Sustainable water resource management in steep-slope agriculture

Wendi Wang , Eugenio Straffelini , Anton Pijl , Paolo Tarolli

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) : 214 -219.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (3) :214 -219. DOI: 10.1016/j.geosus.2022.07.001
Perspective
research-article

Sustainable water resource management in steep-slope agriculture

Author information +
History +
PDF

Abstract

Steep-slope agricultural landscapes are under threat due to climate change. On the one hand, the growing frequency of extreme high-intensity rainfall events concentrated in both temporal and spatial scales are causing flash floods or slope failure risk scenarios. On the other hand, future climate projections indicate a significant expansion of arid zones in the steep slope agricultural system. There is evidence that these landscapes face a high risk of growing water scarcity. Considering their unique role in crop production, ecosystem diversity, and crop production, ecosystem diversity, and cultural heritage, understanding sustainable water resource management for mitigating climate change-induced drought has never been more urgent than today. In these landscapes, unique indigenous knowledge of water conservation is adopted to manage water resources improving their resilience optimally. It is, therefore, necessary to promote water storage to mitigate floods or increase the resilience to prolonged drought (creating at the same time favourable conditions for biodiversity). Modern technological advances (e.g., high-resolution remote sensing and GIS-based modelling) are crucial in supporting these activities and understanding earth’s surface processes.

Keywords

Steep slope agriculture / Water / Climate change / SDG

Cite this article

Download citation ▾
Wendi Wang, Eugenio Straffelini, Anton Pijl, Paolo Tarolli. Sustainable water resource management in steep-slope agriculture. Geography and Sustainability, 2022, 3(3): 214-219 DOI:10.1016/j.geosus.2022.07.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was partly supported by the project SOiLUTION SYSTEM “Innovative solutions for soil erosion risk mitigation and a better management of vineyards in hilly and mountain landscapes”, within Programma di Sviluppo Rurale per il Veneto 2014-2020 (www.soilutionsystem.com).

References

[1]

Aeschbach-Hertig, W., Gleeson, T., 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5 (12), 853-861.

[2]

Alcamo, J., Flörke, M., Märker, M., 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 52 (2), 247-275.

[3]

Arnáez, J., Lana-Renault, N., Lasanta, T., Ruiz-Flaño, P., Castroviejo, J., 2015. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 128, 122-134.

[4]

Arnell, N.W., van Vuuren, D.P., Isaac, M., 2011. The implications of climate policy for the impacts of climate change on global water resources. Glob. Environ. Change 21 (2), 592-603.

[5]

Cerdà A., González-Pelayo, Ó., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., Orenes, F.G., Ritsema, C.J., 2016. Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency-high magnitude simulated rainfall events. Soil Res. 54 (2), 154-165.

[6]

Christian, J.I., Basara, J.B., Hunt, E.D., Otkin, J.A., Furtado, J.C., Mishra, V., Xiao, X., Randall, R.M., 2021. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun. 12 (1), 6330.

[7]

De Neve, J.E., Sachs, J.D., 2020. The SDGs and human well-being: A global analysis of synergies, trade-offs, and regional differences. Sci. Rep. 10 (1), 15113.

[8]

Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O., 2000. Climate extremes: Observations, modeling, and impacts. Science 289 (5487), 2068-2074.

[9]

European Environment Agency (EEA) 2012a. Water Resources in Europe in the Context of Vulnerability. EEA 2012 State of Water Assessment. https://www.eea.europa.eu/publications/water-resources-and-vulnerability (accessed 24 March 2022).

[10]

European Environment Agency (EEA) 2012b. European Waters - Current Status and Future Challenges: synthesis. https://www.eea.europa.eu/publications/european-waters-synthesis-2012 (accessed 22 March 2022).

[11]

European Environment Agency (EEA) 2012c. Climate Change, Impacts and Vulnerability in Europe 2012. An Indicator-based Report. https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012 (accessed 27 March 2022).

[12]

Food and Agriculture Organization of the United Nations (FAO). 1999. New Concepts and Approaches to Land Management in the Tropics with Emphasis on Steeplands. https://www.fao.org/publications/card/es/c/36ea4ae2-1b84-4fe2-bf19-decebdb6ec5a/ (accessed 27 February 2022).

[13]

Food and Agriculture Organization of the United Nations-Globally Important Agricultural Heritage Systems (FAO-GIAHS). 2022a. Dong’s Rice Fish Duck System, China. https://www.fao.org/giahs/giahsaroundtheworld/designated-sites/asia-and-thepacific/dongs-rice-fish-duck-system/en/ (accessed 30 March 2022).

[14]

Food and Agriculture Organization of the United Nations (FAO). 2018. Rediscovering hidden treasures of neglected and underutilized. https://hero.epa.gov/hero/index.cfm/ reference/details/reference_id/7324665 (accessed 30 March 2022).

[15]

Food and Agriculture Organization of the United Nations-Globally Important Agricultural Heritage Systems (FAO-GIAHS). 2022b. Pu’er Traditional Tea Agrosystem, China. http://www.fao.org/giahs/giahsaroundtheworld/designated-sites/asia-and-thepacific/puer-traditional-tea-agrosystem/en/ (accessed 30 March 2022).

[16]

Fuso Nerini, F., Tomei, J., To, L.S., Bisaga, I., Parikh, P., Black, M., Borrion, A., Spataru, C., Castán Broto, V., Anandarajah, G., Milligan, B., Mulugetta, Y., 2018. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3 (1), 10-15.

[17]

Gyssels, G., Poesen, J., Bochet, E., Li, Y., 2005. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 29 (2), 189-217.

[18]

Garg, K.K., Akuraju, V., Anantha, K.H., Singh, R., Whitbread, A.M., Dixit, S., 2022. Identifying potential zones for rainwater harvesting interventions for sustainable intensification in the semi-arid tropics. Sci. Rep. 12, 3882.

[19]

Hu, L., Zhang, J., Ren, W., Guo, L., Cheng, Y., Li, J., Li, K., Zhu, Z., Zhang, J., Luo, S., Cheng, L., Tang, J., Chen, X., 2016. Can the co-cultivation of rice and fish help sustain rice production? Sci. Rep. 6, 28728.

[20]

The Intergovernmental Panel on Climate Change (IPCC). 2008. Technical Paper on Climate Change and Water. https://www.ipcc.ch/publication/climate-change-and-water-2/ (accessed 21 March 2022).

[21]

IPCC, 2019. Climate Change and Land - Special Report. https://www.ipcc.ch/srccl/ (accessed 27 February 2022).

[22]

Iglesias, A., Quiroga, S., Diz, A., 2011. Looking into the future of agriculture in a changing climate. Eur. Rev. Agric. Econ. 38 (3), 427-447.

[23]

Jiao, W., Wang, L., Smith, W.K., Chang, Q., Wang, H., D’Odorico, P., 2021. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12 (1), 3777.

[24]

Keesstra, S.D., van Dam, O., Verstraeten, G., van Huissteden, J., 2009. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 78 (1), 60-71.

[25]

Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., Cerdà A., 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997-1009.

[26]

Kudumovic, L., 2021. Sustainability of the Palestinian historic village of Battir. J. Cult. Herit. Manag. Sustain. Dev. doi: 10.1108/JCHMSD-08-2020-0124.

[27]

Ma, S., Wu, Q., Wang, J., Zhang, S., 2017. Temporal evolution of regional drought detected from GRACE TWSA and CCI SM in Yunnan Province, China. Remote Sens. 9 (11), 1124.

[28]

Mitas, L. Mitasova, H., 1998. Distributed soil erosion simulation for effective erosion prevention. Water Res. 34, 505-516.

[29]

Mohammed, I.N., Bolten, J.D., Souter, N.J., Shaad, K., Vollmer, D., 2022. Diagnosing challenges and setting priorities for sustainable water resource management under climate change. Sci. Rep. 12 (1), 796.

[30]

Pijl, A., Reuter, L.E.H., Quarella, E., Vogel, T.A., Tarolli, P., 2020. GIS-based soil erosion modelling under various steep-slope vineyard practices. Catena 193, 104604.

[31]

Pijl, A., Tosoni, M., Roder, G., Sofia, G., Tarolli, P., 2019. Design of terrace drainage networks using UAV-based high-resolution topographic data. Water (Basel) 11 (4), 814.

[32]

Piemontese, L., Castelli, G., Fetzer, I., Barron, J., Liniger, H., Harari, N., Bresci, E., Jaramillo, F., 2020. Estimating the global potential of water harvesting from successful case studies. Glob. Environ. Change 63, 102121.

[33]

Piemontese, L., Kamugisha, R.N., Tukahirwa, J.M.B., Tengberg, A., Pedde, S., Jaramillo, F., 2021. Barriers to scaling sustainable land and water management in Uganda: A cross-scale archetype approach. Ecol. Soc. 26 (3), 6.

[34]

Posner, J.L., McPherson, M.F., 1982. Agriculture on the steep slopes of tropical America: Current situation and prospects for the year 2000. World Dev. 10 (5), 341-353.

[35]

Poudel, D.D., Midmore, D.J., West, L.T., 2000. Farmer participatory research to minimize soil erosion on steepland vegetable systems in the Philippines. Agric. Ecosyst. Environ. 79 (2-3), 113-127.

[36]

Qiu, J., Zipper, S.C., Motew, M., Booth, E.G., Kucharik, C.J., Loheide, S.P., 2019. Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nat. Sustain. 2 (6), 475-483.

[37]

Rosenzweig, C., Strzepek, K.M., Major, D.C., Iglesias, A., Yates, D.N., Holt, A., Hillel, D., 2004. Water resources for agriculture in a changing climate: International case studies. Glob. Environ. Change 14 (4), 345-360.

[38]

Rockström, J., Falkenmark, M., 2015. Agriculture: Increase water harvesting in Africa. Nature 519 (7543), 283-285.

[39]

Singh, L.K., Jha, M.K., Chowdary, V.M., 2017. Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Clean. Prod. 142, 1436-1456.

[40]

Sekar, I., Randhir, T.O., 2007. Spatial assessment of conjunctive water harvesting potential in watershed systems. J. Hydrol. 334 (1-2), 39-52.

[41]

Schiettecatte, W., Ouessar, M., Gabriels, D., Tanghe, S., Heirman, S., Abdelli, F., 2005. Impact of water harvesting techniques on soil and water conservation: A case study on a micro catchment in southeastern Tunisia. J. Arid Environ. 61 (2), 297-313.

[42]

Tarolli, P., Preti, F., Romano, N., 2014. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6, 10-25.

[43]

Tarolli, P., Pijl, A., Cucchiaro, S., Wei, W., 2021. Slope instabilities in steep cultivation systems: Process classification and opportunities from remote sensing. Land Degrad. Dev. 32 (3), 1368-1388.

[44]

Tarolli, P., Straffelini, E., 2020. Agriculture in hilly and mountainous landscapes: Threats, monitoring and sustainable management. Geogr. Sustain. 1 (1), 70-76.

[45]

United Nations EducationalScientific and Cultural Organization (UNESCO). 2011. Konso Cultural Landscape. https://whc.unesco.org/en/list/1333 (accessed 25 April 2022).

[46]

United Nations EducationalScientific and Cultural Organization (UNESCO). 2014. Palestine: land of Olives and Vines - Cultural Landscape of Southern Jerusalem, Battir. https://whc.unesco.org/en/list/1492 (accessed 25 February 2022).

[47]

Uwacu, R.A., Habanabakize, E., Adamowski, J., Schwinghamer, T.D., 2021. Using radical terraces for erosion control and water quality improvement in Rwanda: A case study in Sebeya catchment. Environ. Dev. 39, 100649.

[48]

Vema, V., Sudheer, K.P., Chaubey, I., 2018. Hydrologic design of water harvesting structures through simulation-optimization framework. J. Hydrol. 563, 460-469.

[49]

Vancampenhout, K., Nyssen, J., Gebremichael, D., Deckers, J., Poesen, J., Haile, M., Moeyersons, J., 2006. Stone bunds for soil conservation in the northern Ethiopian highlands: Impacts on soil fertility and crop yield. Soil Tillage Res. 90 (1-2), 1-15.

[50]

Wang, W., Fang, N., Shi, Z., Lu, X., 2018. Prevalent sediment source shift after revegetation in the Loess Plateau of China: Implications from sediment fingerprinting in a small catchment. Land Degrad. Dev. 29 (11), 3963-3973.

[51]

Wang, W., Pijl, A., Tarolli, P., 2022. Future climate-zone shifts are threatening steep-slope agriculture. Nat. Food 3 (3), 193-196.

[52]

Wessels, J.I., 2015. Challenging hydro-hegemony: Hydro-politics and local resistance in the Golan Heights and the Palestinian territories. Int. J. Environ. Stud. 72 (4), 601-623.

[53]

Willat, S.T., 1993. Soil and water conservation strategies in the south. In: BaumE., WolffP. (Acceptance of Soil and Water Conservation:Eds.), Strategies and Technologies. DITSL, pp. 193-212.

[54]

Wolka, K., Mulder, J., Biazin, B., 2018. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 207, 67-79.

[55]

Wolka, K., Biazin, B., Martinsen, V., Mulder, J., 2021. Soil and water conservation management on hill slopes in Southwest Ethiopia. I. Effects of soil bunds on surface runoff, erosion and loss of nutrients. Sci. Total Environ. 757, 142877.

[56]

Wu, J., Lin, X., Wang, M., Peng, J., Tu, Y., 2017. Assessing agricultural drought vulnerability by a VSD Model: A case study in Yunnan Province, China. Sustainability 9 (6), 918.

[57]

Yuan, S., Li, Z., Chen, L., Li, P., Zhang, Z., Zhang, J., Wang, A., Yu, K., 2022. Effects of a check dam system on the runoff generation and concentration processes of a catchment on the Loess Plateau. Int. Soil Water Conserv. Res. 10 (1), 86-98.

[58]

Zeng, Z., Estes, L., Ziegler, A.D., Chen, A., Searchinger, T., Hua, F., Guan, K., Jintrawet, A., Wood, E.F., 2018. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11 (8), 556-562.

[59]

Zhang, J., Wang, S., Zhao, W., Meadows, M.E., Fu, B., 2022. Finding pathways to synergistic development of sustainable development goals in China. Humanit. Soc. Sci. Commun. 9 (1), 21.

PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

/