our results demonstrate that the BSERef algorithm overestimates the soil conservation service of cropland in ecologically adaptable areas, whereas the CSERef algorithm can effectively assess the influence of land use change induced by anthropogenic activities on soil conservation service. Furthermore, we develop an assessment framework in terms of land use classification system following the Chinese Academy of Sciences. The framework considers that for water bodies, there is no soil conservation service; for non-ecologically adaptable areas (unused land) with vast barren lands and vegetation cover below 5%, the BSERef algorithm is recommended; the CSERef algorithm is suggested to use in ecologically adaptable areas (including woodland, grassland, cropland and construction land). This assessment framework can provide scientific assistance for decision-makers to formulate strategies for sustainable land management.

Keywords

Soil conservation service / Soil erosion / Cropland / Barren land / Algorithm

Cite this article

Download citation ▾
Shaojuan Lu, Xingwu Duan, Shengzhao Wei, Honghong Lin. An insight to calculate soil conservation service. Geography and Sustainability, 2022, 3(3): 237-245 DOI:10.1016/j.geosus.2022.08.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (Grant No. 42107364 and U2002209).

References

[1]

Adimassu, Z., Langan, S., Johnston, R., Mekuria, W., Amede, T., 2017. Impacts of soil and water conservation practices on crop yield, run-off, soil loss and nutrient loss in Ethiopia: Review and synthesis. Environ. Manage. 59 (1), 87-101.

[2]

Amundson, R., Berhe, A.A., Hopmans, J.W., Olson, C., Sztein, A.E., Sparks, D.L., 2015. Soil and human security in the 21st century. Science 348 (6235), 1261071.

[3]

An, Y., Zhao, W., Li, C., Sofia Santos Ferreira, C., 2022. Temporal changes on soil conservation services in large basins across the world. Catena 209, 105793.

[4]

Bai, Y., Ouyang, Z., Zheng, H., Li, X., Zhuang, C., Jiang, B., 2012. Modeling soil conservation, water conservation and their tradeoffs: A case study in Beijing. J. Environ. Sci. 24 (3), 419-426.

[5]

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schutt, B., Ferro, V., Bagarello, V., Oost, K.V., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8 (1), 2013.

[6]

Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water ( 2015-2070). Proc. Natl. Acad. Sci. U.S.A. 117 (36), 21994-22001.

[7]

Cao, X., Chen, X., Zhang, W., Liao, A., Chen, L., Chen, Z., Chen, J., 2016. Global cultivated land mapping at 30 m spatial resolution. Sci. China Earth Sci. 59 (12), 2275-2284.

[8]

Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122 (1-2), 167-177.

[9]

Chen, D., Wei, W., Chen, L., 2017. Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Sci. Rev. 173, 109-121.

[10]

China Knowledge Centre for Engineering Services and Technology, 2018. Forestry knowledge service system —Data set of grain for green in China (2007-2018). http://forest.ckcest.cn.

[11]

Dotterweich, M., 2008. The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-term interaction between humans and the environment — A review. Geomorphology 101 (1-2), 192-208.

[12]

Duan, X., Rong, L., Bai, Z., Gu, Z., Ding, J., Tao, Y., Li, J., Li, J., Wang, W., Yin, X., 2020. Effects of soil conservation measures on soil erosion in the Yunnan Plateau, Southwest China. J. Soil Water Conserv. 75 (2), 131-142.

[13]

Ellis, E.C., Ramankutty, N., 2008. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6 (8), 439-447.

[14]

Fu, B., Liu, Y., Y., He, C., Zeng, Y., Wu, B., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 8 (4), 284-293.

[15]

García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J.C., Lana-Renault, N., Sanjuán, Y., 2015. A meta-analysis of soil erosion rates across the world. Geomorphology 239, 160-173.

[16]

Gong, J., Zhang, J., Zhang, Y., Zhu, Y., Jin, T., Xu, C., 2021. Do forest landscape pattern planning and optimization play a role in enhancing soil conservation services in mountain areas of western China? Chin. Geogr. Sci. 31 (5), 848-866.

[17]

Grant, W., 1997. The Common Agricultural Policy. Macmillan Press Ltd.

[18]

Houghton, R.A., 1995. Land-use change and the carbon cycle. Global Change Biol. 1, 275-287.

[19]

Jenny, J.P., Koirala, S., Gregory-Eaves, I., Francus, P., Niemann, C., Ahrens, B., Brovkin, V., Baud, A., Ojala, A.E.K., Normandeau, A., Zolitschka, B., Carvalhais, N., 2019. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl. Acad. Sci. U.S.A. 116 (46), 22972-22976.

[20]

Kong, L., Zheng, H., Rao, E., Xiao, Y., Ouyang, Z., Li, C., 2018. Evaluating indirect and direct effects of eco-restoration policy on soil conservation service in Yangtze River Basin. Sci. Total Environ. 631-632, 887-894.

[21]

Lal, R., 1998. Soil erosion impact on agronomic productivity and environment quality. Crit. Rev. Plant Sci. 17 (4), 319-464.

[22]

Lal, R., 2001. Soil degradation by erosion. Land Degrad. Dev. 12 (6), 519-539.

[23]

Lal, R., 2003. Soil erosion and the global carbon budget. Environ. Int. 29 (4), 437-450.

[24]

Lal, R., 2016. Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energy Secur. 5 (4), 239-251.

[25]

Lambin, E.F., Gibbs, H.K., Ferreira, L., Grau, R., Mayaux, P., Meyfroidt, P., Morton, D.C., Rudel, T.K., Gasparri, I., Munger, J., 2013. Estimating the world’s potentially available cropland using a bottom-up approach. Global Environ. Change 23 (5), 892-901.

[26]

Lennert, J., Farkas, J.Z., Kovács, A.D., Molnár, A., Módos, R., Baka, D., Kovács, Z., 2020. Measuring and predicting long-term land cover changes in the functional urban area of Budapest. Sustainability 12 (8), 3331.

[27]

Lewis, S.L., Edwards, D.P., Galbraith, D., 2015. Increasing human dominance of tropical forests. Science 349 (6250), 827-832.

[28]

Li, Y., Duan, X., Li, Y., Li, Y., Pan, X., 2019. A method for data downscaling in estimations of food-provisioning service in a mountainous region. Soil Till. Res. 195, 104379.

[29]

Li, Z., Fang, H., 2016. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 163, 94-117.

[30]

Liu, B.Y., Nearing, M.A., Shi, P.J., Jia, Z.W., 2000. Slope length effects on soil loss for steep slopes. Soil Sci. Soc. Am. J. 65 (5), 1759-1763.

[31]

I) 12th international soil conservation organization conference.

[32]

Liu, H., Liu, Y., Wang, K., Zhao, W., 2020. Soil conservation efficiency assessment based on land use scenarios in the Nile River Basin. Ecol. Indic. 119, 106864.

[33]

Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., Li, R., Yan, C., Yu, D., Wu, S., Jiang, N., 2010. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 20 (4), 483-494.

[34]

Liu, L., Xu, X., Chen, X., 2015. Assessing the impact of urban expansion on potential crop yield in China during 1990-2010. Food Secur. 7 (1), 33-43.

[35]

Liu, M., Tian, H., 2010. China’s land cover and land use change from 1700 to 2005: Estimations from high-resolution satellite data and historical archives. Global Biogeochem. Cy. 24 (3), GB3003.

[36]

Liu, S., Lei, Y., Zhao, J., Yu, S., Wang, L., 2021a. Research on ecosystem services of water conservation and soil retention: a bibliometric analysis. Environ. Sci. Pollut. Res. Int. 28 (3), 2995-3007.

[37]

Liu, Y., Tian, X., Liu, R., Liu, S., Zuza, A.V., 2021b. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China. Catena 196, 104926.

[38]

Ma, X., Zhu, J., Yan, W., Zhao, C., 2020. Assessment of soil conservation services of four river basins in Central Asia under global warming scenarios. Geoderma 375, 114533.

[39]

Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, D.C.

[40]

Ministry of Water Resources of the People’s Republic of China, 2018. Technical Specification For Dynamic Monitoring of Regional Soil Erosion. Ministry of Water Resources of the People’s Republic of China, Beijing, pp. 48-51 (in Chinese).

[41]

Pal, S.C., Chakrabortty, R., Roy, P., Chowdhuri, I., Das, B., Saha, A., Shit, M., 2021. Changing climate and land use of 21st century influences soil erosion in India. Gondwana Res. 94, 164-185.

[42]

Pimentel, D., 2006. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 8 (1), 119-137.

[43]

Pimentel, D., Kounang, N., 1998. Ecology of soil erosion in ecosystems. Ecosystems 1 (5), 416-426.

[44]

Pimentel, D., Terhune, E.C., Dyson-Hudson, R., Rochereau, S., Samis, R., Smith, E.A., Denman, D., Reifschneider, D., Shepard, M., 1976. Land degradation effects on food and energy resources. Science 194 (4261), 149-155.

[45]

Rao, E., Ouyang, Z., Yu, X., Xiao, Y., 2014. Spatial patterns and impacts of soil conservation service in China. Geomorphology 207, 64-70.

[46]

Rao, E., Xiao, Y., Ouyang, Z., Zheng, H., 2016. Changes in ecosystem service of soil conservation between 2000 and 2010 and its driving factors in southwestern China. Chin. Geogr. Sci. 26 (2), 165-173.

[47]

Riao, D., Zhu, X., Tong, Z., Zhang, J., Wang, A., 2020. Study on land use/cover change and ecosystem services in Harbin, China. Sustainability 12 (15), 6076.

[48]

Schmitz, C., van Meijl, H., Kyle, P., Nelson, G.C., Fujimori, S., Gurgel, A., Havlik, P., Heyhoe, E., d’Croz, D.M., Popp, A., Sands, R., Tabeau, A., van der Mensbrugghe, D., von Lampe, M., Wise, M., Blanc, E., Hasegawa, T., Kavallari, A., Valin, H., 2014. Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agric. Econ. 45 (1), 69-84.

[49]

Shi, G., Jiang, N., Yao, L., 2018. Land use and cover change during the rapid economic growth period from 1990 to 2010: A case study of Shanghai. Sustainability 10 (2), 426.

[50]

Sims, N.C., Newnham, G.J., England, J.R., Guerschman, J., Cox, S.J.D., Roxburgh, S.H., Viscarra Rossel, R.A., Fritz, S., Wheeler, I., 2021. Good Practice guidance. SDG Indicator 15.3.1, Proportion of Land that is Degraded Over Total Land Area. Version 2.0. United Nations Convention to Combat Desertification, Bonn, Germany.

[51]

Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, P.V., Tyukavina, A., Vermote, E.F., Townshend, J.R., 2018. Global land change from 1982 to 2016. Nature 560 (7720), 639-643.

[52]

Spiertz, J.H.J., Ewert, F., 2009. Crop production and resource use to meet the growing demand for food, feed and fuel: Opportunities and constraints. NJAS-Wagen. J. Life Sci. 56 (4), 281-300.

[53]

State Council of the People’s Republic of China, 2006. The Eleventh Five-Year Plan of China. The State Council of the People’s Republic of China, Beijing (in Chinese).

[54]

Thenkabail, P., Hanjra, M., Dheeravath, V., Gumma, M., 2010. A holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches. Remote Sens. 2 (1), 211-261.

[55]

United States Congress 1977. Soil and Water Resources Conservation. The United States Congress, Washington D.C.

[56]

Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human domination of earth’s ecosystems. Science 277 (5325), 494-499.

[57]

Wang, J.F., Li, X.H., Christakos, G., Liao, Y.L., Zhang, T., Gu, X., Zheng, X.Y., 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 24 (1), 107-127.

[58]

Wang, J.F., Xu, C.D., 2017. Geodetector: Principle and prospective. Acta Geogr. Sin. 72 (1), 116-134 (in Chinese).

[59]

Wang, J.F., Zhang, T.L., Fu, B.J., 2016. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250-256.

[60]

Wang, R., Peng, Q., Zhang, W., Zhao, W., Liu, C., Zhou, L., 2022. Ecohydrological service characteristics of Qilian Mountain ecosystem in the next 30 years based on scenario simulation. Sustainability 14 (3), 1819.

[61]

Ward, D.S., Mahowald, N.M., Kloster, S., 2014. Potential climate forcing of land use and land cover change. Atmos. Chem. Phys. 14 (23), 12701-12724.

[62]

Wen, X., Zhen, L., 2020. Soil erosion control practices in the Chinese Loess Plateau: A systematic review. Environ. Dev. 34, 100493.

[63]

Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses —A Guide to Conservation Planning. Agriculture Handbook No. 537. US Department of Agriculture, Washington, D.C.

[64]

Xiao, Q., Hu, D., Xiao, Y., 2017. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. J. Clean. Prod. 163, S172-S180.

[65]

Xie, Y., Yin, S., Liu, B., Nearing, M.A., Zhao, Y., 2016. Models for estimating daily rainfall erosivity in China. J. Hydrol. 535, 547-558.

[66]

Xiong, Q., Xiao, Y., Ouyang, Z., Pan, K., Zhang, L., He, X., Zheng, H., Sun, X., Wu, X., Tariq, A., Li, L., 2017. Bright side? The impacts of Three Gorges Reservoir on local ecological service of soil conservation in southwestern China. Environ. Earth Sci. 76 (8), 323.

[67]

Yan, H., Zhan, J., Liu, B., Yuan, Y., 2014. Model estimation of water use efficiency for soil conservation in the lower Heihe River Basin, northwest China during 2000-2008. Sustainability 6 (9), 6250-6266.

[68]

Yin, C., Zhao, W., Pereira, P., 2022. Soil conservation service underpins sustainable development goals. Glob. Ecol. Conserv. 33, e01974.

[69]

Zeng, Z., Estes, L., Ziegler, A.D., Chen, A., Searchinger, T., Hua, F., Guan, K., Jintrawet, A., Wood, E.F., 2018. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11 (8), 556-562.

[70]

Zhang, L., Y., Fu, B., Zeng, Y., 2017. Uncertainties of two methods in selecting priority areas for protecting soil conservation service at regional scale. Sustainability 9 (9), 1577.

[71]

Zhao, W., Liu, Y., Daryanto, S., Fu, B., Wang, S., Liu, Y., 2018. Metacoupling supply and demand for soil conservation service. Curr. Opin. Env. Sust. 33, 136-141.

[72]

Zheng, T., Zhou, Z., Zou, Y., Pulatov, B., Biswas, A., 2021. Analysis of spatial and temporal characteristics and spatial flow process of soil conservation service in Jinghe Basin of China. Sustainability 13 (4), 1794.

[73]

Zheng, Z., Fu, B., Feng, X., 2016. GISbased analysis for hotspot identification of tradeoff between ecosystem services: a case study in Yanhe Basin, China. Chin. Geogr. Sci. 26, 466-477.

[74]

Zhong, L., Wang, J., Zhang, X., Ying, L., Zhu, C., 2020. Effects of agricultural land consolidation on soil conservation service in the hilly region of southeast China - Implications for land management. Land Use Policy 95, 104637.

PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

/