Seasonal variation of evapotranspiration, Priestley-Taylor coefficient and crop coefficient in diverse landscapes

Hantian Wu , Weiwei Zhu , Bo Huang

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) : 224 -233.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) :224 -233. DOI: 10.1016/j.geosus.2021.09.002
research-article

Seasonal variation of evapotranspiration, Priestley-Taylor coefficient and crop coefficient in diverse landscapes

Author information +
History +
PDF

Abstract

Priestley-Taylor equation (PT) and the Penman-Monteith equation (PM) are commonly used methods for regional evapotranspiration monitoring, using the PT coefficient (αa) and PM crop/vegetation coefficient (Kc). This paper investigates the seasonal changes in αa and Kc at five sites in Australia and China, to understand the relationship between environmental conditions and evapotranspiration when applying different evaporation estimation methods. The research shows that higher actual evapotranspiration does not lead to higher αa and Kc values. αa and Kc perform similarly in cropland and forest environments in both China and Australia. Both αa and Kc continuously increase to a peak during the growing season and then decrease to their lowest values during the winter season. Considering Kc’s similar performance to αa and its greater data processing requirements, Kc has few advantages for estimating regional evapotranspiration. Applying the Priestley-Taylor equation with a regional α indicator will enhance the accuracy and reduce the workload when estimating regional evapotranspiration for similar landcover types based on remote sensing.

Keywords

Crop coefficient, Evapotranspiration / Priestley-Taylor coefficient / Seasonal variation / Landscapes

Cite this article

Download citation ▾
Hantian Wu, Weiwei Zhu, Bo Huang. Seasonal variation of evapotranspiration, Priestley-Taylor coefficient and crop coefficient in diverse landscapes. Geography and Sustainability, 2021, 2(3): 224-233 DOI:10.1016/j.geosus.2021.09.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors have no conflicts of interest to declare.

Acknowledgements

This work was supported by the open Fund of State Key Laboratory of Remote Sensing Science (Grant No. PFSLRSS202023), the Qinghai Science and Technology Plan (Grant No. 2019-SF-155), and the National Natural Scientific Foundations of China (Grant No. 41701403).

References

[1]

Alan, L., Flinta, A.L., Childs, S.W., 1991. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agric. For. Meteorol. 56 (3-4), 247-260.

[2]

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration (guidelines for computing crop water requirements), FAO Irrigation and Drainage Paper No.56. FAO, Rome.

[3]

Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Yrisarry, J.B., Smith, M., Pereira, L.S., Raes, D., Perrier, A., Alves, I., Walter, I., Elliott, R., 2006. A recommendation on standardized surface resistance for hourly calculation of reference ET o by the FAO 56 Penman-Monteith method. Agric. For. Meteorol. 81 (1-2), 1-22.

[4]

Allen, R.G., Tasumi, M., Morse, A., Trezza, R., Wright, J.L., Bastiaanssen, W., Kramber, W., Lorite, I., Robison, C.W., 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) —Applications. J. Irrig. Drain. Eng. 133 (4), 395-406.

[5]

Angel, U., Imma, F., Antonio, M., 2004. Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions. Agric. Water Manag. 66 (3), 205-219.

[6]

Bidlake, W.R., Woodham, W.M., Lopez, M.A., 1996. Evapotranspiration from areas of native vegetation in west-central Florida. USGS Water Supply Paper 2430 35.

[7]

Cho, J., Kim, W., Miyazaki, S., Komori, D., 2013. Difference in the Priestley-Taylor coefficients at two different heights of a tall micrometeorological tower. Agric. For. Meteorol. 180 (19), 97-101.

[8]

DeMeo, G.A., Flint, A.L., Laczniak, R.J., Nylund, W.E., 2006. Micrometeorological and soil data for calculating evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada, 2002-05: U.S. Geological Survey Open-File Report 12 2006-1312.

[9]

Descheemaeker, K., Raes, D., Allen, R., Nyssen, J., Poesen, J., Muys, B., Haile, M., Deckers, J., 2011. Two rapid appraisals of FAO-56 crop coefficients for semiarid natural vegetation of the northern Ethiopian highlands. J. Arid Environ. 75 (4), 353-359.

[10]

Doorenbos, J., Pruitt, W.O., 1977. Guidelines for Predicting Crop Water Requirements, 2nd edition. UN-FAO, Rome.

[11]

Er-Raki, S., Chehbouni, A., Boulet, G., Williams, D.G., 2010. Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agric. Water Manag. 97 (11), 1769-1778.

[12]

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 107 (1), 43-69.

[13]

Feng, X.M., Fu, B.J., Piao, S.L., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6 (11), 1019-1022.

[14]

Howell, T.A., Evett, S.R., Tolk, J.A., Copeland, K.S., Marek, T.H., 2015. Evapotranspiration, water productivity and crop coeffi-cients for irrigated sunflower in the U.S. Southern High Plains. Agric. Water Manag. 162, 33-46.

[15]

Kang, S.Z., Gu, B.J., Du, T.S., Zhang, J.H., 2003. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 59 (3), 239-254.

[16]

Kohler, M.A., Nordenson, T.J., Fox, W.E., 1955. Evaporation from pans and lakes. U.S. Department of Commerce Research Paper No.38. Washington..

[17]

Kustas, W.P., Zhan, X., Schmugge, T.J., 1998. Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed. Remote Sens. Environ. 64 (2), 116-131.

[18]

Liu, X.M., Zheng, H.M., Liu, C.M., 2009. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin. Resour. Sci. 31 (9), 1470-1476.

[19]

Liu, X.Y., Lin, E., 2005. Performance of the Priestley-Taylor equation in the semiarid climate of North China. Agric. Water Manag. 71, 1-17.

[20]

Lv, Y.P., Xu, J.Z., Yang, S.L., Liu, X.Y., 2018. Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions. Agric. Water Manag. 196, 154-161.

[21]

McAneney, K.J., Itier, B., 1996. Operational limits to the Priestley-Taylor formula. Irrig. Sci. 17, 37-43.

[22]

McMahon, T.A., Peel, M.C., Lowe, L., Srikanthan, R., McVicar, T.R., 2013. Estimating actual, potential, reference crop and pan evap-oration using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 17, 11829-11910.

[23]

Mecikalski, J.R., Sumner, D.M., Jacobs, J.M., Pathak, C.S., Paech, S.J., Douglas, E.M., 2011. Use of visible geostationary operational meteorological satellite imagery in mapping reference and potential evapotranspiration over Florida. In: Labedzki L. (Ed.), Evapotranspiration. Intech, Rijeka, Croatia, pp. 229-259.

[24]

Moore, G.W., Cleverly, J.R., Owens, M.K., 2008. Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux eddy covariance and leaf gas exchange measurements. Tree Physiol. 28, 521-528.

[25]

Muniandy, J., Yusop, Z., Askari, M., Muniandya, Z.Y., Muhamad, A., 2016. Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum. Agric. Water Manag. 169, 77-89.

[26]

Nouri, H., Beecham, S., Kazemi, F., Hassanli, A.M., 2013. A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urban Water J. 10 (4), 247-259.

[27]

Paço, T.A., Ferreira, M.I., Rosa, R.D., Paredes, P., 2012. The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrig. Sci. 30 (2), 115-126.

[28]

Parton, W.J., Logan, J.A., 1981. A model for diurnal variation in soil and air temperature. Agric. Meteorol. 23 (1), 205-216.

[29]

Pereira, A.R., 2004. The Priestley-Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agric. For. Meteorol. 125 (3-4), 305-313.

[30]

Pereira, A.R., Green, S., Villa Nova, N.A., 2006. Penman-Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration. Agric. Water Manag. 83 (1-2), 153-161.

[31]

Pereira, L.S., Allen, R.G., Smith, M., Raes, D., 2015. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 147, 4-20.

[32]

Price, J.S., 1991. Evaporation from a blanket bog in a foggy coastal environment. Bound.-Lay. Meteorol. 57 (4), 391-406.

[33]

Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100 (2), 81-92.

[34]

Raphaela, O.D., Ogedengbeb, K., Fasinmirina, J.T., Okunadea, D., Akandea, I., Gbadamosic, A., 2018. Growth-stage-specific crop coefficient and consumptive use of Capsicum chinense using hydraulic weighing lysimeter. Agric. Water Manag. 203, 179-185.

[35]

Rosset, M., Riedo, A.M., Grub, Geissmann, M., Fuhrer, J., 1997. Seasonal variation in radiation and energy balances of permanent pastures at different altitudes. Agric. For. Meteorol. 86 (3-4), 245-258.

[36]

Salomon, J.G., Schaaf, C.B., Strahler, A.H., Gao, F., Jin, Y., 2006. Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans. Geosci. Remote Sens. 44, 1555-1565.

[37]

Slatyer, R.O., McIlroy, I.C., 1961. Practical Microclimatology. CSIRO/UNESCO, Melbourne/Paris.

[38]

Shuttleworth, W.J., Wallace, J.S., 1985. Evaporation from sparse crops —An energy combination theory. Q. J. Roy. Meteorol. Soc. 111 (469), 839-855.

[39]

Stannard, D.I., 1993. Comparison of penmen-monteith, shuttleworth-wallace, and modi-fied Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resour. Res. 29 (5), 1379-1392.

[40]

Stewart, R.B., Rouse, W.R., 1976. Simple models for calculating evaporation from dry and wet surfaces. Arct. Alp. Res. 8 (3), 263-274.

[41]

Suleiman, A.A., Tojo Soler, C.M., Hoogenboom, G., 2013. Determining FAO-56 crop coefficients for peanut under different water stress levels. Irrig. Sci. 31, 169-178.

[42]

Sumner, D.M., Jacobs, J.M., 2005. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J. Hydrol. 308 (1-4), 81-104.

[43]

Smith, M, Allen, RG, Monteith, JL, Perrier, A, Pereira, L, Segeren, A., 1992. Report of the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. UN-FAO, Rome.

[44]

Tanner, B.D., Greene, J.P., 1989. Measurements of sensible heat and water vapor fluxes using eddy correlation methods. Final report prepared for the U.S. Army Dugway Proving Grounds. Dugway, Utah 17.

[45]

Tongwane, M.I., Savage, M.J., Tsubo, M., Moeletsi, M.E., 2017. Seasonal variation of reference evapotranspiration and Priestley-Taylor coefficient in the eastern Free State, South Africa. Agric. Water Manag. 187, 122-130.

[46]

Walter M.ASCE, I.A.,Allen M.ASCE, R.G., Elliott M.ASCE, R., Jensen M.ASCE, M.E., Itenfisu M.ASCE, D., Mecham M.ASCE, B., Howell M.ASCE, T.A., Snyder M.ASCE, R., Brown M.ASCE, P., Echings M.ASCE, S., Spofford M.ASCE, T., Hattendorf M.ASCE, M., Cuenca M.ASCE, R.H., Wright M.ASCE, J.L., Martin M.ASCE, D., 2000. ASCE’s standardized reference evapotranspiration equation. Watershed Management and Operations Management Conferences, Fort Collins.

[47]

Wang, J.D., Zhang, Y.D., Gong, S.L., Xu, D., Juan, S., 2018. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain. Field Crops Res. 217, 218-228.

[48]

Wu, B.F., Yan, N.N., Xiong, J., Bastiaanssen, W.G.M., Zhu, W.W., Stein, A., 2012. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. J. Hydrol. 436-437, 67-80.

[49]

Wu, B.F., Zhu, W.W., Yan, N.N., Xing, Q., Xu, J.M., Ma, Z.H., Wang, L.J., 2020. Regional actual evapotranspiration estimation with land and meteorological variables derived from multi-source satellite data. Remote Sens. 12, 332.

[50]

Yang, Y.J., Cao, J.F., Xiong, M.M., Zhao, Y.J., 2017. Quantitative analysis of climate factors influencing on potential evapotranspiration changes over Haihe River Basin. J. Arid Meteorol. 13 (1), 11-26 (in Chinese)

[51]

Zhang, Z.H., Cai, H.J., Yang, R.Y., Zhao, Y., 2004. Water requirements and crop coefficients of drip-irrigated crop under mulch in Minqin Country Oasis. Trans. CSAE 20 (5), 97-100 (in Chinese)

PDF

40

Accesses

0

Citation

Detail

Sections
Recommended

/