Soil erosion on the Brazilian sugarcane cropping system: An overview

Edivaldo L. Thomaz , Francieli S. Marcatto , Valdemir Antoneli

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (2) : 129 -138.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (2) :129 -138. DOI: 10.1016/j.geosus.2022.05.001
research-article

Soil erosion on the Brazilian sugarcane cropping system: An overview

Author information +
History +
PDF

Abstract

Sugarcane (Saccharum officinarum) is an important crop for generating fiber, biofuel and other bioproducts. Brazil is the largest sugarcane producer in the world; however, limited knowledge is available with respect to soil erosion in the sugarcane cropping system. This study reviews the soil erosion rates in sugarcane cropping and evaluates the effects of soil management and land conversion on soil erosion. Eighteen studies (using conventional tillage) reporting 43 outcomes of soil erosion rates were examined using the Scopus® database. Different methods were used to measure soil erosion yielded different soil loss rates; highest values were recorded in the natural rain method, i.e., experimental plots with a median of 28 Mg ha−1 yr−1, were obtained followed by modeling with 9.3 Mg ha−1 yr−1 and simulated rain with 2 Mg ha−1 yr−1. The median soil loss using all data (n = 43) obtained by the three methods was 7.2 Mg ha−1 yr−1. The soil type increases soil erosion; the sugarcane cropping system is practiced over the most erodible Brazilian soils (e.g., Ultisols and Oxisols) where sand fraction is dominant, particularly fine sand. Most studies focused on rainsplash and interrill erosion. However, rill, ephemeral and permanent gullies should be examined, particularly in sugarcane-cropping areas.

Keywords

Tropical soils / Soil erodibility / Conservation agriculture / Soil security / Sustainability

Cite this article

Download citation ▾
Edivaldo L. Thomaz, Francieli S. Marcatto, Valdemir Antoneli. Soil erosion on the Brazilian sugarcane cropping system: An overview. Geography and Sustainability, 2022, 3(2): 129-138 DOI:10.1016/j.geosus.2022.05.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 306700/2021-2 - CNPq-Brazil) [Edivaldo L. Thomaz] and Fundação Araucária - FA (Grant No. 013/2018-FA) [Francieli S. Marcatto].

References

[1]

Abdalla, K., Dickey, M., Hill, T., Scott-Shaw, B., 2019. Assessment of soil erosion under rainfed sugarcane in KwaZulu-Natal, South Africa. Nat. Resour. Forum 43, 241-252.

[2]

Adami, M., Rudorff, B.F.T., Freitas, R.M., Aguiar, D.A., Sugawara, L.M., Mello, M.P., 2012. Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 4, 574-585.

[3]

Anache, J.A.A., Flanagan, D.C., Srivastava, A., Wendland, E.C., 2018. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ. 622-623, 140-151.

[4]

Andrade, N.S.F., Filho, M.V.M., Torres, J.L.R., Pereira, G.T., Marques Júnior, J., 2011. Impacto técnico e econômico das perdas de solo e nutrientes por erosão no cultivo da cana-de-açúcar. Eng. Agric. 31, 539-550.

[5]

Antoneli, V., de Jesus, F.C., Bednarz, J.A., Thomaz, E.L., 2021. Stemflow and throughfall in agricultural crops: A synthesis. Rev. Ambient. Água 16 (1), 1-11.

[6]

Awe, G.O., Reichert, J.M., Fontanela, E., 2020. Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil Tillage Res. 196, 104447.

[7]

Bacchi, O.O.S., Reichard, K., Sparovek, G., Ranieri, S.B.L., 2000. Soil erosion evaluation in a small watershed in Brazil through 137 Cs fallout redistribution analysis and conventional models. Acta Geol. Hispanica 35, 251-259.

[8]

Bacchi, O.O.S., Sparovek, G., Cooper, M., Ranieri, S.B.L., Correchel, V., 2011. Assessing the impacts of riparian zones on sediment retention in Brazilian sugarcane fields by the caesium-137 technique and WEPP modeling. International Atomic Energy Agency, Soil and Water Management and Crop Nutrition Section, Vienna (Austria) 225-240.

[9]

Barbosa, L.C., de Souza, Z.M., Franco, H.C.J., Otto, R., Rossi Neto, J., Garside, A.L., Carvalho, J.L.N., 2018. Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Reg. 13, 15-25.

[10]

Bertoni, J., Neto, F.L., 2005. Conservação do solo. Ícone, São Paulo.

[11]

Bezerra, S.A., Cantalice, J.R.B., 2006. Interrill erosion under different conditions of soil cover of sugarcane. Rev. Bras. Ciênc. Solo 30, 565-573.

[12]

Bezerra, M.O., Baker, M., Palmer, M.A., Filoso, S., 2020. Gully formation in headwater catchments under sugarcane agriculture in Brazil. J. Environ. Manage. 270, 110271.

[13]

Blanco-Canqui, H., Lal, R., 2010. Principles of Soil Conservation and Manageme. Springer Science & Business Media.

[14]

Bordonal, R.O., Lal, R., Ronquim, C.C., de Figueiredo, E.B., Carvalho, J.L.N., Maldonado, W., Milori, D.M.B.P., La Scala Jr., N., 2017. Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane ( Saccharum officinarum ) plantation in southern Brazil. Agric. Ecosyst. Environ. 240, 54-65.

[15]

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013.

[16]

Bryan, R.B., 2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology 32, 385-415.

[17]

Carvalho, J.L.N., Nogueirol, R.C., Menandro, L.M.S., de Oliveira Bordonal, R., Borges, C.D., Cantarella, H., Franco, H.C.J., 2017. Agronomic and environmental implications of sugarcane straw removal: A major review. GCB Bioenergy 9 (7), 1181-1195.

[18]

Cavalcanti, R.Q., Rolim, M.M., de Lima, R.P., Tavares, U.E., Pedrosa, E.M.R., Cherubin, M.R., 2020. Soil physical changes induced by sugarcane cultivation in the Atlantic Forest biome, northeastern Brazil. Geoderma 370, 114353.

[19]

Caviglione, J. H., Fidalski, J., Araújo, A.G., Barbosa, G.M.C., Llanillo, R.F., Souto, A.R., 2010. Espaçamento entre terraços em plantio direto, boletim técnico 71. IAPAR, Londrina, p. 51.

[20]

CONAB, 2021. Acompanhamento da safra brasileira de Cana-de-açúcar. Companhia Nacional de Abastecimento, Brasília.

[21]

Corrêa, E.A., Moraes, I.C., Lupinacci, C.M., Dos Anjos Ferreira Pinto, S., 2018. Influence of sugarcane cultivation on soil losses by water erosion in Inceptsols in São Paulo State. Rev. Bras. Geomorfol. 19, 231-243.

[22]

da Rocha, G.C., Sparovek, G., 2021. Scientific and technical knowledge of sugarcane cover- management USLE/RUSLE factor. Sci. Agric. 78 (suppl 1), e20200234.

[23]

da Silva, G.R.V., de Souza, Z.M., Martins Filho, M.V., Barbosa, R.S., de Souza, G.S., 2012. Soil, water and nutrient losses by interrill erosion from green cane cultivation. Rev. Bras. Ciênc. Solo 36 (3), 963-970.

[24]

de Sande, V.T., Sadique, M., Pineda, P., Bras, A., Atherton, W., Riley, M., 2021. Potential use of sugar cane bagasse ash as sand replacement for durable concrete. J. Build. Eng. 39, 102277.

[25]

Demarchi, J.C., Piroli, E.L., Zimback, C.R.L., 2019. Estimativa de perda de solos por erosão laminar e linear na bacia hidrográfica do Ribeirão das Perobas (SP), nos anos 1962 e 2011. Raega 46, 110-131.

[26]

Ellis, R.D., Lankford, B.A., 1990. The tolerance of sugarcane to water stress during its main development phases. Agric. Water Manag. 17, 117-128.

[27]

FAO, 2019. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/ (accessed 27 January 2021).

[28]

Fiorentin, A.M.X., Miranda, R.B., Vitti, D.M., de, C., Scarpinella, G.D., Mauad, F.F., 2017. Spatial distribution of areas susceptible to sheet erosion in computing environment. Manag. Environ. Qual. 28 (3), 414-429.

[29]

Fischer, G., Teixeira, E., Hizsnyik, E.T., van Velthuizen, H., 2008. Land use dynamics and sugarcane production. In: ZuurbierP.J.P., van de VoorenJ.G. (Sugarcane Ethanol:Eds.), Contributions to Climate Change Mitigation and Environment. Wageningen Academic Publishers, Wageningen, pp. 29-62.

[30]

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., 2005. Global consequences of land use. Science 309 (5734), 570-574.

[31]

Freire, O., Pessotti, J.E.S., 1974. Erodibilidade dos solos do estado de São Paulo. An. da Esc. Super. Agric. Luiz Queiroz 31, 333-350.

[32]

Freitas, L., Martins Filho, M.V., Casagrande, J.C., Oliveira, I.A., Silva, L.G., 2018. Soil quality indicator of Oxisols grown with sugarcane and native forest in northeastern São Paulo state. Brazil. Environ. Earth Sci. 77, 1-9.

[33]

Garbiate, M.V., Vitorino, A.C.T., Tomasini, B.A., Bergamin, A.C., Panachuki, E., 2011. Erosão em entre sulcos em área cultivada com cana crua e queimada sob colheita manual e mecanizada. Rev. Bras. Ciênc. Solo 35, 2145-2155.

[34]

Gomes, T.F., Van de Broek, M., Govers, G., Silva, R.W.C., Moraes, J.M., Camargo, P.B., Mazzi, E.A., Martinelli, L.A., 2019. Runoff, soil loss, and sources of particulate organic carbon delivered to streams by sugarcane and riparian areas: An isotopic approach. Catena 181, 104083.

[35]

Keller, T., Sandin, M., Colombi, T., Horn, R., Or, D., 2019. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 194, 104293.

[36]

Knapen, A., Poesen, J., Govers, G., Gyssels, G., Nachtergaele, J., 2007. Resistance of soils to concentrated flow erosion: A review. Earth-Sci. Rev. 80, 75-109.

[37]

Kunde, R.J., de Lima, C.L.R., dos e Silva, S.D.A., Pillon, C.N., 2018. Tensile strength, friability, aggregation, and soil organic matter physical fractions of an Oxisol cultivated with sugarcane. Pesqui. Agropecu. Bras. 53, 487-494.

[38]

Li, R., Li, Q., Pan, L., 2021b. Review of organic mulching effects on soil and water loss. Arch. Agron. Soil Sci. 67 (1), 136-151.

[39]

Li, Y., Mo, Y.-Q., Are, K.S., Huang, Z., Guo, H., Tang, C., Abegunrin, T.P., Qin, Z., Kang, Z., Wang, X., 2021a. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses: Evidence from hillslope observation. Agric. Ecosyst. Environ. 309, 107289.

[40]

Macedo, I.C., Seabra, J.E.A., Silva, J.E.A.R., 2008. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32 (7), 582-595.

[41]

Manyuchi, M.M., Mbohwa, C., Muzenda, E., 2019. Evaluating the usability of bio coal from sugar cane bagasse as a solid fuel. Procedia Manuf. 33, 516-521.

[42]

Martíni, A.F., Valani, G.P., Boschi, R.S., Bovi, R.C., Simões da Silva, L.F., Cooper, M., 2020. Is soil quality a concern in sugarcane cultivation? A bibliometric review. Soil Tillage Res. 204, 104751.

[43]

Martins, B.H., Araujo Junior, C.F., Miyazawa, M., Vieira, K.M., Hamanaka, C.A., daSilva, A.S., 2017. Weed control methods and coffee shrub residue effects on carbon stocks in a Latosol under conservation management practices. Agron. Sci. Biotechnol. 2, 68.

[44]

Martins Filho, M.V., Liccioti, T.T., Pereira, G.T., Marques, J.M., Sanchez, R.B., 2009. Perdas de solo e nutrientes por erosão num Argissolo com resíduos vegetais de cana-de-açúcar. Eng. Agric. 29, 8-18.

[45]

Medeiros, G., de, O.R., Giarolla, A., Sampaio, G., Marinho, M., de, A., 2016. Estimates of annual soil loss rates in the state of São Paulo. Brazil. Rev. Bras. Ciênc. Solo 40, 1-18.

[46]

Mendonça, P.G., Teixeira, D.D.B., Moitinho, M.R., Da Silva Junior, J.F., De Oliveira, I.R., Martins Filho, M.V., Marques Junior, J., Pereira, G.T., 2018. Temporal and spatial uncertainty of erosion soil loss from an argisol under sugarcane management scenarios. Rev. Bras. Ciênc. Solo 42, 1-15.

[47]

Merten, G.H., Minella, J.P.G., 2013. The expansion of Brazilian agriculture: Soil erosion scenarios. Int. Soil Water Conserv. Res. 1, 37-48.

[48]

Merten, G.H., de Araújo, A.G., de Cesare Barbosa, G.M., 2016. Erosão no estado do Paraná: fundamentos, estudos experimentais e desafios. Instituto Agronômico do Paraná. Montanarella, L., Pennock, D.J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká J., Alegre, J., Henriquez, C.R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S.K., Elsheikh, E.A.E.M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., Vargas, R., 2016. World’s soils are under threat. Soil 2, 79-82.

[49]

Morgan, R.P.C., 2009. Soil Erosion and Conservation. John Wiley & Sons, Hoboken.

[50]

Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria- Londoño, S., Edgar, M.J., Feldman, A., Garon, M., Harrison, M.L., Alhusseini, T., Ingram, D.J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D.L., Martin, C.D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R., Purves, D.W., Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M., Mace, G.M., Scharlemann, J.P., Purvis, A., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520 (7545), 45-50.

[51]

Pennock, D., 2019. Soil Erosion: The greatest challenge to sustainable soil management. Food and Agriculture Organization of the United Nations.

[52]

Poesen, J., 1981. Rainwash experiments on the erodibility of loose sediments. Earth Surf. Process. Landf. 6, 285-307.

[53]

Pr, ăv ălie, R., 2021. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 220, 103689.

[54]

Puppim de Oliveira, J.A. 2002. The policymaking process for creating competitive assets for the use of biomass energy: The Brazilian alcohol programme. Renew. Sustain. Energy Rev. 6 (1-2), 129-140.

[55]

Ramos-Scharrón, C.E., Thomaz, E.L., 2017. Runoff Development and soil erosion in a wet tropical montane setting under coffee cultivation. Land Degrad. Dev. 28, 936-945.

[56]

Rao, S.B.N., Gowda, N.K.S., Soren, N.M., Prasad, K.S., 2018. Sugarcane trash: A valuable dry fodder source for dairy animals. Indian Farming 68, 29-30.

[57]

Reifschneider, F.J.B., Henz, G.P., Ragassi, C.F., dos Anjos, U.G., Ferraz, R.M., 2010. Novos ângulos da história da agricultura no Brasil. Embrapa Informação Tecnológica, Brasília.

[58]

Rong, L., Duan, X., Zhang, G., Gu, Z., Feng, D., 2019. Impacts of tillage practices on ephemeral gully erosion in a dry-hot valley region in southwestern China. Soil Tillage Res. 187, 72-84.

[59]

Sanchez, R.B., Marques Júnior, J., De Souza, Z.M., Pereira, G.T., Martins Filho, M.V., 2009. Variabilidade espacial de atributos do solo e de fatores de erosão em diferentes pedoformas. Bragantia 68, 1095-1103.

[60]

Santos, O.A.Q., Tavares, O.C.H., García, A.C., Rossi, C.Q., de Moura, O.V.T., Pereira, W., da Silva Rodrigues Pinto, L.A., Berbara, R.L.L., Pereira, M.G., 2020. Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. Sci. Total Environ. 739, 140063.

[61]

Sousa, G.B., Filho, M.V.M., Matias, S.S.R., 2012. Perdas de solo, matéria orgânica e nutrientes por erosão hídrica em uma vertente coberta com diferentes quantidades de palha de cana-de-açúcar em. Guariba - SP. Eng. Agric. 32, 490-500.

[62]

Sparovek, G., Schnug, E., 2001. Temporal erosion-induced soil degradation and yield loss. Soil Sci. Soc. Am. J. 65, 1479-1486.

[63]

Spekken, M., de Bruin, S., Molin, J.P., Sparovek, G., 2016. Planning machine paths and row crop patterns on steep surfaces to minimize soil erosion. Comput. Electron. Agric. 124, 194-210.

[64]

Stahel, W.R., 2016. The circular economy. Nat. News 94, 19-23.

[65]

Stutter, M., Costa, F.B., Ó hUallacháin, D., 2021. The interactions of site-specific factors on riparian buffer effectiveness across multiple pollutants: A review. Sci. Total Environ. 798, 149238.

[66]

Thomaz, E.L., Fidalski, J., 2020. Interrill erodibility of different sandy soils increases along a catena in the Caiuá sandstone formation. Rev. Bras. Ciênc. Solo 44, e0190064.

[67]

Thomaz, E.L., Peretto, G.T., 2016. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics. Sci. Total Environ. 550, 547-555.

[68]

United, Nations, 2015. Transforming our world: The 2030 Agenda for Sustainable Development. United Nations General Assembly, New York.

[69]

Valim, W.C., Panachukim, E., Pavei, D.S., Alves Sobrinho, T., Almeida, W.S., 2016. Efeito de resíduos vegetais de cana-de-açúcar no controle da erosão hídrica entressulcos. Semina 37, 1155-1164.

[70]

Vaz, R.L.L., Barizon, R.R.M., Souza, A.J., Reginato, B.J., 2021. Runoff of hexazinone and diuron in green cane systems. Water Air Soil Pollut. 232, 116.

[71]

Weill, M.A.M., Sparovek, G., 2008. Erosion study in the ceveiro watershed (Piracicaba, SP). II - Interpreting soil loss tolerance using the Soil Useful Life Index methodology. Rev. Bras. Ciênc.Solo 32, 815-824.

[72]

Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: A guide to conservation planning. Science and Education Administration, US Department of Agriculture.

[73]

Youlton, C., Wendland, E., Anache, J.A.A., Poblete-Echeverría, C., Dabney, S., 2016. Changes in erosion and runoff due to replacement of pasture land with sugarcane crops. Sustainability 8, 1-12.

PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

/