Scientific challenges of research on natural hazards and disaster risk

Peng Cui , Jianbing Peng , Peijun Shi , Huiming Tang , Chaojun Ouyang , Qiang Zou , Lianyou Liu , Changdong Li , Yu Lei

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) : 216 -223.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) :216 -223. DOI: 10.1016/j.geosus.2021.09.001
research-article

Scientific challenges of research on natural hazards and disaster risk

Author information +
History +
PDF

Abstract

As a discipline, the science of natural hazards and disaster risk aims to explain the spatial-temporal pattern, process and mechanism, emergency response and risk mitigation of natural hazards, which requires a multidisciplinary and interdisciplinary approach. With the support of Natural Science Finance of China (NSFC) and Chinese Academy of Sciences (CAS), in-depth research and systematic analysis on natural hazards and disaster risk were conducted. In this paper, the state of the art in research on natural hazards is summarized from seven aspects: formation process, mechanism and dynamic of natural hazards, disaster risk assessment, forecast, monitoring and early warning, disaster mitigation, emergency treatment and rescue, risk management and post-disaster reconstruction. The trends within the natural hazards and disaster risk as a discipline were identified, along with existing shortcomings and significant gaps that need to be addressed. This paper highlighted: 1) the scientific challenges including the frontier scientific issues and technological gaps on natural hazards and disaster risk discipline from 2025 to 2035 in China, and 2) the proposal to develop a systemic and holistic natural hazards and disaster risk discipline.

Keywords

Natural hazards / Disaster risk / Discipline / Progress / Challenge / Development goals

Cite this article

Download citation ▾
Peng Cui, Jianbing Peng, Peijun Shi, Huiming Tang, Chaojun Ouyang, Qiang Zou, Lianyou Liu, Changdong Li, Yu Lei. Scientific challenges of research on natural hazards and disaster risk. Geography and Sustainability, 2021, 2(3): 216-223 DOI:10.1016/j.geosus.2021.09.001

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of Competing Interest

The authors declared that they have no conflicts of interest to this work.

Acknowledgments

This work was supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC006), the Major Program of National Natural Science Foundation of China (Grant No. 41790432), the National Natural Science Foundation of China (Grant No. L1924041) and Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences (Grand No. XK2019DXC006). Many thanks to the workgroup of natural hazards and disaster risk discipline. Colleagues from Institute of Mountain Hazards and Environment of CAS, Chang'an University, Beijing Normal University, China University of Geosciences (Wuhan) are highly appreciated.

References

[1]

Aerts, J.C.J.H., Botzen, W.J., Clarke, K.C., Cutter, S.L., Hall, J.W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., Kunreuther, H., 2018. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Chang. 8 (3), 193-199.

[2]

Allenby, B., Fink, J., 2005. Toward inherently secure and resilient societies. Science 309 (5737), 1034-1036.

[3]

Amendola, A., Ermolieva, T., Linnerooth-Bayer, J., Mechler, R., 2013. Integrated Catastrophe Risk Modeling. In: Advances in Natural and Technological Hazards Research. Kluwer Academic Publishers, Boston.

[4]

An, H., Ouyang, C., Wang, D., 2021. A new two-phase flow model based on coupling of the depth-integrated continuum method and discrete element method. Comput. Geosci. 146.

[5]

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 34 (1), 73-89.

[6]

Arora, H., Raghu, T.S., Vinze, A., 2010. Resource allocation for demand surge mitigation during disaster response. Decis. Support Syst. 50 (1), 304-315.

[7]

Ballesteros-Cánovas, J.A., Trappmann, D., Madrigal-Gonzalez, J., Eckert, N., Stoffel, M., 2018. Climate warming enhances snow avalanche risk in the Western Himalayas. Proc. Natl. Acad. Sci. U.S.A. 115 (13), 3410-3415.

[8]

Barbier, E.B., 2014. A global strategy for protecting vulnerable coastal populations. Science 345 (6202), 1250-1315.

[9]

Bauer, P., Thorpe, A., Brunet, G., 2015. The quiet revolution of numerical weather prediction. Nature 525 (7567), 47-55.

[10]

Calkin, D.E., Cohen, J.D., Finney, M.A., Thompson, M.P., 2014. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl. Acad. Sci. U.S.A. 111 (2), 746-751.

[11]

Chen, Y., Yang, Z., Zhang, Y., Liu, C., 2013a. From 2008 Wen chuan earthquake to 2013 Lu shan earthquake. Sci. Sin. Terrae. 43 (6), 1064-1072. (in Chinese)

[12]

Chen, Y., Yang, Z., Zhang, Y., Liu, C., 2013b. A brief talk on the April 20 2013 Lushan M w 6.7 earthquake. Acta Seismol. Sin. 35 (3), 285-295. (in Chinese)

[13]

Cochran, E.S., Husker, A.L., 2019. How low should we go when warning for earthquakes? Science 366 (6468), 957-958.

[14]

Cui, P., Deng, H., Wang, C., 2018. Mountain hazards. Higher Education Press, Beijing.

[15]

Cui, P., Jia, Y., 2015. Mountain hazards in the Tibetan Plateau: Research status and prospects. Natl. Sci. Rev. 2 (4), 397-402.

[16]

Cui, P., Zou, Q., Xiang, L., Zeng, C., 2013. Risk assessment of simultaneous debris flows in mountain townships. Prog. Phys. Geogr. 37 (4), 516-542.

[17]

Fan, X., Yang, F., Siva Subramanian, S., Xu, Q., Feng, Z., Mavrouli, O., Peng, M., Ouyang, C., Jansen, J.D., Huang, R., 2020. Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China. Landslides 17, 147-164.

[18]

Gaupp, F., Jim, H., Stefan, H., Simon, D., 2020. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Chang. 10 (1), 54-57.

[19]

George, D., Iverson, R., Cannon, C., 2017. New methodology for computing tsunami generation by subaerial landslides: Application to the 2015 Tyndall Glacier Landslide, Alaska. Geophys. Res. Lett. 44 (14), 7276-7284.

[20]

Hanson, B., Roberts, L., 2005. Resiliency in the face of disaster. Science 309 (5737), 1029-1029.

[21]

Helbing, D., 2013. Globally networked risks and how to respond. Nature 497 (7447), 51-59.

[22]

Hikichi, H., Sawada, Y., Tsuboya, T., Aida, J., Kondo, K., Koyama, S., Kawachi, I., 2017. Residential relocation and change in social capital: A natural experiment from the 2011 Great East Japan Earthquake and Tsunami. Sci. Adv. 3 (7), e1700426.

[23]

Hoffman, C., Sieg, C., Linn, R., Mell, W., Parsons, R., Ziegler, J., Hiers, J., 2018. Advancing the science of wildland fire dynamics using process-based models. Fire 1 (2), 32.

[24]

Huang, Q., 2015. Forecasting the epicenter of a future major earthquake. Proc. Natl. Acad. Sci. U.S.A. 112 (4), 944-945.

[25]

Huang, Y., Tian, Z., Ke, Q., Liu, J., Irannezhad, M., Fan, D., Hou, M., Sun, L., 2020. Nature-based solutions for urban pluvial flood risk management. Wiley Interdiscip. Rev. Water 7 (3), e1421.

[26]

ICSU, 2008. A Science Plan for Integrated Research on Disaster Risk: Addressing the challenge of natural and human-induced environmental hazards. ICSU.

[27]

Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J.C.J.H., Mechler, R., Botzen, W.J.W., Bouwer, L.M., Pflug, G., Rojas, R., Ward, P.J., 2014. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Chang. 4 (4), 264-268.

[28]

Koks, E.E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S.A., Hall, J.W., Hallegatte, S., 2019. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 10, 2677.

[29]

Kundzewicz, Z.W., Hegger, D.L.T., Matczak, P., Driessen, P.P.J., 2018. Flood-risk reduction: Structural measures and diverse strategies. Proc. Natl. Acad. Sci. U.S.A. 115 (49), 12321-12325.

[30]

Lei, Y., 1986. Energy synoptic. Meteorological press, Beijing.

[31]

Li, Q., Liang, Q., Xia, X., 2020. A novel 1D-2D coupled model for hydrodynamic simulation of flows in drainage networks. Adv. Water Resour. 137, 103519.

[32]

Linkov, I., Bridges, T., Creutzig, F., Decker, J., Fox-Lent, C., Kröger, W., Lambert, J.H., Levermann, A., Montreuil, B., Nathwani, J., Nyer, R., Renn, O., Scharte, B., Scheffler, A., Schreurs, M., Thiel-Clemen, T., 2014. Changing the resilience paradigm. Nat. Clim. Chang. 4 (6), 407-409.

[33]

Martijn, V.D.M., Ozlen, M., Hearne, J.W., 2017. Dynamic rerouting of vehicles during cooperative wildfire response operations. Ann. Oper. Res. 254 (1), 467-480.

[34]

McNutt, M., 2015. Preparing for the next Katrina. Science 349 (6251), 905-905.

[35]

Middleton, S.E., Middleton, L., Modafferi, S., 2014. Real-time crisis mapping of natural disasters using social media. IEEE Intell. Syst. 29 (2), 9-17.

[36]

Obara, K., Kato, A., 2016. Connecting slow earthquakes to huge earthquakes. Science 353 (6296), 253-257.

[37]

Ouyang, C., He, S., Tang, C., 2015. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Eng. Geol. 194, 62-72.

[38]

ONDRCC, 2016. China’s disaster reduction actions during the 12 th Five Year Plan Period. http://www.ndrcc.org.cn/tzgg/12281.jhtml (accessed 11 October 2016). (in Chinese)

[39]

Ouyang, C., An, H., Zhou, S., Wang, Z., Su, P., Wang, D., Cheng, D., She, J., 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China. Landslides 16 (7), 1397-1414.

[40]

Palmer, M.A., Liu, J., Matthews, J.H., Mumba, M., D’Odorico, P., 2015. Manage water in a green way. Science 349 (6248), 584-585.

[41]

Peng, Y., Yu, L., 2014. Multiple criteria decision making in emergency management. Comput. Oper. Res. 42, 1-2.

[42]

Reyers, B., Nel, J.L., O’Farrell, P.J., Sitas, N., Nel, D.C., 2015. Navigating complexity through knowledge coproduction: Mainstreaming ecosystem services into disaster risk reduction. Proc. Natl. Acad. Sci. U.S.A. 112 (24), 7362-7368.

[43]

Robinson, T.R., Rosser, N.J., Densmore, A.L., Oven, K.J., Shrestha, S.N., Guragain, R., 2018. Use of scenario ensembles for deriving seismic risk. Proc. Natl. Acad. Sci. U.S.A. 115 (41), E9532-E9541.

[44]

Schiermeier, Q., 2018. Droughts, heatwaves and floods: How to tell when climate change is to blame. Nature 560 (7716), 20-22.

[45]

Shi, P., Carlo, J., Qian, Y., 2012. Integrated risk governance. Springer, Berlin, Heidelberg.

[46]

Shi, P., Roger, E.K., 2015. World stlas of natural disaster risk. Springer, Berlin, Heidelberg.

[47]

Shroder, J., Collins, A.E., Jones, S., Manyena, B., Jayawickrama, J., 2014. Hazards, risks, and disasters in society. Academic Press, Boston.

[48]

Spears, B.M., Ives, S.C., Angeler, D.G., Allen, C.R., Birk, S., Carvalho, L., Cavers, S., Daunt, F., Morton, R.D., Pocock, M.J.O., Rhodes, G., Thackeray, S.J., 2015. Effective management of ecological resilience —Are we there yet? J. Appl. Ecol. 52, 1311-1315.

[49]

Sun, X., Zeng, P., Li, T., Wang, S., Jimenez, R., Feng, X., Xu, Q., 2021. From probabilistic back analyses to probabilistic run-out predictions of landslides: A case study of Heifangtai terrace, Gansu Province, China. Eng. Geol. 280, 105950.

[50]

Surminski, S., Bouwer, L.M., Linnerooth-Bayer, J., 2016. How insurance can support climate resilience. Nat. Clim. Chang. 6 (4), 333-334.

[51]

Tang, H., Wasowski, J., Juang, C.H., 2019. Geohazards in the three Gorges Reservoir Area, China-Lessons learned from decades of research. Eng. Geol. 261, 105627.

[52]

Tang, Q., Ge, Q., 2018. Atlas of environmental risks facing China under climate change. Springer, Berlin Heidelberg.

[53]

Tao, S., Zhao, S., Zhou, X., Ji, L., Sun, S., Gao, S., Zhang, Q., 2003. The research progress of the synoptic meteorology and synoptic forecast. Chin. J. Atmos. Sci. 27 (4), 451-467. (in Chinese)

[54]

Tierney, K., 2014. The Social roots of risk: Producing disasters, promoting resilience, first ed.ed. Stanford University Press, California.

[55]

United, Nations, 2015. Transforming our world: The 2030 agenda for sustainable development. United Nations General Assembly, New York.

[56]

Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F., Feyen, L., 2018. Climatic and socio-economic controls of future coastal flood risk in Europe. Nat. Clim. Chang. 8 (9), 776-780.

[57]

Ward, P.J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T., Muis, S., de Perez, E.C., Rudari, R., Trigg, M.A., Winsemius, H.C., 2015. Usefulness and limitations of global flood risk models. Nat. Clim. Chang. 5 (8), 712-715.

[58]

Wei, K., Ouyang, C., Duan, H., Li, Y., Chen, M., Ma, J., An, H., Zhou, S., 2020. Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China. The Innovation 1 (2), 100038.

[59]

World, Bank, 2016. The World Bank Annual Report 2016. World Bank, Washington D.C.

[60]

Xu, W., Yao, Z., Luo, Y., Dong, X., 2020. Study on landslide-induced wave disasters using a 3D coupled SPH-DEM method. B. Eng. Geol. Environ. 79 467-48.

[61]

Xue, Y., Kong, F., Li, S., Zhang, Q., Qiu, D., Su, M., 2021. China starts the world’s hardest "Sky-High Road" project: Challenges and countermeasures for Sichuan-Tibet railway. The Innovation 2 (2), 100105.

[62]

Yamaguchi, M., Chan, J.C.L., Moon, I.J., Yoshida, K., Mizuta, R., 2020. Global warming changes tropical cyclone translation speed. Nat. Commun. 11 (1), 47.

[63]

Yang, X., Huang, P., 2021. Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. The Innovation 2 (2), 100102.

[64]

Yang, Z., Chen, J., 2004. Thoughts on the prediction or forecast of landslides. J. Eng. Geol. 12 (2), 118-123. (in Chinese)

[65]

Zscheischler, J., Westra, S., van den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A., AghaKouchak, A., Bresch, D.N., Leonard, M., Wahl, T., Zhang, X., 2018. Future climate risk from compound events. Nat. Clim. Chang. 8 (6), 469-477.

PDF

38

Accesses

0

Citation

Detail

Sections
Recommended

/