Overview of recent land cover changes, forest harvest areas, and soil erosion trends in Nordic countries1

Na Zhou , Xiangping Hu , Ingvild Byskov , Jan Sandstad Næss , Qiaosheng Wu , Wenwu Zhao , Francesco Cherubini

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) : 163 -174.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) :163 -174. DOI: 10.1016/j.geosus.2021.07.001
research-article

Overview of recent land cover changes, forest harvest areas, and soil erosion trends in Nordic countries1

Author information +
History +
PDF

Abstract

Mapping spatiotemporal land cover changes offers opportunities to better understand trends and drivers of environmental change and helps to identify more sustainable land management strategies. This study investigates the spatiotemporal patterns of changes in land covers, forest harvest areas and soil erosion rates in Nordic countries, namely Norway, Sweden, Finland, and Denmark. This region is highly sensitive to environmental changes, as it is experiencing high levels of human pressure and among the highest rates of global warming. An analysis that uses consistent land cover dataset to quantify and compares the recent spatiotemporal changes in land cover in the Nordic countries is missing. The recent products issued by the European Space Agency and the Copernicus Climate Change Service framework provide the possibility to investigate the historical land cover changes from 1992 to 2018 at 300 m resolution. These maps are then integrated with time series of forest harvest areas between 2004 and 2018 to study if and how forest management is represented in land cover products, and with soil erosion data to explore status and recent trends in agricultural land. Land cover changes typically involved from 4% to 9% of the total area in each country. Wetland showed the strongest reduction (11,003 km2, −11% of the wetland area in 1992), followed by forest (8,607 km2, −1%) and sparse vegetation (5,695 km2, −7%), while agriculture (15,884 km2, 16%) and settlement (3,582 km2, 84%) showed net increases. Wetland shrinkage dominated land cover changes in Norway (5,870 km2, −18%), followed by forest and grassland with a net gain of 3,441 km2 (3%) and 3, 435 km2 (10%), respectively. In Sweden, forest areas decreased 13,008 km2 (−4%), mainly due to agriculture expansion (9,211 km2, 29%). In Finland, agricultural areas increased by 5,982 km2 (24%), and wetland decreased by 6,698 km2 (−22%). Settlement had the largest net growth in Denmark (717 km2, 70%), mainly from conversion of agriculture land. Soil erosion rates in Nordic countries are lower than the global average, but they are exacerbating in several locations (especially western Norway). The integration of the land cover datasets with maps of forest harvest areas shows that the majority of the losses in forest cover due to forestry operations are largely undetected, but a non-negligible share of the forest-to-agriculture (up to 19%) or forest-to-grassland (up to 51%) transitions overlap with the harvested sites. Forestry activity in the study region primarily involves small-scale harvest events that are difficult to be detected at the 300 m resolution of the land cover dataset. An accurate representation of forest management remains a challenge for global datasets of land cover time series, and more interdisciplinary international efforts are needed to address this gap. Overall, this analysis provides a detailed overview of recent changes in land cover and forest management in Nordic countries as represented by state-of-the-art global datasets, and offers insights to future studies aiming to improve these data or apply them in land surface models, climate models, landscape ecology, or other applications.

Keywords

Land cover changes / Spatiotemporal analysis / Forest management / Soil erosion

Cite this article

Download citation ▾
Na Zhou, Xiangping Hu, Ingvild Byskov, Jan Sandstad Næss, Qiaosheng Wu, Wenwu Zhao, Francesco Cherubini. Overview of recent land cover changes, forest harvest areas, and soil erosion trends in Nordic countries1. Geography and Sustainability, 2021, 2(3): 163-174 DOI:10.1016/j.geosus.2021.07.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declarations of Competing Interest

The authors declare that there is no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the Norwegian Research Council (Grant No. 286773), the National Natural Science Foundation of China (Grant No. 41861134038) through the CHINOR bilateral research project MitiStress, China Scholarship Council (Grant No. 201906410051) and the Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan) (Grant No. 2201710266). Hu acknowledges the help from Dr. Ceccherini for the forest harvested maps.

References

[1]

Alcantara, C., Kuemmerle, T., Baumann, M., Bragina, E.V., Griffiths, P., Hostert, P., Knorn, J., Müller, D., Prishchepov, A.V., Schierhorn, F., 2013. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 8, 035035.

[2]

Arsanjani, J.J., Helbich, M., de Noronha Vaz, E., 2013. Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran. Cities 32, 33-42.

[3]

Auffret, A.G., Kimberley, A., Plue, J., Waldén, E., 2018. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 1-7.

[4]

Aune, S., Bryn, A., Hovstad, K.A., 2018. Loss of semi-natural grassland in a boreal landscape: impacts of agricultural intensification and abandonment. J. Land Use Sci. 13, 375-390.

[5]

Bartholome, E., Belward, A.S., 2005. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959-1977.

[6]

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schutt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 1-13.

[7]

Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). PNAS 117, 21994-22001.

[8]

Bryn, A., Potthoff, K., 2018. Elevational treeline and forest line dynamics in Norwegian mountain areas-A review. Landsc. Ecol. 33, 1225-1245.

[9]

C3S, 2019. Land cover classification gridded maps from 1992 to present derived from satellite observations. Ceccherini, G., Duveiller, G., Grassi, G., Lemoine, G., Avitabile, V., Pilli, R., Cescatti, A., 2020. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72-77.

[10]

Ceccherini, G., Duveiller, G., Grassi, G., Lemoine, G., Avitabile, V., Pilli, R., Cescatti, A., 2021. Reply to Wernick, I.K. et al. ; Palahí M. et al.. Nature 592, E18-E23.

[11]

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., 2015. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7-27.

[12]

Cherubini, F., Huang, B., Hu, X.P., Tolle, M.H., Stromman, A.H., 2018a. Quantifying the climate response to extreme land cover changes in Europe with a regional model. Environ. Res. Lett. 13, 074002.

[13]

Cherubini, F., Santaniello, F., Hu, X.P., Sonesson, J., Stromman, A.H., Weslien, J., Djupstrom, L.B., Ranius, T., 2018b. Climate impacts of retention forestry in a Swedish boreal pine forest. J. Land Use Sci. 13, 301-318.

[14]

Cherubini, F., Vezhapparambu, S., Bogren, W., Astrup, R., Stromman, A.H., 2017. Spatial, seasonal, and topographical patterns of surface albedo in Norwegian forests and cropland. Int. J. Remote Sens. 38, 4565-4586.

[15]

Crooks, K.R., Burdett, C.L., Theobald, D.M., King, S.R., Di Marco, M., Rondinini, C., Boitani, L., 2017. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. PNAS 114, 7635-7640.

[16]

De Vente, J., Poesen, J., 2005. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Sci. Rev. 71, 95-125.

[17]

Duveiller, G., Caporaso, L., Abad-Vinas, R., Perugini, L., Grassi, G., Arneth, A., Cescatti, A., 2020. Local biophysical effects of land use and land cover change: Towards an assessment tool for policy makers. Land Use Policy 91, 104382.

[18]

EFFIS,2019. Statistics Portal. https://gwis.jrc.ec.europa.eu/apps/gwis_current_situation/index.html (Accessed 16 Febrary 2021).

[19]

ESA, 2017. Land Cover CCI: Product User Guide Version 2.0. https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (Accessed 27 May 2020).

[20]

FAO, 2020. FAOSTAT Datebase. http://www.fao.org/faostat/en (Accessed 12 December 2020).

[21]

Fourcade, Y., Åström, S., Öckinger, E., 2019. Climate and land-cover change alter bumblebee species richness and community composition in subalpine areas. Biodivers. Conserv. 28, 639-653.

[22]

Friedl, M.A., McIver, D.K., Hodges, J.C., Zhang, X.Y., Muchoney, D., Strahler, A.H., Woodcock, C.E., Gopal, S., Schneider, A., Cooper, A., 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 83, 287-302.

[23]

Gava, O., Bartolini, F., Venturi, F., Brunori, G., Pardossi, A., 2020. Improving policy evidence base for agricultural sustainability and food security: A content analysis of life cycle assessment research. Sustainability 12, 1033.

[24]

Ghajarnia, N., Destouni, G., Thorslund, J., Kalantari, Z., Åhlén, I., Anaya-Acevedo, J.A., Blanco-Libreros, J.F., Borja, S., Chalov, S., Chalova, A., 2020. Data for wetlandscapes and their changes around the world. Earth Syst. Sci. Data 12, 1083-1100.

[25]

Gomes, E., Abrantes, P., Banos, A., Rocha, J., Buxton, M., 2019. Farming under urban pressure: Farmers’ land use and land cover change intentions. Appl. Geogr. 102, 58-70.

[26]

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18-27.

[27]

Green, A.J., Alcorlo, P., Peeters, E.T., Morris, E.P., Espinar, J.L., Bravo-Utrera, M.A., Bustamante, J., Díaz-Delgado, R., Koelmans, A.A., Mateo, R., 2017. Creating a safe operating space for wetlands in a changing climate. Front. Ecol. Environ. 15, 99-107.

[28]

Grekousis, G., Mountrakis, G., Kavouras, M., 2015. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 36, 5309-5335.

[29]

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S., Goetz, S.J., Loveland, T.R., 2013. High-resolution global maps of 21st-century forest cover change. Science 342, 850-853.

[30]

Henriksen, S., Hilmo, O., 2015. Norsk rødliste for arter 2015. Artsdatabanken, Norge 6.

[31]

Hu, X., Huang, B., Verones, F., Cavalett, O., Cherubini, F., 2021a. Overview of recent land-cover changes in biodiversity hotspots. Front. Ecol. Environ. 19, 91-97.

[32]

Hu, X., Næss, J.S., Iordan, C.M., Huang, B., Zhao, W., Cherubini, F., 2021b. Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene 34, 100291.

[33]

Hu, X.P., Huang, B., Cherubini, F., 2019. Impacts of idealized land cover changes on climate extremes in Europe. Ecol. Indic. 104, 626-635.

[34]

Hu, X.P., Iordan, C.M., Cherubini, F., 2018. Estimating future wood outtakes in the Norwegian forestry sector under the shared socioeconomic pathways. Global Environ. Change 50, 15-24.

[35]

Hua, T., Zhao, W.W., Liu, Y.X., Wang, S., Yang, S.Q., 2018. Spatial consistency assessments for global land-cover datasets: A comparison among GLC 2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 10, 1846.

[36]

Huang, B., Hu, X.P., Fuglstad, G.A., Zhou, X., Zhao, W.W., Cherubini, F., 2020. Predominant regional biophysical cooling from recent land cover changes in Europe. Nat. Commun. 11, 1-13.

[37]

Hurtt, G.C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B.L., Calvin, K., Doelman, J.C., Fisk, J., Fujimori, S., Klein Goldewijk, K., 2020. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425-5464.

[38]

Iordan, C.M., Hu, X., Arvesen, A., Kauppi, P., Cherubini, F., 2018a. Contribution of forest wood products to negative emissions: historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland. Carbon Balance Manag. 13, 12.

[39]

Iordan, C.M., Verones, F., Cherubini, F., 2018b. Integrating impacts on climate change and biodiversity from forest harvest in Norway. Ecol. Indic. 89, 411-421.

[40]

IPCC, 2019. Summary for Policymakers. In: Shukla, J. S. P. R., Calvo Buendia, E. , Mas- son-Delmotte, V. , Pörtner, H. - O., Roberts, D. C., Zhai, P. , Slade, R. , Connors, S. , van Diemen, R. , Ferrat, M. , Haughey, E. , Luz, S. , Neogi, S. , Pathak, M. , Petzold, J. , Por- tugal Pereira, Eds.), IPCC,J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J. (Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. pp. 1-36.

[41]

Karvonen, V., Ribard, C., Sädekoski, N., Tyystjärvi, V., Muukkonen, P., 2018. Comparing ESA land cover data with higher resolution national datasets. In: Tyystjärvi, V., Muukkonen, P. (Eds.), Creating, managing, and analysing geospatial data and databases in geographical themes. University of Helsinki, Helsinki, pp. 26-45.

[42]

Kellomäki, S., Strandman, H., Heinonen, T., Asikainen, A., Venäläinen, A., Peltola, H., 2018. Temporal and spatial change in diameter growth of boreal Scots pine, Norway spruce, and birch under recent-generation (CMIP5) global climate model projections for the 21st century. Forests 9, 118.

[43]

Larsson, L., Müller, D.K., 2019. Coping with second home tourism: Responses and strategies of private and public service providers in western Sweden. Curr. Issues Tour. 22, 1958-1974.

[44]

Lauri, P., Forsell, N., Korosuo, A., Havlík, P., Obersteiner, M., Nordin, A., 2017. Impact of the 2 C target on global woody biomass use. Forest Policy Econ. 83, 121-130.

[45]

Leclère, D., Obersteiner, M., Barrett, M., Butchart, S.H., Chaudhary, A., De Palma, A., DeClerck, F.A., Di Marco, M., Doelman, J.C., Dürauer, M., 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551-556.

[46]

Leirpoll, M.E., Næss, J.S., Cavalett, O., Dorber, M., Hu, X., Cherubini, F., 2021. Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland. Renew. Energ. 168, 45-56.

[47]

Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R.A., Peng, S.S.,2018. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps ( 1992-2015). Earth Syst. Sci. Data 10, 219-234.

[48]

Liang, L., Liu, Q., Liu, G., Li, H., Huang, C., 2019. Accuracy evaluation and consistency analysis of four global land cover products in the Arctic region. Remote Sens. 11, 1396.

[49]

Lindeskog, M., Lagergren, F., Smith, B., Rammig, A., 2021. Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4. 0, r9333): Implementation and evaluation of simulations for. Europe. Geosci. Model Dev. Discuss. 1-42.

[50]

Liu, X.X., Yu, L., Li, W., Peng, D.L., Zhong, L.H., Li, L., Xin, Q.C., Lu, H., Yu, C.Q., Gong, P., 2018a. Comparison of country-level cropland areas between ESA-CCI land cover maps and FAOSTAT data. Int. J. Remote Sens. 39, 6631-6645.

[51]

Liu, X.X., Yu, L., Si, Y.L., Zhang, C., Lu, H., Yu, C.Q., Gong, P., 2018b. Identifying patterns and hotspots of global land cover transitions using the ESA CCI Land Cover dataset. Remote Sens. Lett. 9, 972-981.

[52]

Lohila, A., Minkkinen, K., Laine, J., Savolainen, I., Tuovinen, J.P., Korhonen, L., Laurila, T., Tietäväinen, H., Laaksonen, A., 2010. Forestation of boreal peatlands: Impacts of changing albedo and greenhouse gas fluxes on radiative forcing. J. Geophy. Res. 115, G04011.

[53]

Loveland, T.R., Belward, A., 1997. The international geosphere biosphere programme data and information system global land cover data set (DISCover). Acta Astronaut. 41, 681-689.

[54]

Lukes, P., Stenberg, P., Mottus, M., Manninen, T., Rautiainen, M., 2016. Multidecadal analysis of forest growth and albedo in boreal Finland. Int. J. Appl. Earth Obs. Geoinf. 52, 296-305.

[55]

Mienna, I.M., Speed, J.D.M., Klanderud, K., Austrheim, G., Næsset, E., Bollandsås, O.M., 2020. The relative role of climate and herbivory in driving treeline dynamics along a latitudinal gradient. J. Veg. Sci. 31, 392-402.

[56]

Milberg, P., Bergman, K.-O., Jonason, D., Karlsson, J., Westerberg, L., 2019. Land-use history influence the vegetation in coniferous production forests in southern Sweden. For. Ecol. Manage. 440, 23-30.

[57]

Mousivand, A., Arsanjani, J.J., 2019. Insights on the historical and emerging global land cover changes: The case of ESA-CCI-LC datasets. Appl. Geogr. 106, 82-92.

[58]

Müller, D.K., 2007. Second homes in the Nordic countries: Between common heritage and exclusive commodity. Scand. J. Hosp. Tourism 7, 193-201.

[59]

Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K., Bjerke, J.W., Epstein, H.E., Assmann, J.J., John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P.S., 2020. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106-117.

[60]

Næss, J. S., Cavalett, O., Cherubini, F., 2021. The land-energy-water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 4, 525-536.

[61]

Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J., Luyssaert, S., 2016. Europe’s forest management did not mitigate climate warming. Science 351, 597-600.

[62]

Nunes, J.R., Loures, L., Lopez-Piñeiro, A., Loures, A., Vaz, E., 2016. Using GIS towards the characterization and soil mapping of the caia irrigation perimeter. Sustainability 8, 368.

[63]

Osei-Owusu, A.K., Kastner, T., de Ruiter, H., Thomsen, M., Caro, D., 2019. The global cropland footprint of Denmark’s food supply 2000-2013. Global Environ. Chang. 58, 101978.

[64]

Palahí, M., Valbuena, R., Senf, C., Acil, N., Pugh, T.A., Sadler, J., Seidl, R., Potapov, P., Gardiner, B., Hetemäki, L., 2021. Concerns about reported harvests in European forests. Nature 592, E15-E17.

[65]

Panagos, P., Katsoyiannis, A., 2019. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Elsevier.

[66]

Pei, J., Niu, Z., Wang, L., Song, X.-P., Huang, N., Geng, J., Wu, Y.-B., Jiang, H.-H., 2018. Spatial-temporal dynamics of carbon emissions and carbon sinks in economically developed areas of China: A case study of Guangdong Province. Sci. Rep. 8, 1-15.

[67]

Plieninger, T., Draux, H., Fagerholm, N., Bieling, C., Bürgi, M., Kizos, T., Kuemmerle, T., Primdahl, J., Verburg, P.H., 2016. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 57, 204-214.

[68]

Plummer, S., Lecomte, P., Doherty, M., 2017. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sens. Environ. 203, 2-8.

[69]

Pr, ăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Ro, șca, B.,Dumitraşcu, M., Nita, I.-A., Săvulescu, I., Birsan, M.-V., Bandoc, G., 2021. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 194, 110697.

[70]

Räsänen, A., Nygren, A., Monge, A.M., Käkönen, M., Kanninen, M., Juhola, S., 2018. From divide to nexus: Interconnected land use and water governance changes shaping risks related to water. Appl. Geogr. 90, 106-114.

[71]

Ren, W., Banger, K., Tao, B., Yang, J., Huang, Y., Tian, H., 2020. Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management. Geogr. Sustain. 1, 59-69.

[72]

Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., 2019. Contribution of the land sector to a 1.5 ◦C world. Nat. Clim. Change 9, 817-828.

[73]

Saco, P.M., Moreno-de las Heras, M., Keesstra, S., Baartman, J., Yetemen, O., Rodríguez, J.F., 2018. Vegetation and soil degradation in drylands: Non linear feedbacks and early warning signals. Curr. Opin. Env. Sci. Health 5, 67-72.

[74]

Schelhaas, M.-J., Fridman, J., Hengeveld, G.M., Henttonen, H.M., Lehtonen, A., Kies, U., Krajnc, N., Lerink, B., NíDhubháin, Á., Polley, H., 2018. Actual European forest management by region, tree species and owner based on 714,000 re-measured trees in national forest inventories. PLoS One 13, e0207151.

[75]

Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., Lwasa, S., McElwee, P., 2020. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Chang. Biol. 26, 1532-1575.

[76]

Song, X.-P., Hansen, M.C., Stehman, S.V., Potapov, P.V., Tyukavina, A., Vermote, E.F., Townshend, J.R., 2018. Global land change from 1982 to 2016. Nature 560, 639-643.

[77]

Strand, G.-H., 2013. The Norwegian area frame survey of land cover and outfield land resources. Nor. Geografisk Tidsskr. -Norw. J. Geogr. 67, 24-35.

[78]

Strand, J.A., Weisner, S.E., 2013. Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape —Experiences from Sweden. Ecol. Eng. 56, 14-25.

[79]

Strassburg, B.B., Iribarrem, A., Beyer, H.L., Cordeiro, C.L., Crouzeilles, R., Jakovac, C.C., Junqueira, A.B., Lacerda, E., Latawiec, A.E., Balmford, A., 2020. Global priority areas for ecosystem restoration. Nature 586, 724-729.

[80]

Szogs, S., Arneth, A., Anthoni, P., Doelman, J.C., Humpenöder, F., Popp, A., Pugh, T.A., Stehfest, E., 2017. Impact of LULCC on the emission of BVOCs during the 21st century. Atmos. Environ. 165, 73-87.

[81]

Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M.S., Rödig, E., Wiegand, T., Huth, A., 2018. Global patterns of tropical forest fragmentation. Nature 554, 519-522.

[82]

Ulén, B., Bechmann, M., Øygarden, L., Kyllmar, K., 2012. Soil erosion in Nordic countries —Future challenges and research needs. Acta Agr. Scand. B-S. P. Sci. 62, 176-184.

[83]

van Vliet, J., 2019. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755-763.

[84]

Vauhkonen, J., Packalen, T., 2018. Uncertainties related to climate change and forest management with implications on climate regulation in Finland. Ecosyst. Serv. 33, 213-224.

[85]

Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham, H.P., Laurance, W.F., Wood, P., Fekete, B.M., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1-11.

[86]

Verkerk, P.J., Fitzgerald, J.B., Datta, P., Dees, M., Hengeveld, G.M., Lindner, M., Zudin, S., 2019. Spatial distribution of the potential forest biomass availability in. Europe. For. Ecosyst. 6, 1-11.

[87]

Vogdrup-Schmidt, M., Olsen, S.B., Dubgaard, A., Kristensen, I.T., Jørgensen, L.B., Normander, B., Ege, C., Dalgaard, T., 2019. Using spatial multi-criteria decision analysis to develop new and sustainable directions for the future use of agricultural land in Denmark. Ecol. Indic. 103, 34-42.

[88]

Wehn, S., Olsson, G., Hanssen, S., 2012. Forest line changes after 1960 in a Norwegian mountain region-implications for the future. Nor. Geografisk Tidsskr. -Norw. J. Geogr. 66, 2-10.

[89]

Werner, B.A., Johnson, W.C., Guntenspergen, G.R., 2013. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region. Ecol. Evol. 3, 3471-3482.

[90]

Wernick, I.K., Ciais, P., Fridman, J., Högberg, P., Korhonen, K.T., Nordin, A., Kauppi, P.E., 2021. Quantifying forest change in the European Union. Nature 592, E13-E14.

[91]

Yin, H., Brandão, Jr„A., Buchner, J., Helmers, D., Iuliano, B.G., Kimambo, N.E., Lewińska, K.E., Razenkova, E., Rizayeva, A., Rogova, N., 2020. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 246, 111873.

[92]

Zhu, Z.C., Piao, S.L., Myneni, R.B., Huang, M.T., Zeng, Z.Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C.X., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y.W., Liu, R.G., Mao, J.F., Pan, Y.Z., Peng, S.S., Penuelas, J., Poulter, B., Pugh, T.A.M., Stocker, B.D., Viovy, N., Wang, X.H., Wang, Y.P., Xiao, Z.Q., Yang, H., Zaehle, S., Zeng, N., 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791-795.

PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

/