Evaluation of six gauge-based gridded climate products for analyzing long-term historical precipitation patterns across the Lancang-Mekong River Basin

Masoud Irannezhad , Junguo Liu

Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (1) : 85 -103.

PDF
Geography and Sustainability ›› 2022, Vol. 3 ›› Issue (1) :85 -103. DOI: 10.1016/j.geosus.2022.03.002
research-article

Evaluation of six gauge-based gridded climate products for analyzing long-term historical precipitation patterns across the Lancang-Mekong River Basin

Author information +
History +
PDF

Abstract

Freshwater plays a vital role in global sustainability by improving human lives and protecting nature. In the Lancang-Mekong River Basin (LMRB), sustainable development is principally dependent upon precipitation that predominantly controls freshwater resources availability required for both life and livelihood of ∼70 million people. Hence, this study comprehensively analyzed long-term historical precipitation patterns (in terms of trends, variability, and links to climate teleconnections) throughout the LMRB as well as its upper (Lancang River Basin, LRB) and lower (Mekong River Basin, MRB) parts employing six gauge-based gridded climate products: Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), Climate Prediction Center (CPC), Climate Research Unit (CRU), Global Precipitation Climatology Center (GPCC), Precipitation Reconstruction over Land (PRECL), and University of Delaware (UDEL). Accordingly, annual and seasonal (dry and wet) precipitation time series were calculated for three study periods: century-long outlook (1901-2010), mid-past (1951-2010), and recent decades (1981-2010). However, the role of climate teleconnections in precipitation variability over the LMRB was only identified during their available temporal coverages: mid-past and recent decades. The results generally showed that: (i) both annual and seasonal precipitation increased across all three basins in 1981-2010; (ii) wet and dry seasons got drier and wetter, respectively, in all basins in 1951-2010; (iii) all such changes were Fundamentally attributed to increases in precipitation variability on both annual and seasonal scales over time; (iv) these variations were most strongly associated with the Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO) and East Pacific/North Pacific (EP/NP) pattern in the LMRB and the MRB during 1951-2010, but with the North Sea-Caspian Pattern (NCP) and the Southern Annular Mode (SAM) in the LRB; (v) such relationships got stronger in 1981-2010, while the Southern Oscillation Index (SOI) became the most influential teleconnection for dry season precipitation variability across all basins; and (vi) GPCC (APHRODITE) provided the most reliable gauge-based gridded precipitation time series over the LMRB for the years before (after) 1951. These findings lay a Foundation for further studies focusing on water resources and sustainable development in the LMRB.

Keywords

Climate change / Gauge-based precipitation datasets / Mainland Southeast Asia / Oceanic-atmospheric circulation patterns / Spatio-temporal trend analysis

Cite this article

Download citation ▾
Masoud Irannezhad, Junguo Liu. Evaluation of six gauge-based gridded climate products for analyzing long-term historical precipitation patterns across the Lancang-Mekong River Basin. Geography and Sustainability, 2022, 3(1): 85-103 DOI:10.1016/j.geosus.2022.03.002

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability

All datasets analyzed during this study are publicly available through the references given in the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20060401, XDA20060402), the National Natural Science Foundation of China (Grant No. 41625001), and the High-level Special Funding of the Southern University of Science and Technology (Grant No. G02296302, G02296402).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.geosus.2022.03.002.

References

[1]

AghaKouchak, A., Chiang, F., Huning, L.S., Love, C.A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S.M., Ragno, E., Sadegh, M., 2020. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48, 519-548.

[2]

Andersson, E., Bauer, P., Beljaars, A., Chevallier, F., Hólm, E., Janisková M., Kallberg, P., Kelly, G., Lopez, P., McNally, A., Moreau, E., Simmons, A.J., Thépaut, J.-N., Tompkins, A.M., 2005. Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Am. Meteorol. Soc. 96 (3), 387-402.

[3]

Barnston, A.G., Livezey, R.E., 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115 (6), 1083-1126.

[4]

Berghuijs, W.R., Larsen, J.R., van Emmerik, T.H.M., Woods, R.A., 2017. A global assessment of runoffsensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour. Res. 53 (10), 8475-8486.

[5]

Bueh, C., Nakamura, H., 2007. Scandinavian pattern and its climatic impact. Q. J. R. Meteorol. Soc. 133 (629 B), 2117-2131.

[6]

Chen, A., Chen, D., Azorin-Molina, C., 2018. Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets. Int. J. Climatol. 38 (11), 4314-4334.

[7]

Chen, A., Ho, C.-H., Chen, D., Azorin-Molina, C., 2019. Tropical cyclone rainfall in the Mekong River Basin for 1983-2016. Atmos. Res. 226, 66-75.

[8]

Chen, M., Xie, P., Janowiak, J.E., Arkin, P.A., 2002. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3 (3), 249-266.

[9]

d’Orgeville, M., Peltier, W. R., 2007. On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: Might they be related? Geophys. Res. Lett. 34 (23), L23705.

[10]

Deininger, M., McDermott, F., Cruz, F.W., Bernal, J.P., Mudelsee, M., Vonhof, H., Millo, C., Spötl, C., Treble, P.C., Pickering, R., Scholz, D., 2020. Inter-hemispheric synchroneity of Holocene precipitation anomalies controlled by Earth’s latitudinal insolation gradients. Nat. Commun. 11 (1), 5447.

[11]

Delgado, J.M., Apel, H., Merz, B., 2010. Flood trends and variability in the Mekong River. Hydrol. Earth Syst. Sci. 14 (3), 407-418.

[12]

Delgado, J.M., Merz, B., Apel, H., 2012. A climate-flood link for the lower Mekong River. Hydrol. Earth Syst. Sci. 16 (5), 1533-1541.

[13]

Enfield, D.B., Mestas-Nuñez, A.M., Trimble, P.J., 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28 (10), 2077-2080.

[14]

Fan, H., He, D., 2015. Temperature and precipitation variability and its effects on streamflow in the upstream regions of the Lancang-Mekong and Nu-Salween Rivers. J. Hydrometeorol. 16 (5), 2248-2263.

[15]

Ghasemifar, E., Irannezhad, M., Minaei, F., Minaei, M., 2022. The role of ENSO in atmospheric water vapor variability during cold months over Iran. Theor. Appl. Climatol. doi: 10.1007/s00704-022-03969-x.

[16]

Glantz, M.H., Katz, R.W., Nicholls, N., 2009. Teleconnections Linking Worldwide Climate Anomalies:Scientific Basis and Societal Impact. Cambridge University Press, Cambridge.

[17]

Groisman, P.Y., Legates, D.R., 1995. Documenting and detecting long-term precipitation trends: Where we are and what should be done. Clim. Change 31 (2-4), 601-622.

[18]

Gudmundsson, L., Boulange, J., Do, H.X., Gosling, S.N., Grillakis, M.G., Koutroulis, A.G., Leonard, M., Liu, J., Schmied, H.M., Papadimitriou, L., Pokhrel, Y., Seneviratne, S.I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., Zhao, F., 2021. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371 (6534), 1159-1162.

[19]

Gupta, A., Hock, L., Xiaojing, H., Ping, C., 2002. Evaluation of part of the Mekong River using satellite imagery. Geomorphology 44 (3-4), 221-239.

[20]

Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids of monthly climatic observations the CRU TS3.10 Dataset. Int. J. Climatol. 34 (3), 623-642.

[21]

Hegerl, G.C., Black, E., Allan, R.P., Ingram, W.J., Polson, D., Trenberth, K.E., Chadwick, R.S., Arkin, P.A., Sarojini, B.B., Becker, A., Dai, A., Durack, P.J., Easterling, D., Fowler, H.J., Kendon, E.J., Huffman, G.J., Liu, C., Marsh, R., New, M., Osborn, T.J., Skliris, N., Stott, P.A., Vidale, P.-L., Wijffels, S.E., Wilcox, L.J., Willett, K.M., Zhang, X., 2015. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc. 96 (7), 1097-1115.

[22]

Helsel, D.R., Hirsch, R.M., 1992. Statistical methods in water resources. U.S. Geological Survey, Reston.

[23]

Houghton, J., Townshend, J., Dawson, K., Mason, P., Zillman, J., Simmons, A., 2012. The GCOS at 20 years: The origin, achievement and future development of the Global Climate Observing System. Weather 67 (9), 227-235.

[24]

Hrudya, P.H., Varikoden, H., Vishnu, R., 2021. A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol. Atmos. Phys. 133, 1-14.

[25]

Hugelius, G., Loisel, J., Chadburn, S., Jackson, R.B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M.B., Treat, C., Turetsky, M., Voigt, C., Yu, Z., 2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U.S.A. 117 (34), 20438-20446.

[26]

IPCC, 2021. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In PressMasson-Delmotte, eds.)]. V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (

[27]

Irannezhad, M., Ahmadi, B., Liu, J., Chen, D., Matthews, J.H., 2022. Global water security: A shining star in the dark sky of achieving the sustainable development goals. Sustain. Horizons 1, 100005.

[28]

Irannezhad, M., Liu, J., Chen, D., 2020. Influential climate teleconnections for spatiotemporal precipitation variability in the Lancang-Mekong River Basin from 1952 to 2015. J. Geophys. Res. Atmos. 125 (21), e2020JD033331.

[29]

Irannezhad, M., Liu, J., Chen, D., 2021. Extreme precipitation variability across the Lancang-Mekong River Basin during 1952-2015 in relation to teleconnections and summer monsoons. Int. J. Climatol. doi: 10.1002/joc.7370.

[30]

Irannezhad, M., Marttila, H., Kløve, B., 2014. Long-term variations and trends in precipitation in Finland. Int. J. Climatol. 34 (10), 3139-31553.

[31]

Irannezhad, M., Minaei, M., Ahmadian, S., Chen, D., 2018. Impacts of changes in climate and land cover-land use on flood characteristics in Gorganrood Watershed (Northeastern Iran) during recent decades. Geogr. Ann. A.: Phys. Geogr. 100 (4), 340-350.

[32]

Iz, H.B., 2018. Is the global sea surface temperature rise accelerating? Geod. Geodyn. 9 (6), 432-438.

[33]

Jacobs, J.W., 2002. The Mekong River Commission: Transboundary water resources planning and regional security. Geogr. J. 168 (4), 354-364.

[34]

Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., Ma, M., 2012. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol. 452-453, 213-225.

[35]

Jiang, Z., Jiang, S., Shi, Y., Liu, Z., Li, W., Li, L., 2017. Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. J. Geophys. Res. Atmos. 122 (2), 600-613.

[36]

Jones, P.D., Salinger, M.J., Mullan, A.B., 1999. Extratropical circulation indices in the Southern Hemisphere based on station data. Int. J. Climatol. 10 (12), 1301-1317.

[37]

Juneng, L., Tangang, F.T., 2005. Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere Ocean variations in Indo-Pacific sector. Clim. Dyn. 25 (4), 337-350.

[38]

Kidd, C., Becker, A., Huffman, G.J., Muller, C.L., Joe, P., Skofronick-Jackson, G., Kirschbaum, D.B., 2017. So, how much of the Earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 98 (1), 69-78.

[39]

Konapala, G., Mishra, A.K., Wada, Y., Mann, M.E., 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11 (1), 3044.

[40]

Kutiel, H., Benaroch, Y., 2002. North Sea-Caspian pattern (NCP) An upper level atmospheric teleconnection affecting the Eastern Mediterranean: Identification and definition. Theor. Appl. Climatol. 71 (1-2), 17-28.

[41]

Li, R., Wang, S.Y., Gillies, R.R., Buckley, B.M., Truong, L.H., Cho, C., 2015. Decadal oscillation of autumn precipitation in Central Vietnam modulated by the East Pacific-North Pacific (EP-NP) teleconnection. Environ. Res. Lett. 10 (2), 024008.

[42]

Lim, Y.K., Kim, H.D., 2013. Impact of the dominant large-scale teleconnections on winter temperature variability over East Asia. J. Geophys. Res. Atmos. 118 (14), 7835-7848.

[43]

Liu, A., Soneja, S.I., Jiang, C., Huang, C., Kerns, T., Beck, K., Mitchell, C., Sapkota, A., 2017a. Frequency of extreme weather events and increased risk of motor vehicle collision in Maryland. Sci. Total Environ. 580, 550-555.

[44]

Liu, J., Bawa, K.S., Seager, T.P., Mao, G., Ding, D., Lee, J.S.H., Swim, J.K., 2019. On knowledge generation and use for sustainability. Nat. Sustain. 2 (2), 80-82.

[45]

Zhao, Y., Wu, F., Li, F., Chen, X.-N., Xu, X., Shao, Z.-Y., 2021. Ecological compensation standard of trans-boundary river basin based on ecological spillover value: A case study for the Lancang-Mekong River Basin. Int. J. Environ. Res. Public Health 18 (3), 1251.

[46]

Zhu, Y., Sang, Y.-F., Chen, D., Sivakumar, B., Li, D., 2020. Effects of the South Asian summer monsoon anomaly on interannual variations in precipitation over the South-Central Tibetan Plateau. Environ. Res. Lett. 15, 124067.

[47]

Liu, J., Chen, D., Mao, G., Irannezhad, M., Pokhrel, Y., 2021a. Past and future changes in climate and water resources in the LancangMekong River Basin: Current understanding and future research directions. Engineering. doi: 10.1016/j.eng.2021.06.026.

[48]

Liu, X., Yang, T., Hsu, K., Liu, C., Sorooshian, S., 2017b. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrol. Earth. Syst. Sci. 21 (1), 169-181.

[49]

Liu, Y., Zhang, C., Tang, Q., Hosseini-Moghari, S.M., Haile, G.G., Li, L., Li, W., Yang, K., van der Ent, R.J., Chen, D., 2021b. Moisture source variations for summer rainfall in different intensity classes over Huaihe River Valley. China. Clim. Dyn. 57 (3-4), 1121-1133.

[50]

Mann, H.B., 1945. Non-parametric test against trend. Econometrica 13, 245.

[51]

Marshall, G.J., 2003. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16 (24), 4134-4143.

[52]

MRC, 2019. State of the Basin Report 2018. Mekong River Commission, Vientiane.

[53]

MRC, 2010. State of the Basin Report 2010. Mekong River Commission, Vientiane.

[54]

MRC, 2005. Overview of the Hydrology of the Mekong Basin. Mekong River Commission, Vientiane.

[55]

Lutz, A., Terink, W., Droogers, P., Immerzeel, W.W., Piman, T., 2014. Development of baseline climate data set and trend analysis in the Mekong Basin. FutureWater Report. https://doi.org/10.1175/BAMS-88-9-1383.

[56]

New, M., Hulme, M., Jones, P., 2000. Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. J. Clim. 13 (13), 2217-2238.

[57]

New, M., Todd, M., Hulme, M., Jones, P., 2001. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 21 (15), 1889-1922.

[58]

Park, E., Lee, Y.J., 2001. Estimates of standard deviation of spearman’s rank correlation coefficients with dependent observations. Commun. Stat. Part B: Simul. Comput. 30 (1), 129-142.

[59]

Pascale, S., Lucarini, V., Feng, X., Porporato, A., Hasson, S., 2015. Analysis of rainfall seasonality from observations and climate models. Clim. Dyn. 44 (11-12), 3281-3301.

[60]

Pathak, A., Ghosh, S., Martinez, J.A., Dominguez, F., Kumar, P., 2017. Role of oceanic and land moisture sources and transport in the seasonal and interannual variability of summer monsoon in India. J. Clim. 30 (5), 1839-1859.

[61]

Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S.N., Grillakis, M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., Wada, Y., 2021. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11 (3), 226-233.

[62]

Radinovi ć D., Ćuri ć M., 2009. Deficit and surplus of precipitation as a continuous function of time. Theor. Appl. Climatol. 98 (1-2), 197-200.

[63]

Räsänen, T.A., Koponen, J., Lauri, H., Kummu, M., 2012. Downstream hydrological impacts of hydropower development in the Upper Mekong Basin. Water Resour. Manag. 26 (12), 3495-3513.

[64]

Räsänen, T.A., Kummu, M., 2013. Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River Basin. J. Hydrol. 476, 154-168.

[65]

Räsänen, T.A., Lindgren, V., Guillaume, J.H.A., Buckley, B.M., Kummu, M., 2016. On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia. Clim. Past. 12 (9), 1889-1905.

[66]

NCC,2019. National Climate Center of China Meteorological Administration (CMA). http://cmdp.ncc-cma.net/cn/download.htm (accessed 4 August 2019).

[67]

Rudolf, B., Becker, A., Schneider, U., Meyer-Christoffer, A., Ziese, M., 2009. The new “GPCC Full Data Reanalysis Version 5 ”providing high quality gridded monthly precipitation data for the global land-surface is public available since December 2010. Global Precipitation Climatology Centre Status Report.

[68]

Ruiz-Barradas, A., Nigam, S., 2018. Hydroclimate variability and change over the Mekong River Basin: Modeling and predictability and policy implications. J. Hydrometeorol. 19 (5), 849-869.

[69]

Sachs, J., Schmidt-Traub, G., Kroll, C., Durand-Delacre, D., Teksoz, K., 2017. SDG Index and Dashboards Report 2017. Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN), New York.

[70]

Sarojini, B.B., Stott, P.A., Black, E., 2016. Detection and attribution of human influence on regional precipitation. Nat. Clim. Change 6 (7), 669-675.

[71]

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., Rudolf, B., 2014. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115 (1-2), 15-40.

[72]

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s. Tau. J. Am. Stat. Assoc. 63 (324), 1379-1389.

[73]

Spence, T., Townshend, J., 1995. The global climate observing system (GCOS). Clim. Change 31, 131-134.

[74]

Strangeways, I., 2006. Precipitation:Theory, Measurement and Distribution. Cambridge University Press, Cambridge.

[75]

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., Hsu, K.-L., 2018. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 56 (1), 79-107.

[76]

Sun, Q., Miao, C., Duan, Q., Kong, D., Ye, A., Di, Z., Gong, W., 2014. Would the ’real’ observed dataset stand up? A critical examination of eight observed gridded climate datasets for China. Environ. Res. Lett. 9 (1), 015001.

[77]

Thompson, D.W.J., Wallace, J.M., 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25 (9), 1297-1300.

[78]

Trenberth, K.E., 1984. Signal versus noise in the Southern Oscillation. Mon. Weather Rev. 112 (2), 326-332.

[79]

UN, 2015. Transforming our world: The 2030 agenda for Sustainable Development. United Nations, New York.

[80]

Verdon, D.C., Franks, S.W., 2006. Long-term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett. 33 (6), L06712.

[81]

Wallace, J.M., Gutzler, D.S., 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 109 (4), 784-812.

[82]

Wang, B., Wu, R., Fu, X., 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 13 (9), 1517-1536.

[83]

Wang, F., Ge, Q., Chen, D., Luterbacher, J., Tokarska, K.B., Hao, Z., 2018. Global and regional climate responses to national-committed emission reductions under the Paris agreement. Geogr. Ann. Ser. A, Phys. Geogr. 100, 240-253.

[84]

Wang, W., Lu, H., Yang, D., Sothea, K., Jiao, Y., Gao, B., Peng, X., Pang, Z., 2016. Modelling hydrologic processes in the Mekong River basin using a distributed model driven by satellite precipitation and rain gauge observations. PLoS One 11 (3), e0152229.

[85]

Ward, P.J., Beets, W., Bouwer, L.M., Aerts, J.C.J.H., Renssen, H., 2010. Sensitivity of river discharge to ENSO. Geophys. Res. Lett. 37 (12), L12402.

[86]

Willmott, C.J., Matsuura, K., 1995. Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteorol. 34 (12), 2577-2586.

[87]

Xie, P., Chen, M., Shi, W., 2010. CPC global unified gauge-based analysis of daily precipitation. In: 24th Conference on Hydrology. Amer. MeteorSoc, AtlantaGA,p.2.

[88]

Xue, Z., Liu, J.P., Ge, Q., 2011. Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: Connection to damming, monsoon, and ENSO. Earth Surf. Process. Landf. 36, 296-308.

[89]

Yang, R., Zhang, W.K., Gui, S., Tao, Y., Cao, J., 2019. Rainy season precipitation variation in the Mekong River basin and its relationship to the Indian and East Asian summer monsoons. Clim. Dyn. 52, 5691-5708.

[90]

Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M.I., Hamada, A., 2009. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sci. Online Lett. Atmosphere 5, 137-140.

[91]

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., Kitoh, A., 2012. Aphrodite constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 93, 1401-1415.

[92]

Yin, J., Yin, Z., Zhong, H., Xu, S., Hu, X., Wang, J., Wu, J.,2011. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China. Environ. Monit. Assess. 177, 609-621.

[93]

Yue, S., Pilon, P., Phinney, B., Cavadias, G., 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 16, 1807-1829.

[94]

Zhang, R.H., Levitus, S., 1997. Structure and cycle of decadal variability of upper-ocean temperature in the North Pacific. J. Clim. 10, 710-727.

PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

/