GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives

Tao Pei , Jun Xu , Liu Yu , Xin Huang , Liqiang Zhang , Weihua Dong , Chengzhi Qin , Ci Song , Jianya Gong , Chenghu Zhou

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) : 207 -215.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) :207 -215. DOI: 10.1016/j.geosus.2021.08.004
Perspective
research-article

GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives

Author information +
History +
PDF

Abstract

Geographic information science (GIScience) and remote sensing have long provided essential data and methodological support for natural resource challenges and environmental problems research. With increasing advances in information technology, natural resource and environmental science research faces the dual challenges of data and computational intensiveness. Therefore, the role of remote sensing and GIScience in the fields of natural resources and environmental science in this new information era is a key concern of researchers. This study clarifies the definition and frameworks of these two disciplines and discusses their role in natural resource and environmental research. GIScience is the discipline that studies the abstract and formal expressions of the basic concepts and laws of geography, and its research framework mainly consists of geo-modeling, geo-analysis, and geo-computation. Remote sensing is a comprehensive technology that deals with the mechanisms of human effects on the natural ecological environment system by observing the earth surface system. Its main areas include sensors and platforms, information processing and interpretation, and natural resource and environmental applications. GIScience and remote sensing provide data and methodological support for resource and environmental science research. They play essential roles in promoting the development of resource and environmental science and other related technologies. This paper provides forecasts of ten future directions for GIScience and eight future directions for remote sensing, which aim to solve issues related to natural resources and the environment.

Keywords

Natural resource / Environmental science / GIScience / Remote sensing / Information technology

Cite this article

Download citation ▾
Tao Pei, Jun Xu, Liu Yu, Xin Huang, Liqiang Zhang, Weihua Dong, Chengzhi Qin, Ci Song, Jianya Gong, Chenghu Zhou. GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives. Geography and Sustainability, 2021, 2(3): 207-215 DOI:10.1016/j.geosus.2021.08.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. L1924041, 41525004) and the Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences (Grant No. XK2019DXC006).

References

[1]

Abdollahi, A., Pradhan, B., 2021. Integrated technique of segmentation and classification methods with connected components analysis for road extraction from orthophoto images. Expert Syst. Appl. 176, 114908.

[2]

Andrienko, N., Andrienko, G., Gatalsky, P., 2003. Exploratory spatio-temporal visualization: An analytical review. J. Visual Lang. Comput. 14 (6), 503-541.

[3]

Anselin, L., Getis, A., 1992. Spatial statistical analysis and geographic information systems. Ann. Regional Sci. 26 (1), 19-33.

[4]

Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., Kim, B., 2021. Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recogn. 120, 108102.

[5]

Batty, M., Xie, Y., Sun, Z., 1999. Modeling urban dynamics through GIS-based cellular automata. Comput. Environ. Urban. 23 (3), 205-233.

[6]

Brown, D.G., Page, S., Riolo, R., Zellner, M., Rand, W., 2005. Path dependence and the validation of agent-based spatial models of land use. Int. J. Geogr. Inf. Sci. 19 (2), 153-174.

[7]

Cattell, R., 2010. Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39 (4), 12-27.

[8]

Chapi, K., Singh, V.P., Shirzadi, A., Shahabi, H., Bui, D.T., Pham, B.T., Khosravi, K., 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 95, 229-245.

[9]

Chen, W., Venables, D.S., Sigrist, M.W., 2021. Current trends and future outlook in spectroscopic monitoring of the atmosphere. In: Chen, W., Venables, D.S., Sigrist, M.W. (Eds.), Advances in Spectroscopic Monitoring of the Atmosphere. Elsevier, pp. 1-25.

[10]

Chen, Y., Huang, Z., Pei, T., Liu, Y., 2018. HiSpatialCluster: A novel high-performance software tool for clustering massive spatial points. Trans. GIS. 22 (5), 1275-1298.

[11]

Clarke, K.C., 2003. Geocomputation’s future at the extremes: High-performance computing and nanoclients. Parallel Comput. 29 (10), 1281-1295.

[12]

Dellwig, L.F., 1986. Physical fundamentals of remote sensing. Earth Sci. Rev. 25 (3) 254-254.

[13]

Eisenberg, A., 2013. Microsatellites: What Big Eyes They Have. New York Times, 2013-8-11.

[14]

Fraser, C.S., 1997. Digital camera self-calibration. ISPRS J. Photogramm. 52 (4), 149-159.

[15]

Fotheringham, A.S., Zhan, F.B., 2010. A Comparison of three exploratory methods for cluster detection in spatial point patterns. Geogr. Anal. 28 (3), 200-218.

[16]

Gao, S., 2020. A review of recent research and reflections on geospatial artificial intelligence. Geomatics Inf. Sci. Wuhan Univ. 45 (12), 1865-1874.

[17]

Goodchild, M.F., 1992a. Geographical information science. Int. J. Geogr. Inf. Sci. 6 (1), 31-45.

[18]

Goodchild, M.F., 1992b. Geographical data modeling. Comput. Geosci. 18 (4), 401-408.

[19]

Goodchild, M.F., Yuan, M., Cova, T.J., 2007. Towards a general theory of geographic representation in GIS. Int. J. Geogr. Inf. Sci. 21 (3), 239-260.

[20]

Guan, J., Yang, X., Ding, L., Cheng, X., Lee, V.C.S., Jin, C., 2021. Automated pixel-level pavement distress detection based on stereo vision and deep learning. Autom. Constr. 129, 103788.

[21]

Guo, H., 2018. Scientific big data -A footstone of national strategy for big data. Bull. CAS. 33 (8), 768-773.

[22]

Guo, R., Ying, S., 2017. The rejuvenation of cartography in ICT era. Acta Geodaetica et Cartographica Sinica 46 (10), 1274-1293 (in Chinese).

[23]

Hartmann, W., Havlena, M., Schindler, K., 2016. Recent developments in large-scale tie-point matching. ISPRS J. Photogramm. 115, 47-62.

[24]

Holho, ş A., Ro, ş ca, D., 2018. Uniform refinable 3D grids of regular convex polyhedrons and balls. Acta Math. Hungarica. 156 (1), 182-193.

[25]

Huang, T., Zhang, Q., Liu, J., Hou, R., Wang, X., Li, Y., 2020. Adversarial attacks on deep- -learning-based SAR image target recognition. J. Netw. Comput. Appl. 162, 102632.

[26]

Janowicz, K., Scheider, S., Pehle, T., Hart, G., 2012. Geospatial semantics and linked spatiotemporal data-Past, present, and future. Semant. Web. 3 (4), 321-332.

[27]

Koua, E.L., Maceachren, A., Kraak, M.J., 2006. Evaluating the usability of visualization methods in an exploratory geovisualization environment. Int. J. Geogr. Inf. Sci. 20 (4), 425-448.

[28]

Kwok, Y.T., Ng, E.Y.Y., 2021. Trends, topics, and lessons learnt from real case studies using mesoscale atmospheric models for urban climate applications in 2000-2019. Urban Clim. 36, 100785.

[29]

Li, D., 2003. Towards the development of remote sensing and GIS in the 21st century. Geomatics Inf. Sci. Wuhan Univ. 28 (2), 127-131 (in Chinese).

[30]

Li, D., 2019. The intelligent processing and service of spatiotemporal big data. J. Geo-Inf. Sci. 21 (12), 1825-1831.

[31]

Liang, P., Qin, C.Z., Zhu, A.X., Hou, Z.W., Fan, N.Q., Wang, Y.J., 2020. A case-based method of selecting covariates for digital soil mapping. J. Integr. Agr. 19 (8), 2127-2136.

[32]

Lin, H., Chen, M., Lu, G., 2013a. Virtual geographic environment: A workspace for computer-aided geographic experiments. Ann. Assoc. Am. Geogr. 103 (3), 465-482.

[33]

Lin, H., Chen, M., Lu, G., Zhu, Q., Gong, J., You, X., Wen, Y., Xu, B., Hu, M., 2013b. Virtual Geographic Environments (VGEs): A new generation of geographic analysis tool. Earth Sci. Rev. 126, 74-84.

[34]

Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G., Shi, L., 2015. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Am. Assoc. Geogr. 105 (3), 512-530.

[35]

Li, X., Liu, X., 2008. Embedding sustainable development strategies in agent-based models for use as a planning tool. Int. J. Geogr. Inf. Sci. 22 (1), 21-45.

[36]

Ma, A., Wan, Y., Zhong, Y., Wang, J., Zhang, L., 2021. SceneNet: Remote sensing scene classification deep learning network using multi-objective neural evolution architecture search. ISPRS J. Photogramm. 172, 171-188.

[37]

Malczewski, J., 2006. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 20 (7), 703-726.

[38]

Mark, D.M., 1993. Toward a theoretical framework for geographic entity types. In: Frank, A.U., Campari, I. (Eds.), Spatial Information Theory: A Theoretical Basis for GIS, Lecture Notes in Computer Sciences. Springer-Verlag, Berlin, pp. 270-283.

[39]

Mark, D.M., Freksa, C., Hirtle, S.C., Lloyd, R., Tversky, B., 1999. Cognitive models of geographical space. Int. J. Geogr. Inf. Sci. 13 (8), 747-774.

[40]

Mennis, J., Guo, D., 2009. Spatial data mining and geographic knowledge discovery-An introduction. Comput. Environ. Urban. 33 (6), 403-408.

[41]

Norris, J.R., Walker, J.J., 2020. Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States. Remote Sens. Environ. 249, 112013.

[42]

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P., 2003. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 93 (2), 314-337.

[43]

Pavlo, A., Aslett, M., 2016. What’s really new with NewSQL? ACM SIGMOD Rec. 45 (2), 45-55.

[44]

Pei, T., Gao, J., Ma, T., Zhou, C., 2012. Multi-scale decomposition of point process data. GeoInformatica 16 (4), 625-652.

[45]

Pei, T., Song, C., Guo, S., Shu, H., Liu, Y., Du, Y., Ma, T., Zhou, C., 2020. Big geodata mining: Objective, connotations and research issues. J. Geogr. Sci. 30 (2), 251-266.

[46]

Peuquet, D.J., 2001. Making space for time: Issues in space-time data representation. Geoinformatica 5, 11-32.

[47]

Pijanowski, B.C., Tayyebi, A., Doucette, J., Pekin, B.K., Braun, D., Plourde, J., 2014. A big data urban growth simulation at a national scale: Configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. Environ. Model. Softw. 51, 250-268.

[48]

Qin, C.Z., Wu, X.W., Jiang, J.C., Zhu, A.X., 2016. Case-based knowledge formalization and reasoning method for digital terrain analysis -Application to extracting drainage networks. Hydrol. Earth Syst. Sci. 20, 3379-3392.

[49]

Ren, H., Yan, G., Chen, L., Li, Z., 2011. Angular effect of MODIS emissivity products and its application to the split-window algorithm. ISPRS J. Photogramm. 66 (4), 498-507.

[50]

Romeiser, R., 2013. Ocean applications of interferometric SAR. In: Njoku E.G. (Ed.), Encyclopedia of Remote Sensing. Springer, New York.

[51]

Ryan, N.J., Walker, K.A., 2015. The effect of spectroscopic parameter inaccuracies on ground-based millimeter wave remote sensing of the atmosphere. J. Quant. Spectrosc. Ra. 161, 50-59.

[52]

Sherrouse, B.C., Clement, J.M., Semmens, D.J., 2011. A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Appl. Geog. 31 (2), 748-760.

[53]

Shi, P., Yang, A., Meng, F., Chen, J., Zhang, Y., Xie, Z., Du, L, Yuan, X., 2021. Optical near-field measurement for spin-orbit interaction of light. Prog. Quant. Electron. 78, 100341.

[54]

Sirdeshmukh, N., Verbree, E., Oosterom, P.V., Psomadaki, S., Kodde, M., 2019. Utilizing a discrete global grid system for handling point clouds with varying locations, times, and levels of detail. Cartographica 54 (1), 4-15.

[55]

Tang, R., Li, Z.L., Sun, X., 2013. Temporal upscaling of instantaneous evapotranspiration: An intercomparison of four methods using eddy covariance measurements and MODIS data. Remote Sens. Environ. 138, 102-118.

[56]

Tong, Q., Meng, Q., Yang, H., 2018. The history and future of remote sensing technology. City Disaster Reduct. (6) 2-11 (in Chinese).

[57]

Hey, T., Tansley, S., Tolle, K., 2009. The Fourth Paradigm:Data-intensive Scientific Discovery. Microsoft Press, Redmond, Washington.

[58]

Toutin, T., 2004. Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 25 (10), 1893-1924.

[59]

Tripathy, M., Raman, M., Chauhan, P., 2015. Estimation of photosynthetically available radiation (PAR) from OCEANSAT-I OCM using a simple atmospheric radiative transfer model. Adv. Space Res. 56 (7), 1441-1452.

[60]

Ulmer, B., Samavati, F., 2020. Toward volume preserving spheroid degenerated-octree grid. Geoinformatica 24, 505-529.

[61]

Wiesel, J., 1985. Digital image processing for orthophoto generation. Photogrammetria 40 (2), 69-76.

[62]

Xiao, A., Wang, Z., Wang, L., Ren, Y., 2018. Super-resolution for "Jilin-1" satellite video imagery via a convolutional network. Sensors 18, 1194.

[63]

Xu, J., Chen, Y., Xu, M., 2015. Data mining and application of spatial networks. Commun. China Comput. Federation. 11 (11), 40-47 (in Chinese).

[64]

Yang, R., Dai, B., Tan, L., Liu, X., Yang, Z., Li, H., 2021. Classification of polarimetric SAR images. In: Yang R., Dai B., Tan L., Liu X., Yang Z., Li H. (Polarimetric Microwave Imaging.Eds.), Springer, pp. 445-483.

[65]

Yao, Y., Li, X., Liu, X., Liu, P., Liang, Z., Zhang, J., Mai, K., 2017. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 31 (4), 825-848.

[66]

Yuan, M., 2001. Representing complex geographic phenomena in GIS. Am. Cartographer. 28 (2), 83-96.

[67]

Zhang, E., Liu, L., Huang, L., Ng, K.S., 2021a. An automated, generalized, deep-learning-based method for delineating the calving fronts of Greenland glaciers from multi-sensor remote sensing imagery. Remote Sens. Environ. 254, 112265.

[68]

Zhang, Q., Pang, Z., Hu, W., Li, J., Liu, Y., Liu, Y., Yu, F., Zhang, C., Xu, M., 2021b. Performance degradation mechanism of the light-activated room temperature NO 2 gas sensor based on Ag-ZnO nanoparticles. App. Surf. Sci. 541, 148418.

[69]

Zhang, X., Jiang, T., Li, X., Zhang, X., 2012. Research on application of PcModtran in design of satelliteborne optical remotes sensor. Phys. Procedia 25, 822-828.

[70]

Z. Zhang,, Y., Fattahi, H., Amelung, F., 2019. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 133, 104331.

[71]

Zheng, Y., Capra, L., Wolfson, O., Yang, H., 2014. Urban computing: Concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5 (3), 38.

[72]

Zhou, C., 2015. Prospects on pan-spatial information system. Prog. Geogr. 34 (2), 129-131.

[73]

Zhou, C., Zhu, X., Wang, M., Shi, C., Ou, Y., 2011. Panoramic location-based map. Prog. Geogr. 30 (11), 1331-1335.

[74]

Zhu, A.X., Zhao, F.H., Liang, P., Qin, C.Z., 2021. Next generation of GIS: Must be easy. Ann. GIS. 27 (1), 71-86.

[75]

IBM Could Education. 2020. Deep learning. https://www.ibm.com/cloud/learn/deep-learning (accessed 24 July, 2021).

PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

/