Spatiotemporal change of beneficiary area from wind erosion prevention service in the Ulan Buh Desert in 2008 and 2018

Wenjie Hu , Xiuqin Wu , Kebin Zhang

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (2) : 119 -128.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (2) :119 -128. DOI: 10.1016/j.geosus.2022.04.002
research-article

Spatiotemporal change of beneficiary area from wind erosion prevention service in the Ulan Buh Desert in 2008 and 2018

Author information +
History +
PDF

Abstract

The Ulan Buh Desert is one of the eight deserts in China that provides wind erosion prevention service (i.e., the ecosystem; vegetation, production, and construction activities that promote sand fixation). It is significant for the construction of the national ecological barrier, and the protection of the ecological security in the Yellow River and North China. In this study, we selected two representative years (2008 and 2018) and quantified wind erosion prevention service from the Ulan Buh Desert using the RWEQ model. Meanwhile, the HYSPLIT model was used to simulate the spatial flow process from the service supply area to the beneficiary area and to determine its scope. The specific dust reduction amount in the beneficiary area was then calculated. The energy and the time-space relation of wind erosion prevention service in the areas that receive benefits from Ulan Buh Desert were compared before and after implementing environmental restoration measures. The results showed that: (1) the total amount of wind erosion prevention in the Ulan Buh Desert in 2018 was 2.12 × 1010 kg, which was 5.17 times higher than that in 2008; (2) in 2018, the distribution density of the flow path of wind erosion prevention service was lower than that in 2008, and the flow paths in each year were concentrated in the beneficiary areas with the path distribution frequency of less than 10%; (3) the total dust reduction in the downwind area of the Ulan Buh Desert in 2018 was higher than that in 2008, totaling 15.54 million tons. Inner Mongolia Autonomous Region and Shanxi Province had the most significant amount of dust reduction.

Keywords

Wind erosion prevention service / HYSPLIT model / Beneficiary area / Dust reduction capacity / The Ulan Buh Desert

Cite this article

Download citation ▾
Wenjie Hu, Xiuqin Wu, Kebin Zhang. Spatiotemporal change of beneficiary area from wind erosion prevention service in the Ulan Buh Desert in 2008 and 2018. Geography and Sustainability, 2022, 3(2): 119-128 DOI:10.1016/j.geosus.2022.04.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declarations of Competing Interest

The authors declare that there is no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was Funded by the National Key Research and Development Program (Grant No. 2019YFC0507600/2019YFC0507601) and the National Natural Science Foundation of China (Grant No. 41671080).

References

[1]

AI-Hemoud, A., AI-Sudairawi, M., Neelamanai, S., Naseeb, A., Behbehani, W., 2017. Socioeconomic effect of dust storms in Kuwait. Arab. J. Geosci. 10 (1), 18.

[2]

Bagstad, K.J., Semmens, D.J., Winthrop, R., 2013. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 5, 40-50.

[3]

Baddock, M.C., Strong, C.L., Murray, P.S., Mctainsh, G.H., 2013. Aeolian dust as a transport hazard. Atmos. Environ. 71, 7-14.

[4]

Bryan, B.A., Gao, L., Ye, Y.Q., Sun, X.F., Connor, J.D., Crossman, N.D., Stafford-Smith, M., Wu, J.G., He, C.Y., Yu, D.Y., Liu, Z.F., Li, A., Huang, Q.X., Ren, H., Deng, X.Z., Zheng, H., Niu, J.M., Han, G.D., Hou, X.Y., 2018. China’s response to a national land-system sustainability emergency. Nature 559 (7713), 193-204.

[5]

Bagheri, R., Bagheri, F., Karami, G.H., Jafari, H., 2019. Chemo-isotopes (18O & 2H) signatures and HYSPLIT model application: Clues to the atmospheric moisture and air mass origins. Atmos. Environ. 215, 116892.

[6]

Buschiazzo, D.E., Zobeck, T.M., 2008. Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas. Earth Surf. Proc. Land. 33 (12), 1839-1850.

[7]

Draxler, R.R., Hess, G.D., 1998. An overview of the HYSPLIT_ 4 modeling system for trajectories. Aust. Meteorol. Mag. 47, 295-308.

[8]

Draxler, R.R., 2000. Meteorological factors of ozone predictability at Houston, Texas. J. Air Waste Manage. Assoc. 50 (2), 259-271.

[9]

Du, H.Q., Xue, X., Wang, T., 2014. Estimation of the quantity of aeolian saltation sediments blown into the Yellow River from the Ulanbuh Desert, China. J. Arid Land 6 (2), 205-218.

[10]

Duijts, C., 2012. Modelling aeolian sediment transport in the Badia of Jordan. M.S. thesis, Utrecht University, Utrecht M.S. thesis.

[11]

Escudero, M., Stein, A.F., Draxler, R.R., Querol, X., Alastuey, A., Castillo, S., Avila, A., 2011. Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmos. Res. 99 (3-4), 518-527.

[12]

Fryrear, D.W., Bilbro, J.D., Saleh, A., Schomberg, H.M., Zobeck, T.M., 2000. RWEQ: Improved wind erosion technology. J. Soil Water Conserv. 55 (2), 183-189.

[13]

Fischer, G., Nachtergaele, F., Prieler, S., Van-Velthuizen, H.T., Verelst, L., Wiberg, D., 2008. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy.

[14]

Fu, B.J., 2018. Geography for global sustainable development. Sci. Technol. Rev. 36 (2), 1 (in Chinese).

[15]

Food and Agriculture Organization of the United Nations(FAO), 2009. International Institute for Applied Systems Analysis 2019. China soil map based harmonized world soil database (HWSD) (v1. 1). National Tibetan Plateau Data Center.

[16]

Feng, Y.Y., Yang, X.P., 2019. Moisture sources of the Alashan Sand Seas in western Inner Mongolia, China during the Last Glacial Maximum and mid-Holocene: Interpretation from modern analogues, paleoclimatic simulations and geological records. J. Geogr. Sci. 29 (12), 2101-2121.

[17]

Jia, X.Q., Fu, B.J., Feng, X.M., Hou, G.H., Liu, Y., Wang, X.F., 2014. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecol. Indic. 43, 103-113.

[18]

Jia, P., Wang, N.A., Cheng, H.Y., Li, Z.L., Ning, K., Zhang, X.H., Liang, X.Y., Niu, Z.M., 2015. A study on the range and area of Ulan Buh Desert based on 3S technology. J. Arid Land Resour. Environ. 29 (12), 131-138 (in Chinese).

[19]

Jiang, L., Xiao, Y., Rao, E.M., Wang, L.Y., Ouyang, Z.Y., 2016. Effects of land use and cover change (LUCC) on ecosystem sand fixing service in Inner Mongolia. Acta Ecol. Sin. 36 (12), 3734-3747 (in Chinese).

[20]

Kroll, F., Muller, F., Haase, D., Fohrer, N., 2012. Rural-urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 29 (3), 521-535.

[21]

Kim, H.C., Chai, T., Stein, A., Kondragunta, S., 2020. Inverse modeling of fire emission constrained by smoke plume transport using HYSPLIT dispersion model and geostationary observations. Atmos. Chem. Phys. 20 (17), 10259-10277.

[22]

Li, M.M., Liu, A.T., Zou, C.J., Xu, W.D., Shimizu, H., Wang, K.Y., 2012. An overview of the “Three-North ” Shelterbelt project in China. For. Stud. China 14 (1), 70-79.

[23]

Luo, F.M., Gao, J.L., Xin, Z.M., Bian, k., Hao, Y.G., Liu, F., 2019. Characteristics of sand- driving wind regime and sediment transport in northeast edge of Ulan Buh Desert. Trans. CSAE 35 (4), 145-152 (in Chinese).

[24]

Li, A, Wang, Y, Xue, J G, Ren, T.T., Wei, C.Z., Tian, Q.Y., Bai, W.M., Bai, Y.F., Huang, J.H., Jiang, Y., Cheng, Y.C., Sun, H.L., Xu, Z.W., Zhao, Y.J., Han, X.G., 2019. Principles, practices and effects of ecological restoration in the wind-blown sand hazards of North China. Acta Ecol. Sin. 39 (20), 7452-7462 (in Chinese).

[25]

Liu, L.M., Wang, T.T., Li, X.F., Xie, Z.B., Wu, J.Z., Song, L.N., 2021. Spatiotemporal variations of wind prevention and sand fixation function in the sand-prevention belt in Inner Mongolia in recent 15 years. Chin. J. Ecol. 40 (11), 3436-3447 (in Chinese).

[26]

Miao, A.M., Jia, L.D., Wu, J., 2010. Space-time distribution and changing trend of gale and sand-dust days during recent 51 a in Shanxi. J. Desert Res. 30 (2), 452-460 (in Chinese).

[27]

Ma, L., Liu, H., Peng, J., Wu, J.S., 2017. A review of ecosystem services supply and demand. Acta Geogr. Sin. 72 (7), 1277-1289 (in Chinese).

[28]

Moura, L.Z., Lima, C.H.R., 2018. Analysis of atmospheric moisture transport to the Upper Paraná River basin. Int. J. Climatol. 38 (14), 5153-5167.

[29]

Mansour, A.F., Christian, O., Michael, G., 2021. Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran. J. Arid Land 13 (1), 1-22.

[30]

North, P.R.J., 1996. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans. Geosci. Remote Sens. 34 (4), 946-956.

[31]

Piao, S.L., Yin, G.D., Tan, J.G., Cheng, L., Huang, M.T., Li, Y., Liu, R.G., Mao, J.F., Myneni, R.B., Peng, S.S., Poulter, B., Shi, X.Y., Xiao, Z.Q., Zeng, N., Zeng, Z.Z., Wang, Y.P., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 21 (4), 1601-1609.

[32]

Qin, Y, B, Xin, Z, B, Yi, Y, Yang, M.C., 2012. Spatiotemporal variation of sandstorm and its response to vegetation restoration in Beijing-Tianjin sandstorm source area. Trans. CSAE 28 (24), 196-204 (in Chinese).

[33]

Roels, B., Donders, S., Werger, M.J.A., Dong, M., 2001. Relation of wind-induced sand displacement to plant biomass and plant sand-binding capacity. Acta Bot. Sin. 43 (9), 979-982.

[34]

Rolph, G.D., Draxler, R.R., Stein, A.F., Manikin, G., Mcqueen, J.T., Davidson, P.M., 2009. Description and verification of the NOAA smoke forecasting system: The 2007 fire season. Weather Forecast. 24 (2), 361-378.

[35]

Song, Y., Liu, L.Y., Yan, P., Cao, T., 2005. A review of soil srodibility in water and wind erosion research. J. Geogr. Sci. 15 (2), 167-176.

[36]

Serna-Chavez, H.M., Schulp, C.J.E., Van Bodegom, P.M., Bouten, W., Verburg, P.H., Davidson, M.D., 2014. A quantitative framework for assessing spatial flows of ecosystem services. Ecol. Indic. 39, 24-33.

[37]

Sturck, J., Poortinga, A., Verburg, P.H., 2014. Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecol. Indic. 38, 198-211.

[38]

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96 (12), 2059-2077.

[39]

Shen, L., Tian, M.R., Gao, J.X., Qian, J.P., 2016. Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China. Chin. J. Appl. Ecol. 27 (1), 73-82 (in Chinese).

[40]

Shen, Y.P., Zhang, C.L., Wang, X.S., Zou, X.Y., Kang, L.Q., 2018. Statistical characteristics of wind erosion events in the erosion area of Northern China. Catena 167, 399-410.

[41]

Sangeetha, S.K., Sivakumar, V., Gebreslasie, M., 2018. Long-range transport of SO 2 over South Africa: A case study of the Calbuco volcanic eruption in April 2015. Atmospheric Environ. 185, 78-90.

[42]

Samsuddin, N.A.C., Khan, M.F., Maulud, K.N.A., Hamid, A.H., Munna, F.T., Rahim, M.A.A., Latif, M.T., Akhtaruzzaman, M., 2018. Local and transboundary factors’ impacts on trace gases and aerosol during haze episode in 2015 El Niño in Malaysia. Sci. Total Environ. 630, 1502-1514.

[43]

Su, K., Sun, X.T., Guo, H.Q., Long, Q.Q., Li, S., Mao, X.Q., Niu, T., Yu, Q., Wang, Y.R., Yue, D.P., 2020. The Establishment of a cross-regional differentiated ecological compensation scheme based on the beneficiary areas and benefit levels of sand-stabilization ecosystem service. J. Clean. Prod. 270, 122490.

[44]

Tian, S.M., Yao, W.Y., Guo, J.Y., Ma, T., Li, J.R., 2016. Variation of impact factors on the Aeolian Sand blown into the Yellow River in the Ulan Buh Desert area. J. Desert Res. 36 (6), 1701-1707 (in Chinese).

[45]

Weber, R.J., Sullivan, A.P., Peltier, R.E., Holloway, J.S., Atlas, E.L., Edgerton, E., 2007. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. 112, 1-13.

[46]

Wu, Z.T., Wu, J.J., Liu, J.H., He, B., Lei, T.J., Wang, Q.F., 2013. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin Sand Source Region of China. Ecol. Eng. 52, 37-50.

[47]

Wang, L., 2019. Characteristics of aeolian soil wind erodibility and the quantifying model in the Ulanbuh Desert. M.S. thesis, Beijing Forestry University, Beijing, p. 51 (in Chinese).

[48]

Xiao, Y., Zhang, C.S., Xu, J., 2015. Areas benefiting from water conservation in key ecological function areas in China. J. Resour. Ecol. 6 (6), 375-385.

[49]

Xiao, Y., Xie, G.D., Zhen, L., Lu, C.X., Xu, J., 2017. Identifying the areas benefitting from the prevention of wind erosion by the key ecological function area for the protection of desertification in Hunshandake, China. Sustainability 9, 1-14.

[50]

Xu, J., Xiao, Y., Xie, G.D., Wang, Y.Y., Jiang, Y., 2019. Computing payments for wind erosion prevention service incorporating ecosystem services flow and regional disparity in Yanchi Country. Sci. Total Environ. 674, 563-579.

[51]

Yerramilli, A., Dodla, V.B.R., Challa, V.S., Young, J.H., Swanier, S.J., Hardy, M.G., 2012. An intergrated WRF/HYSPLIT modeling approach for the assessment of PM 2.5 source regions over the Mississippi Gulf Coast region. Air Qual. Atmos. Health. 5 (4), 401-412.

[52]

Youssef, F., Visser, S., Karssenberg, D., Bruggeman, A., Erpul, G., 2012. Calibration of RWEQ in a patchy landscape; a first step towards a regional scale wind erosion model. Aeolian Res. 3 (4), 467-476.

[53]

Yang, Z.Y., Chen, X.C., Guo, J.Y., Dong, Z., Li, J.R., Wen, A.S., Tian, S.M., 2015. Grain size characteristics of different land use types in Ulan Buh Desert. Soil Water Conserv. China (7) 50-53 (in Chinese).

[54]

Yang, F.B., Lu, C.H., 2016. Assessing changes in wind erosion climatic erosivity in China’s dryland region during 1961-2012. J. Geogr. Sci. 26 (9), 1263-1276.

[55]

Yassin, M.F., Almutairi, S.K., Al-Hemoud, A., 2018. Dust storms backward Trajectories and source identification over Kuwait. Atmos. Res. 212, 158-171.

[56]

Yang, Y., Lv, P., Ma, F., Liang, H., Xu, M.J., 2021. Characteristics of wind regime in the southwest edge of the Ulan Buh Desert and their influence on the formation of dome dune. J. Desert Res. 41 (2), 19-26 (in Chinese).

[57]

Zhang, G.P., Zhang, Z.X., Zhao, X.L., Zhou, Q.B., Zhang, Z.K., Liu, B., 2001. Remote sensing study on the dust storm stricking north China in 2020. J. Remote Sens. 5 (6), 466-472+486 (in Chinese).

[58]

Zhang, Y.Y., Lang, J.L., Cheng, S.Y., Li, S.Y., Zhou, Y., Chen, D.S., Zhang, H.Y., Wang, H.Y., 2018. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 630, 72-82.

[59]

Zhang, H.B., Gao, Y., Sun, D.F., Liu, L.L., Cui, Y.Z., Zhu, W.J., 2019. Wind erosion changes in a semi-arid sandy area, Inner Mongolia, China. Sustainability 11 (1), 1-19.

[60]

Zhu, C.C., Gong, J.R., Yang, B., Zhang, Z.H., Wang, B., Shi, J.Y., Yue, K.X., Zhang, W.Y., 2021. Changes of windbreak and sand fixation services and the driving factors in the desert steppe, Inner Mongolia. Acta Ecol. Sin. 41 (11), 4606-4617 (in Chinese).

PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

/