Effects of terracing on soil properties in three key mountainous regions of China

Die Chen , Wei Wei , Liding Chen

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) : 195 -206.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) :195 -206. DOI: 10.1016/j.geosus.2021.08.002
research-article

Effects of terracing on soil properties in three key mountainous regions of China

Author information +
History +
PDF

Abstract

Terracing greatly affects soil properties, ecosystem services, human welfare and geographical sustainability. The purpose of this article is to determine the influence of terracing on soil properties across diverse regions in China. Three representative terrace types, including dryland loess terraces, dry-stone terraces, and paddy terraces, were selected as case study areas. Soil sampling was stratified according to thickness of soil layers in each terraced area. Based on field investigations and soil sampling, combined with the means of variance, correlation, redundancy and regression analysis, we analyzed the characteristics of soil properties in the terraces across three areas. Results showed that: (1) alterations of soil physicochemical properties mainly depend on differences between soil parent materials in such regions; (2) Due to the existence of “four-element isomorphism” in the ecosystem and reasonable human activities, paddy terraces had the greatest impact on soil properties which is mainly reflected in decreasing soil pH and increasing SOC, TN, and TK; (3) The content of SOC and TN in different areas was higher in terraced fields than in the sloped lands and decreased with soil deepening; (4) To maintain sufficient supply of soil nutrients and support the sustainability of agricultural terraces, it is necessary to apply manure to improve soil fertility and accelerate its aggregation in the terraces. For example, an increase in the application of nitrogen fertilizer in terraced fields in Hebei and Gansu provinces, which have a serious deficiency in soil available phosphorus (AP), is necessary to get greater amounts of P fertilization. The present study offers a theoretical foundation for the sustainability of terraced ecosystems through efficient crop production, which is the basis for strengthening the ecological security of terraced areas and promoting regional sustainability in those fragile mountains.

Keywords

Terrace / Soil properties / Land management / Soil depth / Sustainability

Cite this article

Download citation ▾
Die Chen, Wei Wei, Liding Chen. Effects of terracing on soil properties in three key mountainous regions of China. Geography and Sustainability, 2021, 2(3): 195-206 DOI:10.1016/j.geosus.2021.08.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 41971129; 42991233), the National Key Research and Development Program of China (Grant No. 2016YFC0501701), the fellowship of China Postdoctoral Science Foundation (Grant No. 2020M680699) and the Distinguished Membership Project of the Youth Innovation Promotion Association of Chinese Academy of Sciences.

References

[1]

Abalos, D., Liang, Z., Dorsch, P., Elsgaard, L., 2020. Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: Role of microbial structure and functioning. Soil Biol. Biochem. 150, 108006.

[2]

Abdallah, S.M., Massoud, E.E., 2018. Land degradation risk assessment in Al-Sawda terraces, Kingdom of Saudi Arabia. Arab. J. Geosci. 11 (19), 599.

[3]

Acharya, G.P., Mcdonald, M.A., Tripathi, B.P., Gardner, R.M., Mawdesley, K.J., 2007. Nutrient losses from rain-fed bench terraced cultivation systems in high rainfall areas of the mid-hills of Nepal. Land Degrad. Dev. 18 (5), 486-499.

[4]

Ajayi-Banji, A.A., Rahman, S., Sunoj, S., Igathinathane, C., 2020. Impact of corn stover particle size and C/N ratio on reactor performance in solid-state Anaerobic co-digestion with dairy manure. J. Air Waste Manage. Assoc. 70 (4), 436-454.

[5]

Alavaisha, E., Manzoni, S., Lindborg, R., 2019. Different agricultural practices affect soil carbon, nitrogen and phosphorous in Kilombero -Tanzania. J. Environ. Manage. 234, 159-166.

[6]

Assefa, D., Rewald, B., Sanden, H., Rosinger, C., Abiyu, A., Yitaferu, B., Godbold, D.L., 2017. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 153, 89-99.

[7]

Bouwman, L., Goldewijk, K.K., Van Der Hoek, K.W., Beusen, A.H.W., Van Vuuren, D.P., Willems, J., Rufino, M.C., Stehfest, E., 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proc. Natl. Acad. Sci. U.S.A. 110 (52), 20882-20887.

[8]

Boyle, E., 2017. Nitrogen pollution knows no bounds. Science 356 (6339), 700-701.

[9]

Brust, G.E., 2019. Chapter 9 - Management Strategies for Organic Vegetable Fertility. In: Biswas D., Micallef S.A. ( Safety and Practice for Organic Food.Eds.), Academic Press, pp. 193-212.

[10]

Cao, S., Hu, H., Zhang, H., Zhou, C.F., Liu, B., 2019. Causes and Countermeasures of Plantation Soil Available Phosphorus Deficiency in Southern China. World Forestry Research 32 (3), 78-84. (in Chinese).

[11]

Camarotto, C., Dal Ferro, N., Piccoli, I., Polese, R., Furlan, L., Chiarini, F., Morari, F., 2018. Conservation agriculture and cover crop practices to regulate water, carbon and nitrogen cycles in the low-lying Venetian plain. Catena 167, 236-249.

[12]

Chaplot, V., Podwojewski, P., Phachomphon, K., Valentin, C., 2009. Soil erosion impact on soil organic carbon spatial variability on steep tropical slopes. Soil Sci. Soc. Am. J. 73 (3), 769-779.

[13]

Chen, D., Wei, W., Chen, L.D., Yu, Y., 2016. Progress of the Ecosystem Services and Management of Terraces. Mountain Res. 34 (3), 374-384. (in Chinese).

[14]

Chen, D., Wei, W., Chen, L.D., 2017a. History and distribution of terraced landscapes and typical international cases analysis. Chin. J. App. Ecol. 28 (2), 689-698. (in Chinese).

[15]

Chen, D., Wei, W., Chen, L.D., 2017b. Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Sci. Rev. 173, 109-121.

[16]

Chen, D., Wei, W., Chen, L.D., 2020a. How can terracing impact on soil moisture variation in China? A meta-analysis. Agric. Water Manage. 227, 105849.

[17]

Chen, D., Wei, W., Daryanto, S., Tarolli, P., 2020b. Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China. Sci. Total Environ. 721, 137751.

[18]

Chen, H., Zhang, X.P., Abla, M., Lu, D., Yan, R., Ren, Q.F., Ren, Z.Y., Yang, Y.H., Zhao, W.H., Lin, P.F., Liu, B.Y., Yang, X.H., 2018a. Effects of vegetation and rainfall types on surface runoffand soil erosion on steep slopes on the Loess Plateau, China. Catena 170, 141-149.

[19]

Chen, X.H., Cao, G.H., Wen, M.H., 2018b. Effects of leaf -cutting and sticking treatments on leaf SPAD value about two sides of main vein of flag leaf and grain yield of rice. China Rice 24 (06), 37-46. (in Chinese).

[20]

Debasish-Saha, Kukal, S. S., Bawa, S. S., 2014. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas. Land Degrad. Dev. 25 (5), 407-416.

[21]

Deng, L., Kim, D.G., Peng, C.H., Shangguan, Z.P., 2018. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China. Land Degrad. Dev. 29 (11), 3974-3984.

[22]

Dioha, I., Ikeme, C.H., Nafiu, T., 2013. Effect of carbon to nitrogen ratio on biogas production. Int. Res. J. Nat. Sci. 1, 1-10.

[23]

East, R., 2013. Microbiome: Soil science comes to life. Nature 501 (7468), S18-S19.

[24]

Feng, T.J., Wei, W., Chen, L.D., Keesstra, S.D., Yang, Y., 2018. Effects of land preparation and plantings of vegetation on soil moisture in a hilly loess catchment in China. Land Degrad. Dev. 29, 1427-1441.

[25]

Fernandes, A.C.S.A., Gontijo, L.M., 2020. Terracing field slopes can concurrently mitigate soil erosion and promote sustainable pest management. J. Environ. Manag. 269, 110801.

[26]

Finlay, J.C., Small, G.E., Sterner, R.W., 2013. Human influences on nitrogen removal in lakes. Science 342 (6155), 247-250.

[27]

González-Ubierna, S., Lai, R., 2019. Modelling the effects of climate factors on soil respiration across Mediterranean ecosystems. J. Arid Environ. 165, 46-54.

[28]

Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W.T., Vitousek, P.M., Zhang, F.S., 2010. Significant acidification in major Chinese croplands. Science 327 (5968), 1008-1010.

[29]

He, X.L., 2017. The origins, classifications and features of Dry Land Terrace Farming System of Shexian County, Hebei Province. China Agric. Univ. J. Social Sci. Ed. 34 (6), 84-94. (in Chinese).

[30]

Jia, X.X., Wei, X.R., Shao, M.A., Li, X.Z., 2012. Distribution of soil carbon and nitrogen along a revegetational succession on the Loess Plateau of China. Catena 95, 160-168.

[31]

Jiao, Y.M., Li, X.Z., Liang, L.H., Takeuchi, K., Okuro, T., Zhang, D.D., Sun, L.F., 2012. Indigenous ecological knowledge and natural resource management in the cultural landscape of China’s Hani Terraces. Ecol. Res. 27 (2), 247-263.

[32]

Jiao, Y.M., Zhao, D.M., Xu, Q.E., Liu, Z.L., Ding, Z.Q., Ding, Y.P., Liu, C.J., Zha, Z.Q., 2020. Mapping lateral and longitudinal hydrological connectivity to identify conservation priority areas in the water-holding forest in Honghe Hani Rice Terraces World Heritage Site. Landsc. Ecol. 35 (3), 709-725.

[33]

Kagabo, D.M., Stroosnijder, L., Visser, S.M., Moore, D., 2013. Soil erosion, soil fertility and crop yield on slow-forming terraces in the highlands of Buberuka, Rwanda. Soil Till. Res. 128, 23-29.

[34]

Khanra, A., Vasistha, S., Kumar, P., Rai, M.P., 2020. Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application. 3 Biotech 10 (8), 1-12.

[35]

Kochy, M., Don, A., van der Molen, M.K., Freibauer, A., 2015a. Global distribution of soil organic carbon - Part 2: Certainty of changes related to land use and climate. Soil 1 (1), 367-380.

[36]

Kochy, M., Hiederer, R., Freibauer, A., 2015b. Global distribution of soil organic carbon - Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1 (1), 351-365.

[37]

Lal, R., 2003. Soil erosion and the global carbon budget. Environ. Int. 29 (4), 437-450.

[38]

Li, L.J., Han, X.Z., You, M.Y., Yuan, Y.R., Ding, X.L., Qiao, Y.F., 2013. Carbon and nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: Effects of residue type and placement in soils. Eur. J. Soil Biol. 54, 1-6.

[39]

Li, Z.W., Liu, C., Dong, Y.T., Chang, X.F., Nie, X.D., Liu, L., Xiao, H.B., Lu, Y.M., Zeng, G.M., 2017. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China. Soil Till. Res. 166, 1-9.

[40]

Liu, C.A., Li, F.R., Zhou, L.M., Zhang, R.H., Yu-Jia, Lin, S.L., Wang, L.J., Siddique, K.H.M., Li, F.M., 2013. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manage. 117, 123-132.

[41]

Liu, C.A., Zhou, L.M., 2017. Soil organic carbon sequestration and fertility response to newly-built terraces with organic manure and mineral fertilizer in a semi-arid environment. Soil Till. Res. 172, 39-47.

[42]

Liu, J.J., He, J., Chen, W., Wang, B., Wang, X.J., Shen, Q.L., Sun, Y.M., 2019. Effects of continuous cropping of Zanthoxylum bungeanum on soil chemical properties and enzyme activities. Mol. Plant Breeding 17 (22), 279-284. (in Chinese).

[43]

Lopes, H.S., Bonturi, N., Kerkhoven, E.J., Miranda, E.A., Lahtvee, P.J., 2020. C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Appl. Microbiol. Biotechnol. 104 (6), 2639-2649.

[44]

Lu, R.K., 2003. The phosphorus level of soil and environmental protection of water body. Phosphate and Compound Fertilizer 18 (1), 4-8. (in Chinese).

[45]

Lu, R.K., 1989. General status of nutrients (N, P, K) in soils of China. Acta Pedologica Sinica 26 (3), 280-286 (in Chinese).

[46]

Machmuller, M.B., Kramer, M.G., Cyle, T.K., Hill, N., Hancock, D., Thompson, A., 2015. Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 6, 6995.

[47]

Massaccesi, L., Rondoni, G., Tosti, G., Conti, E., Guiducci, M., Agnelli, A., 2020. Soil functions are affected by transition from conventional to organic mulch-based cropping system. Appl. Soil Ecol. 153 ( 2020), 103639.

[48]

Mesfin, S., Taye, G., Desta, Y., Sibhatu, B., Muruts, H., Mohammedbrhan, M., 2018. Short- -term effects of bench terraces on selected soil physical and chemical properties: Landscape improvement for hillside farming in semi-arid areas of northern Ethiopia. Environ. Earth Sci. 77 (11), 399.

[49]

Mirchooli, F., Kiani-Harchegani, M., Darvishan, A.K., Falahatkar, S., Sadeghi, S.H., 2020. Spatial distribution dependency of soil organic carbon content to important environmental variables. Ecol. Indic. 116, 106473.

[50]

Montanarella, L., 2015. Agricultural policy: Govern our soils. Nature 528 (7580), 32-33.

[51]

Morgan, K.T., Graham, J.H., 2019. Nutrient status and root density of Huanglongbing-affected trees: Consequences of irrigation water bicarbonate and soil pH mitigation with acidification. Agronomy 9 (11), 746.

[52]

Novara, A., Pisciotta, A., Minacapilli, M., Maltese, A., Capodici, F., Cerda, A., Gristina, L., 2018. The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches. Sci. Total Environ. 622-623, 474-480.

[53]

Nunes, J.P., Bernard-Jannin, L., Blanco, M.L.R., Santos, J.M., Coelho, C.D.A., Keizer, J.J., 2018. Hydrological and erosion processes in terraced fields: Observations from a humid Mediterranean region in Northern Portugal. Land Degrad. Dev. 29 (3), 596-606.

[54]

Olsen, S.R., Watanabe, F.S., Cosper, H.R., Larson, W.E., Nelson, L.B., 1954. Residual phosphorus availability in long-time rotations on calcareous soils. Soil Sci. 78, 141-151.

[55]

Parton, W.J., Stewart, J.W.B., Cole, C.V., 1988. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry 5 (1), 109-131.

[56]

Petrescu-Mag, R.M., Petrescu, D.C., Azadi, H., 2020. A social perspective on soil functions and quality improvement: Romanian farmers’ perceptions. Geoderma 380, 114573.

[57]

Pietsch, D., Mabit, L., 2012. Terrace soils in the Yemen Highlands: Using physical, chemical and radiometric data to assess their suitability for agriculture and their vulnerability to degradation. Geoderma 185, 48-60.

[58]

Piovanelli, C., Gamba, C., Brandi, G., Simoncini, S., Batistoni, E., 2006. Tillage choices affect biochemical properties in the soil profile. Soil Till. Res. 90 (1-2), 84-92.

[59]

Pluer, E.G.M., Schneider, R.L., Pluer, W.T., Morreale, S.J., Walter, M.T., 2020. Returning degraded soils to productivity: Water and nitrogen cycling in degraded soils amended with coarse woody material. Ecol. Eng. 157 (1), 105986.

[60]

Priester, J.H., Ge, Y., Mielke, R.E., Horst, A.M., Moritz, S.C., Espinosa, K., Gelb, J., Walker, S.L., Nisbet, R.M., An, Y.J., Schimel, J.P., Palmer, R.G., Hernandez-Viezcas, J.A., Zhao, L., Gardea-Torresdey, J.L., Holden, P.A., 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. U.S.A. 109 (37), E2451-E2456.

[61]

Qi, Y.L., Wei, W., Li, J.R., Chen, C.G., Huang, Y.Y., 2020. Effects of terracing on root distribution of Pinus tabulaeformis Carr. forest and soil properties in the Loess Plateau of China. Sci. Total Environ. 721, 137506.

[62]

Qiang, M.M., Gao, J.E., Han, J.Q., 2021. Conversion of slope cropland to terrace influences soil organic carbon and nitrogen stocks on the Chinese Loess Plateau. Pol. J. Environ. Stud. 30 (1), 315-325.

[63]

Qiao, L.L., Chen, W.J., Wu, Y., Liu, H.F., Zhang, J.Y., Liu, G.B., Xue, S., 2019. Rehabilitation time has greater influences on soil mechanical composition and erodibility than does rehabilitation land type in the hilly-gully region of the Loess Plateau, China. PeerJ 7, e8090.

[64]

Ramesh, T., Bolan, N.S., Kirkham, M.B., Wijesekara, H., Kanchikerimath, M., Rao, C.S., Sandeep, S., Rinklebe, J., Ok, Y.S., Choudhury, B.U., Wang, H.L., Tang, C.X., Wang, X.J., Song, Z.L., Freeman, O.W., 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Adv. Agron. 156, 1-107.

[65]

Ramos, M.C., Cots-Folch, R., Martinez-Casasnovas, J.A., 2007. Effects of land terracing on soil properties in the Priorat region in Northeastern Spain: A multivariate analysis. Geoderma 142 (3-4), 251-261.

[66]

Rasanen, N.H.J., Kankaala, P., Akkanen, J., Tahvanainen, T., Saarnio, S., 2016. Effects of mire-originated dissolved organic carbon, nitrogen, and phosphorus on microbial activity in boreal headwaters. Inland Waters 6 (1), 65-76.

[67]

Rivero, C., Tourn, S.N., Garcia, G.V., Videla, C.C., Dominguez, G.F., Studdert, G.A., 2020. Nitrogen mineralized in anaerobiosis as indicator of soil aggregate stability. Agron. J. 112 (1), 592-607.

[68]

Rumpel, C., 2019. Soils linked to climate change. Nature 572 (7770), 442-443.

[69]

Rumpel, C., Lehmann, J., Chabbi, A., 2018. Boost soil carbon for food and climate. Nature 553 (7686) 27-27.

[70]

Schapel, A., Marschner, P., Churchman, J., 2018. Clay amount and distribution influence organic carbon content in sand with subsoil clay addition. Soil Till. Res. 184, 253-260.

[71]

Schiermeier, Q., 2013. Farmers dig into soil quality. Nature 502 (7473), 607.

[72]

Setia, R., Marschner, P., 2013. Carbon mineralization in saline soils as affected by residue composition and water potential. Biol. Fertil. Soils 49 (1), 71-77.

[73]

Shi, P., Duan, J.X., Zhang, Y., Li, P., Wang, X.K., Li, Z.B., Xiao, L., Xu, G.C., Lu, K.X., Cheng, S.D., Ren, Z.P., Zhang, Y., Yang, W.G., 2019a. The effects of ecological construction and topography on soil organic carbon and total nitrogen in the Loess Plateau of China. Environ. Earth Sci. 78 (1), 5.

[74]

Shi, P., Zhang, Y., Li, P., Li, Z.B., Yu, K.X., Ren, Z.P., Xu, G.C., Cheng, S.D., Wang, F.C., Ma, Y.Y., 2019b. Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau, China. Sci. Total Environ. 652, 505-512.

[75]

Simeckova, J., Hrabovska, B., Hammerova, A., 2014. Soil properties of terraces South Moravia intended of vegetation cover. Mendelnet 2014, 321-325.

[76]

Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241 (2), 155-176.

[77]

Song, D.L., Tang, J.W., Xi, X.Y., Zhang, S.Q., Liang, G.Q., Zhou, W., Wang, X.B., 2018. Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. Eur. J. Soil Biol. 84, 1-10.

[78]

Sparks, D.L., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Tabatabai, M., Johnston, C., Sumner, M., 1996. Methods of Soil Analysis. Part 3-Chemical Methods. Soil Sci. Soc. America Inc. (No. 631.417/S 736 V. 3).

[79]

Su, Z.A., Xiong, D.H., Deng, W., Dong, Y.F., Ma, J., Padma, C.P., Gurung, B.S., 2016. Cs-137 tracing dynamics of soil erosion, organic carbon, and total nitrogen in terraced fields and forestland in the Middle Mountains of Nepal. J. Mount. Sci. 13 (10), 1829-1839.

[80]

Sun, W.M., Xiao, E.Z., Pu, Z.L., Krumins, V., Dong, Y.R., Li, B.Q., Hu, M., 2018. Paddy soil microbial communities driven by environmentand microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. Sci. Total Environ. 612, 884-893.

[81]

Tarolli, P., Preti, F., Romano, N., 2014. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6, 10-25.

[82]

Tarolli, P., 2018. Agricultural terraces special issue preface. Land Degrad. Dev. 29 (10), 3544-3548.

[83]

Teixeira, W.G., Alvarez, V.V.H., Neves, J.C.L., 2020. New methods for estimating lime requirement to attain desirable pH values in Brazilian soils. Rev. Bras. Cienc. Solo 44, e0200008.

[84]

Tesfaye, M.A., Bravo, F., Ruiz-Peinado, R., Pando, V., Bravo-Oviedo, A., 2016. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261, 70-79.

[85]

Vassiljev, A., Blinova, I., 2012. The influence of drained peat soils on diffuse nitrogen pollution of surface water. Hydrol. Res. 43 (4), 352-358.

[86]

Villarino, S.H., Studdert, G.A., Baldassini, P., Cendoya, M.G., Ciuffoli, L., Mastrangelo, M., Pineiro, G., 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Sci. Total Environ. 575, 1056-1065.

[87]

Villasenor, D., Zagal, E., Stolpe, N., Hirzel, J., 2015. Relationship between mineralized nitrogen during anaerobic incubations and residual effect of nitrogen fertilization in two rice paddy soils in Chile. Chilean J. Agric. Res. 75 (1), 98-104.

[88]

Wall, D.H., Nielsen, U.N., Six, J., 2015. Soil biodiversity and human health. Nature 528 (7580), 69-76.

[89]

Wang, L.Q., Yi, C.L., Xu, X.K., Schutt, B., Liu, K.X., Zhou, L.P., 2009. Soil properties in two soil profiles from terraces of the Nam Co Lake in Tibet, China. J. Mount. Sci. 6 (4), 354-361.

[90]

Wang, T., Kang, F.F., Cheng, X.Q., Han, H.R., Ji, W.J., 2016. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Till. Res. 163, 176-184.

[91]

Wang, W.Q., Wang, C., Sardans, J., Tong, C., Jia, R.X., Zeng, C.S., Penuelas, J., 2015. Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. Catena 128, 144-154.

[92]

Wang, J.L., Zhong, Z.M., Wang, Z.H., Chen, B.X., Yu, C.Q., Hu, X.X., Shen, Z.X., Daci, Z.G., Zhang, X.Z., 2014. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau. Acta Ecologica Sinica 34 (22), 6678-6691. (in Chinese).

[93]

Wang, P., Li, F.M., Liu, X.Y., Wu, Y.M., Wang, J., 2005. Effects of long-term fertilization on forms of inorganic phosphorus in calcic kastanozens. Soils 37 (5), 534-540. (in Chinese).

[94]

Wang, Y.H., 1992. Soil Fertilizer Science. China Agricultural Press, Beijing.

[95]

Wei, W., Chen, D., Wang, L.X., Daryanto, S., Chen, L.D., Yu, Y., Lu, Y.L., Sun, G., Feng, T.J., 2016. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Sci. Rev. 159, 388-403.

[96]

Wei, W., Feng, X.R., Yang, L., Chen, L.D., Feng, T.J., Chen, D., 2019. The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China. Sci. Total Environ. 647, 1323-1332.

[97]

Williams, C.J., Boyer, J.N., Jochem, F.J., 2009. Microbial activity and carbon, nitrogen, and phosphorus content in a subtropical seagrass estuary (Florida Bay): Evidence for limited bacterial use of seagrass production. Mar. Biol. 156 (3), 341-353.

[98]

Xiao, L., Huang, Y.M., Zeng, Q.C., Zhao, J.F., Zhou, J.Y., 2018. Soil enzyme activities and microbial biomass response to crop types on the terraces of the Loess Plateau, China. J. Soils Sed. 18 (5), 1971-1980.

[99]

Yu, Y., Wei, W., Chen, L.D., Feng, T.J., Daryanto, S., Wang, L.X., 2017. Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. J. Soils Sed. 17, 144-156.

[100]

Zhang, Y.Y., Wu, W., Liu, H.B., 2019a. Factors affecting variations of soil pH in different horizons in hilly regions. PloS One 14 (6), e0218563.

[101]

Zhang, H.Q., Yu, X.Y., Jin, Z.Y., Zheng, W., Zhai, B.N., Li, Z.Y., 2017. Improving grain yield and water use efficiency of winter wheat through a combination of manure and chemical nitrogen fertilizer on the Loess plateau, China. J. Soil Sci. Plant Nut. 17 (2), 461-474.

[102]

Zhang, J.H., Wang, Y., Zhang, Z.H., 2014. Effect of terrace forms on water and tillage erosion on a hilly landscape in the Yangtze River Basin, China. Geomorphology 216, 114-124.

[103]

Zhang, Q., Li, Y., Xing, J.J., Brookes, P.C., Xu, J.M., 2019b. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Sci. Total Environ. 658, 723-731.

[104]

Zhang, T.J., Wang, Y.W., Wang, X.G., Wang, Q.Z., Han, J.G., 2009. Organic carbon and nitrogen stocks in reed meadow soils converted to alfalfa fields. Soil Till. Res. 105 (1), 143-148.

[105]

Zhao, X., Wu, P., Gao, X., Persaud, N., 2015. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 26 (1), 54-61.

[106]

Zheng, F.L., He, X.B., Gao, X.T., Zhang, C., Tang, K.L., 2005. Effects of erosion patterns on nutrient loss following deforestation on the Loess Plateau of China. Agr. Ecosyst. Environ. 108 (1), 85-97.

[107]

Zuazo, V.H.D., Pleguezuelo, C.R.R., Peinado, F.J.M., de Graaff, J., Martinez, J.R.F., Flanagan, D.C., 2011. Environmental impact of introducing plant covers in the taluses of terraces: Implications for mitigating agricultural soil erosion and runoff. Catena 84 (1-2), 79-88.

PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

/