Future research needs for environmental science in China

Dongqiang Zhu , Weiqiang Chen , Xiaolei Qu , Yuming Zheng , Jun Bi , Haidong Kan , Yongming Luo , Guangguo Ying , Eddy Y. Zeng , Fangjie Zhao , Lingyan Zhu , Yongguan Zhu , Shu Tao

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) : 234 -242.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) :234 -242. DOI: 10.1016/j.geosus.2021.09.003
Perspective
research-article

Future research needs for environmental science in China

Author information +
History +
PDF

Abstract

Environmental science is an interdisciplinary science developed in the process of understanding and solving ecological and environmental problems. In order to tackle these problems, environmental science research is expected to reveal the source, behavior, fate, exposure, and risks of pollutants in the environment and develop potential solutions to control pollution. It provides the scientific basis for decision-makers to establish environmental and economic policies, and promote concerted efforts for the sustainable development of society. Here, we articulate the development patterns, challenges, and future research needs of environmental science in China based on literature review and expert panel discussion. Environmental science research has evolved significantly in the past decade with an increasing diversity of environmental pollutants and health impacts, new technologies and methods, deepening fusion of multiple disciplines, and emerging solutions for pollution control. Its future development relies on the advances in our knowledge on the fate and transport of pollutants, regional environmental processes, ecotoxicological effects, environmental exposure and health effects, environmental analysis and monitoring, source control and reduction, environmental remediation, as well as environmental risk management. For each of these fields, we summarize the significant challenges and highlight the research demands for China. Based on the status quo of China's environmental science research and future needs, we provide recommendations to promote its future development, including encouraging innovation and interdisciplinary research, providing decision support for national needs, encouraging international collaboration, and improving collaboration mechanisms.

Keywords

Environmental science / China / Challenges / Opportunities / Research needs

Cite this article

Download citation ▾
Dongqiang Zhu, Weiqiang Chen, Xiaolei Qu, Yuming Zheng, Jun Bi, Haidong Kan, Yongming Luo, Guangguo Ying, Eddy Y. Zeng, Fangjie Zhao, Lingyan Zhu, Yongguan Zhu, Shu Tao. Future research needs for environmental science in China. Geography and Sustainability, 2021, 2(3): 234-242 DOI:10.1016/j.geosus.2021.09.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal interests that might have influenced the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. L1924041) and Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences (Grant No. XK2019DXC006).

References

[1]

Azizi, A., Bottaro, C.S., 2020. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J. Chromatogr. A 1614, 460603.

[2]

Bai, L., Zhang, Q., Ju, Q., Wang, C., Zhang, H., Jiang, H., 2020. Priming effect of autochthonous organic matter on enhanced degradation of 17 𝛼-ethynylestradiol in water-sediment system of one eutrophic lake. Water Res. 184, 116153.

[3]

Bai, X., Chen, J., Shi, P., 2012. Landscape urbanization and economic growth China: Positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 46, 132-139.

[4]

Batt, A.L., Furlong, E.T., Mash, H.E., Glassmeyer, S.T., Kolpin, D.W., 2017. The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Sci. Total Environ. 579, 1618-1628.

[5]

Bletsou, A.A., Jeon, J., Hollender, J., Archontaki, E., Thomaidis, N.S., 2015. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends Analyt. Chem. 66, 32-44.

[6]

Brokamp, C., Brandt, E.B., Ryan, P.H., 2019. Assessing exposure to outdoor air pollution for epidemiological studies: Model-based and personal sampling strategies. J. Allergy Clin. Immunol. 143, 2002-2006.

[7]

Bu, Q., Wang, B., Huang, J., Deng, S., Yu, G., 2013. Pharmaceuticals and personal care products in the aquatic environment in China: A review. J. Hazard. Mater. 262, 189-211.

[8]

Carvalho, F.P., 2017. Pesticides, environment, and food safety. Food Energy Secur. 6, 48-60.

[9]

Chen, J., Huang, Y., Li, G., An, T., Hu, Y., Li, Y., 2016. VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies. J. Hazard. Mater. 302, 395-403.

[10]

Chen, R., Yin, P., Wang, L., Liu, C., Niu, Y., Wang, W., Jiang, Y., Liu, Y., Liu, J., Qi, J., You, J., Kan, H., Zhou, M., 2018. Association between ambient temperature and mortality risk and burden: Time series study in 272 main Chinese cities. BMJ-Brit. Med. J. 363, k4306.

[11]

Cheng, M., Zeng, G.M., Huang, D.L., Lai, C., Xu, P., Zhang, C., Liu, Y., 2016. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 284, 582-598.

[12]

Chetelat, J., Nielsen, S.G., Auro, M., Carpenter, D., Mundy, L., Thomas, P.J., 2021. Vanadium stable isotopes in biota of terrestrial and aquatic food chains. Environ. Sci. Technol. 55, 4813-4821.

[13]

Dale, A.L., Casman, E.A., Lowry, G.V., Lead, J.R., Viparelli, E., Baalousha, M., 2015. Modeling nanomaterial environmental fate in aquatic systems. Environ. Sci. Technol. 49, 2587-2593.

[14]

Delgado-Baquerizo, M., Guerra, C.A., Cano-Diaz, C., Egidi, E., Wang, J.T., Eisenhauer, N., Singh, B.K., Maestre, F.T., 2020. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550-554.

[15]

Demou, E., Hellweg, S., Hungerbuhler, K., 2011. An occupational chemical priority list for future life cycle assessments. J. Clean. Prod. 19, 1339-1346.

[16]

Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., Laffont-Schwob, I., 2018. Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Sci. Total Environ. 639, 1334-1348.

[17]

Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., Schwartz, J.D., 2017. Air pollution and mortality in the medicare population. N. Engl. J. Med. 376, 2513-2522.

[18]

Dong, G.H., 2017. Perspective for future research direction about health impact of ambient air pollution in China. Adv. Exp. Med. Biol. 1017, 263-268.

[19]

Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Eckhardt, S., Lopez-Aparicio, S., Stohl, A., 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 1-11.

[20]

Farré, M., Pérez, S., Gonçalves, C., Alpendurada, M.F., Barceló, D., 2010. Green analytical chemistry in the determination of organic pollutants in the aquatic environment. Trends Analyt. Chem. 29, 1347-1362.

[21]

Fierer, N., 2017. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579-590.

[22]

Galib, M., Limmer, D.T., 2021. Reactive uptake of N 2 O 5 by atmospheric aerosol is dominated by interfacial processes. Science 371, 921-925.

[23]

Garcia-Segura, S., Qu, X., Alvarez, P.J., Chaplin, B.P., Chen, W., Crittenden, J.C., Feng, Y., Gao, G., He, Z., Hou, C.H., 2020. Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater-A perspective. Environ. Sci-Nano 7, 2178-2194.

[24]

Gong, Y., Tang, J., Zhao, D., 2016. Application of iron sulfide particles for groundwater and soil remediation: A review. Water Res. 89, 309-320.

[25]

Guan, W.J., Zheng, X.Y., Chung, K.F., Zhong, N.S., 2016. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 388, 1939-1951.

[26]

Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., Sengupta, B., 2011. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manage. 92, 2355-2388.

[27]

He, G., Lu, Y., Mol, A.P.J., Beckers, T., 2012. Changes and challenges: China’s environmental management in transition. Environ. Dev. 3, 25-38.

[28]

Huang, K., Liang, F., Yang, X., Liu, F., Li, J., Xiao, Q., Chen, J., Liu, X., Cao, J., Shen, C., Yu, L., Lu, F., Wu, X., Zhao, L., Wu, X., Li, Y., Hu, D., Huang, J., Liu, Y., Lu, X., Gu, D., 2019. Long term exposure to ambient fine particulate matter and incidence of stroke: Prospective cohort study from the China-PAR project. BMJ-Brit. Med. J. 367, l6720.

[29]

IPCC,2014. Climate Change 2013 -The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

[30]

Jalili, V., Barkhordari, A., Ghiasvand, A., 2020. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J. 152, 104319.

[31]

Jiang, Y., Yuan, L., Lin, Q., Ma, S., Yu, Y., 2019. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. Sci. Total Environ. 696, 133902.

[32]

Johnson, A.C., Jin, X., Nakada, N., Sumpter, J.P., 2020. Learning from the past and considering the future of chemicals in the environment. Science 367, 384-387.

[33]

Kim, K.H., Jahan, S.A., Kabir, E., 2013. A review on human health perspective of air pollution with respect to allergies and asthma. Environ. Int. 59, 41-52.

[34]

Kim, K.H., Kabir, E., Kabir, S., 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136-143.

[35]

Law, K.L., Thompson, R.C., 2014. Microplastics in the seas. Science 345, 144-145.

[36]

Lawson, C.E., Harcombe, W.R., Hatzenpichler, R., Lindemann, S.R., Löffler, F.E., O’Malley, M.A., García Martín, H., Pfleger, B.F., Raskin, L., Venturelli, O.S., Weissbrodt, D.G., Noguera, D.R., McMahon, K.D., 2019. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725-741.

[37]

Li, Y., Zhang, L., Liu, X., Ding, J., 2019. Ranking and prioritizing pharmaceuticals in the aquatic environment of China. Sci. Total Environ. 658, 333-342.

[38]

Liu, J., Bawa, K.S., Seager, T.P., Mao, G., Ding, D., Lee, J.S.H., Swim, J.K., 2019. On knowledge generation and use for sustainability. Nat. Sustain. 2, 80-82.

[39]

Liu, J., Cui, W., Tian, Z., Jia, J., 2021. Theory of stepwise ecological restoration. Chin. Sci. Bull. 66, 1014-1025 (in Chinese).

[40]

Liu, J., Raven, P.H., 2010. China’s environmental challenges and implications for the world. Crit. Rev. Environ. Sci. Technol. 40, 823-851.

[41]

Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A.J.B., Yang, H., 2010. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. U.S.A. 107, 8035-8040.

[42]

Liu, J., Zhao, D., Mao, G., Cui, W., Chen, H., Yang, H., 2020. Environmental sustainability of water footprint in mainland China. Geogr. Sustain. 1, 8-17.

[43]

Liu, L.W., Li, W., Song, W.P., Guo, M.X., 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633, 206-219.

[44]

Liu, Z., Lu, X., Feng, J., Fan, Q., Zhang, Y., Yang, X., 2017. Influence of ship emissions on urban air quality: A comprehensive study using highly time-resolved online measurements and numerical simulation in Shanghai. Environ. Sci. Technol. 51, 202-211.

[45]

Mackay, D., Hughes, L., Powell, D.E., Kim, J., 2014. An updated Quantitative Water Air Sediment Interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: Application to D 5 (decamethylcyclopentasiloxane) and PCB-180 in two lakes. Chemosphere 111, 359-365.

[46]

Mamipour, S., Yahoo, M., Jalalvandi, S., 2019. An empirical analysis of the relationship between the environment, economy, and society: Results of a PCA-VAR model for Iran. Ecol. Indic. 102, 760-769.

[47]

Mansour, F., Al-Hindi, M., Saad, W., Salam, D., 2016. Environmental risk analysis and prioritization of pharmaceuticals in a developing world context. Sci. Total Environ. 557-558, 31-43.

[48]

Mao, X.H., Jiang, R., Xiao, W., Yu, J.G., 2015. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 285, 419-435.

[49]

Mayol, E., Arrieta, J.M., Jiménez, M.A., Martínez-Asensio, A., Garcias-Bonet, N., Dachs, J., González-Gaya, B., Royer, S.J., Benítez-Barrios, V.M., Fraile-Nuez, E., Duarte, C.M., 2017. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 8, 201.

[50]

Muller, E., Huber, C.E., Brack, W., Krauss, M., Schulze, T., 2020. Symbolic aggregate approximation improves gap filling in high-resolution mass spectrometry data processing. Anal. Chem. 92, 10425-10432.

[51]

Nunes, B., Barbosa, A.R., Antunes, S.C., Goncalves, F., 2014. Combination effects of anticholinesterasics in acetylcholinesterase of a fish species: Effects of a metallic compound, an organophosphate pesticide, and a pharmaceutical drug. Environ. Sci. Pollut. Res. 21, 6258-6262.

[52]

Oxley, T., Dore, A.J., ApSimon, H., Hall, J., Kryza, M., 2013. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM). Environ. Int. 61, 17-35.

[53]

Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3-27.

[54]

Qiao, M., Ying, G.G., Singer, A.C., Zhu, Y.G., 2018. Review of antibiotic resistance in China and its environment. Environ. Int. 110, 160-172.

[55]

Ren, J., Wang, X., Gong, P., Wang, C., 2019. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: Seasonal shift and impact of global warming. Environ. Sci. Technol. 53, 3589-3598.

[56]

Santos, A., Barbosa-Povoa, A., Carvalho, A., 2019. Life cycle assessment in chemical industry-A review. Curr. Opin. Chem. Eng. 26, 139-147.

[57]

Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., Wehrli, B., 2006. The challenge of micropollutants in aquatic systems. Science 313, 1072-1077.

[58]

Sharma, V.K., Filip, J., Zboril, R., Varma, R.S., 2015. Natural inorganic nanoparticles—Formation, fate, and toxicity in the environment. Chem. Soc. Rev. 44, 8410-8423.

[59]

Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R.C., Corley, R.A., Thrall, B.D., Rasch, P.J., Fast, J.D., Massey Simonich, S.L., Shen, H., Tao, S., 2017. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl. Acad. Sci. U.S.A. 114, 1246-1251.

[60]

Siebecker, M., Li, W., Khalid, S., Sparks, D., 2014. Real-time QEXAFS spectroscopy measures rapid precipitate formation at the mineral-water interface. Nat. Commun. 5, 1-7.

[61]

Sofia, D., Lotrecchiano, N., Trucillo, P., Giuliano, A., Terrone, L., 2020. Novel air pollution measurement system based on Ethereum blockchain. J. Sens. Actuar. Netw. 9, 49.

[62]

Song, Y.L., Qin, S.S., Qu, J.S., Liu, F., 2015. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region. Atmos. Environ. 118, 58-69.

[63]

Subramani, A., Jacangelo, J.G., 2015. Emerging desalination technologies for water treatment: A critical review. Water Res. 75, 164-187.

[64]

Sun, J., Zhou, Q.X., Hu, X.G., 2019. Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. Ecotox. Environ. Safe. 180, 269-279.

[65]

Terzaghi, E., Vergani, L., Mapelli, F., Borin, S., Raspa, G., Zanardini, E., Morosini, C., Anelli, S., Nastasio, P., Sale, V.M., Armiraglio, S., Di Guardo, A., 2020. New data set of polychlorinated dibenzo-p-dioxin and dibenzofuran half-lives: Natural attenuation and rhizoremediation using several common plant species in a weathered contaminated soil. Environ. Sci. Technol. 54, 10000-10011.

[66]

Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M.B., Williams, M.A., Yoshihara, T., 2020. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. J. Agric. Food Chem. 68, 12856-12869.

[67]

Ullo, S.L., Sinha, G.R., 2020. Advances in smart environment monitoring systems using IoT and sensors. Sensors 20, 3113.

[68]

Wang, X., Luo, J., Yuan, W., Lin, C.-J., Wang, F., Liu, C., Wang, G., Feng, X., 2020. Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proc. Natl. Acad. Sci. U.S.A. 117, 2049-2055.

[69]

Wang, H., Zhang, Y., Zhao, H., Lu, X., Zhang, Y., Zhu, W., Nielsen, C.P., Li, X., Zhang, Q., Bi, J., McElroy, M.B., 2017. Trade-driven relocation of air pollution and health impacts in China. Nat. Commun. 8, 738.

[70]

Wu, Y.H., Xia, L.Z., Yu, Z.Q., Shabbir, S., Kerr, P.G., 2014. In situ bioremediation of surface waters by periphytons. Bioresource Technol. 151, 367-372.

[71]

Xie, L., van Zyl, D., 2020. Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: A review. Chemosphere 252, 126446.

[72]

Xu, F., Li, Y., Ge, X., Yang, L., Li, Y., 2018. Anaerobic digestion of food waste -Challenges and opportunities. Bioresour. Technol. 247, 1047-1058.

[73]

Xu, W., Wang, X., Cai, Z., 2013. Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Anal. Chim. Acta 790, 1-13.

[74]

Xu, Y., Du, P., Wang, J., 2017. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China. Environ. Pollut. 223, 435-448.

[75]

Yang, Q.Q., Li, Z.Y., Lu, X.N., Duan, Q.N., Huang, L., Bi, J., 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 642, 690-700.

[76]

Yoo, S.M., Lee, S.Y., 2016. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 34, 7-25.

[77]

Yu, S., Lu, H., 2018. Relationship between urbanisation and pollutant emissions in transboundary river basins under the strategy of the Belt and Road Initiative. Chemosphere 203, 11-20.

[78]

Zhai, T., Wang, J., Fang, Y., Liu, J., Huang, L., Chen, K., Zhao, C., 2021. Identification and prediction of wetland ecological risk in key cities of the Yangtze River Economic Belt: From the perspective of land development. Sustainability 13, 411.

[79]

Zhang, T., Lowry, G.V., Capiro, N.L., Chen, J., Chen, W., Chen, Y., Dionysiou, D.D., Elliott, D.W., Ghoshal, S., Hofmann, T., 2019. In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environ. Sci-Nano 6, 1283-1302.

[80]

Zhang, Z., Chen, J., Gao, Y., Ao, Z., Li, G., An, T., Hu, Y., Li, Y., 2018. A coupled technique to eliminate overall nonpolar and polar volatile organic compounds from paint production industry. J. Clean. Prod. 185, 266-274.

[81]

Zhao, F.J., 2020. Strategies to manage the risk of heavy metal (loid) contamination in agricultural soils. Front. Agr. Sci. and Eng. 7, 333-338.

[82]

Zhao, F.J., Ma, Y., Zhu, Y.G., Tang, Z., McGrath, S.P., 2015. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 49, 750-759.

[83]

Zhu, F., Ma, S.Y., Liu, T., Deng, X.Q., 2018. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean. Prod. 174, 184-190.

[84]

Zulkifli, S.N., Rahim, H.A., Lau, W.-J., 2018. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. Sensor Actuat. B Chem. 255, 2657-2689.

[85]

Zwart, N., Nio, S.L., Houtman, C.J., de Boer, J., Kool, J., Hamers, T., Lamoree, M.H., 2018. High-throughput effect-directed analysis using downscaled in vitro reporter gene assays to identify endocrine disruptors in surface water. Environ. Sci. Technol. 52, 4367-4377.

PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

/